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Henri Poincaré and partial
differential equations

Henri Poincaré introduced a new approach to solve the Dirichlet prob-
lem and he gave the first general solution of the initial value problem
for the ’telegraph equation’. In this article Jean Mawhin describes
these and other contributions of Poincaré to partial differential equa-
tions.

Henri Poincaré has been professor of mathematical physics and prob-
abilities from 1886 until 1896, when he exchanged this chair for that of
theoretical astronomy and celestial mechanics left vacant by Félix Tis-
serand’s unexpected death. The story of the surprising nomination of a
specialist in number theory and analysis at this chair of mathematical
physics is told in [2]. All Poincaré’s papers about partial differential
equations have been published after 1886. Many of his original con-
tributions or presentations are contained in the well-known series of
textbooks based upon his lectures at the Sorbonne.

Between 1890 and 1896, Poincaré devoted three long and important
memoirs [26, 29, 33] to the partial differential equations of mathemat-
ical physics. Among the achievements in those papers are the first
general existence result for the Dirichlet problem associated to the
Laplacian on a general bounded domain, an implicit minimax char-
acterization of its eigenvalues, an important inequality and the first
existence proof of all eigenvalues for the same problem.

Other significant contributions of Poincaré to partial differential
equations deal with the first general solution of the telegraph equa-
tion on an infinite line in 1893, and the use of a continuation method
for the solution of some non-linear elliptic problems. We briefly anal-
yse them in this paper but, to keep it within a reasonable size, we have

excluded other Poincaré contributions to partial differential equations,
like his papers dealing with the propagation and diffraction of Hertzian
waves.

Dirichlet problem and sweeping out method
Given a domain D ⊂ R3 bounded by a surface S, and a continuous
function Φ over S, a Dirichlet problem consists in finding a function V
such that

∆V :=
∂2V
∂x2 +

∂2V
∂y2 +

∂2V
∂z2 = 0 in D,

V = Φ on S.
(1)

If∇U := ( ∂U∂x ,
∂U
∂y ,

∂U
∂z ), any minimizerV of the integral I(U ) :=

∫
D ‖∇U‖2

over all functions U ∈ C2(D) ∩ C(D) equal to Φ on S is a solution of
(1). Bernhard Riemann called the argument Dirichlet’s principle, used
before him by Johann Peter Lejeune Dirichlet and William Thomson,
claiming the existence of a minimum from the positivity of I(U ). After
Karl Weierstrass’ criticism, several mathematicians of the end of the
nineteenth century, like Carl Neumann and Gustave Robin, searched
for other existence proofs for the Dirichlet problem, which, according
to Poincaré, “are methods of proof of a solution of the problem and
computational methods to solve it effectively. As methods of proof,
they are rather complicated, but they complete each other in order to
apply to all cases and to satisfy the most severe judges with respect to
rigour. As methods of computation, they have no value; even the sim-
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plest of them [...] leads to inextricable computations from the second
approximation.”

In [26], Poincaré introduced a new approach to solve the Dirichlet
problem in bounded domainsD ⊂ R3 with sufficiently smooth bound-
ary S. He gave a modest and lucid appreciation of his method: “The
most interesting thing would have been to replace the present meth-
ods of computations by less defective ones. I was unable to do it,
and restricted myself to find a method of proof simpler than the ones
proposed until now, and directly applicable to all cases.”

The main ideas of his sweeping out method were announced on
3 January 1887 in a note of the Comptes Rendus [23], and developed
in [26] for the exterior Dirichlet problem. Poincaré applied it directly
to the Dirichlet problem (1) in his book [34], and we describe it here in
this more familiar frame. The sweeping out of a sphere S consists in
replacing matter (or charge) inside of S by an equivalent distribution
of matter (or charge) on S. In this way, a material point M of mass
one can be replaced by a mass one distributed on the boundary with a
superficial density inversely proportional to the cube of the distance to
M, and the result is easily extended to an arbitrary mass distribution
inside S. This process does not introduce any negative mass, does not
modify the potential outside S and diminishes it inside S.

Approximating Φ through a series of polynomials on a closed ball
B containing D in its interior, and using the maximum principle and
Harnack’s theorem, Poincaré showed that it suffices to solve the Dirich-
let problem for data which are the restriction to S of a polynomial P.
Poincaré first expressed D as the union of a sequence of balls (Bn)

contained in D, and assumed that ∆P < 0 on B. Letting ∆P = −4πσ

and W0 =
∫
B
σ
r dx, in such a way that ∆W0 = −4πσ = ∆P in B, and

looking at σ as a density of attracting matter, Poincaré swept out the
balls Bn in the order

B1, B2;B1, B2, B3;B1, B2, B3, B4; . . . ,

so that every ball is swept out an infinity of times. If Wn denotes the
potential of the attracting matter after the nth operation, it is clear
that Wn > 0 and that Wn ≤ Wn−1. Consequently, the sequence (Wn)

converges pointwise, say to W, with 0 < W < W0 in D and W = W0

outside of D. If the ball Bk has been swept out during the operations
numbered by α1, α2, α3, . . . , the functions Wαj are harmonic in Bk,
and the sequence (Wαj ) converges to W. From Harnack’s theorem, W
is harmonic in Bk, and hence in D = ∪k≥1Bk.

Poincaré then showed that W is continuous at any point Q of S
in which S has a tangent plane and two principal curvature radii. The
functionV = W−W0 +P is harmonic inD since∆W = 0 and∆W0 = ∆P,
and is equal to P on S, since W = W0 on S. The Dirichlet problem is
therefore solved when ∆P < 0 and S has the mentioned regularity at
each point. The restriction∆P < 0 can be easily removed because any
polynomialP can be written as the differenceP2−P1 of two polynomials
such that ∆P1 < 0 and ∆P2 < 0. If Vj is the harmonic function in D
equal to Pj on S (j = 1,2), then V = V1 − V2 is the searched function.

The regularity conditions upon the boundary have been generalized
by Henri Lebesgue and by Norbert Wiener. A short account of Poincaré’s
work is given in [6]. More details can be found in [16] and [40]. It is
superfluous to insist over the consequences and developments of the
sweeping out method in potential theory and in the study of elliptic
equations, in the hands of mathematicians like Stanislaus Zaremba,
Henri Lebesgue, Oskar Perron, Norbert Wiener, Frédéric Riesz, Otto
Frostman, Charles de La Vallée Poussin, Henri Cartan, Marcel Brelot
and others [5, 19].

Variational characterization of the eigenvalues of Fourier’s problem
Separation of space and time dependence in Fourier’s problem for
heat equation leads to the determination of positive numbers k and
functions U such that

∆U + kU = 0 in D ⊂ R3,

∂U
∂n

+ hU = 0 on S,
∫
D
U2 = 1,

with D ⊂ R3 a bounded domain with boundary S, ∂U∂n the exterior
normal derivative, and h a positive constant. For special domains D,
the problem can be explicitly solved, but for an arbitrary bounded D,
Poincaré observed that “...the first point is to establish the existence
of those functions U . This has not been done yet, as far as I know, in
the general case, and I will try to do it.”

The first approach to this problem, also contained in [26], was an-
nounced in two notes of the Comptes Rendus from 20 June 1887 [24]
and 17 December 1888 [25]. Poincaré was aware of their lack of rigour,
but not of their lack of novelty. A previous work of Heinrich Weber in
1869 [43] had proposed an entirely similar approach in dimension two.
The underlying idea of both works is an extension of Dirichlet’s princi-
ple. If B(U1) denotes the minimum of the positive quadratic expression

B(F ) := h
∫
S
F2dσ +

∫
D
‖∇F‖2
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on Σ1 := {F ∈ C1 :
∫
D F2 = 1}, there is a Lagrange multiplier k1 such

that

∆U1 + k1U1 = 0 in D ⊂ R3,

∂U1

∂n
+ hU1 = 0 on S.

The existence of a fundamental function U1, in Poincaré’s terminology,
is ‘proved’ in this way, and Poincaré observed that

k1 ≤
h
∫
S F2dσ +

∫
D ‖∇F‖2∫

D F2 ,

for all non-zero functions F .
Similarly, if B(U2) denotes the minimum of B(F ) on Σ2 ⊂ Σ1 de-

fined by Σ2 := {F ∈ C1 :
∫
D F2 = 1,

∫
D FU1 = 0}, there are Lagrange

multipliers k2 and λ such that

∆U2 + k1U2 + λU2 = 0 in D ⊂ R3,

∂U2

∂n
+ hU2 = 0 on S.

The conditions
∫
D U

2
1 = 1,

∫
D U1U2 = 0 and Green’s formulas imply

that λ = 0, and hence U2 is a second fundamental function. If we now
minimize F on Σ3 = {F ∈ C1 :

∫
D F2 = 1,

∫
D FU1 = 0,

∫
D FU2 = 0}, we

obtain the existence of some number k3 and of a third fundamental
function U3, and, going on in this way, the existence of infinitely many
fundamental functions. Poincaré admitted the non-rigorous character
of his reasoning: “This proof is completely analogous to the one used
by Riemann to establish Dirichlet’s principle, that analysts have since
replaced by more rigorous reasoning.”

Poincaré was one of them, with his sweeping out method. Poincaré
went further than Weber in obtaining an upper bound for kn. Given
F1, . . . , Fn, if F =

∑n
j=1αjFj , then B(F ) and A(F ) :=

∫
D F2 are positive

definite quadratic forms in α = (α1, . . . , αn) and a simple algebraic
reasoning shows that the roots λ1 ≤ · · · ≤ λn of the characteristic
equation |B(F )−λA(F )| = 0 verify the inequalities kj ≤ λj (1 ≤ j ≤ n).
As George Polya noticed later [39], if one takes Fj = Uj (1 ≤ j ≤ n),
then kj = λj (1 ≤ j ≤ n), and, if Sn = {

∑n
j=1αjFj : α ∈ Rn}, then λn =

maxF∈Sn\{0} B(F )/A(F ). Consequently, Poincaré’s reasoning implicitly
contained the minimax characterization of kn,

kn = min
Sn

max
F∈Sn

B(F )
A(F )

,

explicitly given for the first time in 1905, for a finite-dimensional spec-
tral problem, by Ernst Fisher [8], without any reference and through an
algebraic approach independent of the calculus of variations. It is not
necessary to insist on the importance and the development of mini-
max methods for the study of eigenvalues, by Herman Weyl, Richard
Courant, Alexander Weinstein, George Polya, Menahem Schiffer and
many others [10, 44].

Using once more Green’s formula, Poincaré showed the increasing
character of the kj with respect to h. As, by construction, they also
increase with j, it suffices to treat the case where h = 0, i.e. Neu-
mann’s problem, to show that kj → +∞ as j → +∞. To this aim,
Poincaré searched a lower bound for kn. Decomposing D in p parts
Di (1 ≤ i ≤ p), calling Ui,j and ki,j the fundamental functions and
the characteristic numbers associated to Neumann conditions on Di,

and letting V =
∑n
l=1αlUl, where the Ul are the first n characteristic

functions on D and the αl undetermined coefficients, it is easy to see
that

∫
D ‖∇V‖2∫
D V2 =

∑n
l=1 klα

2
l∑n

l=1α
2
l
≤ kn. (2)

Choosing the coefficients in such a way that
∫
Di VUi,1 = 0, j =

1, . . . , λi, i = 1, . . . , n− 1, Poincaré obtained easily that

∫
D
‖∇V‖2 =

n−1∑
i=1

∫
Di
‖∇V‖2 ≥ min

1≤i≤n−1
{ki,2}

∫
D
V2,

and hence, using (2), thatkn ≥ min1≤i≤n−1{ki,2}. In particular, a poly-
hedron bounded by faces parallel to one of the planes of coordinates
can be decomposed inton−1 rectangular parallelotopes whose largest
side tends to zero when n → ∞. If those largest sides are all smaller
or equal to an, one obtains, by separation of variables, ki,2 ≥ π2/a2

n
(i = 1, · · · , n − 1), and hence kn ≥ π2/a2

n, so that kn → +∞ when
n → ∞. If one can approach D by such polyedra the result remains
valid for D. But Poincaré did not content himself with this reasoning
and proposed to find a lower bound to k2 whenD is a bounded convex
domain. This is the origin of the famous Poincaré inequality, to which
the next section is devoted.

Poincaré inequality
LetD ⊂ R3 be a bounded and convex open set. Poincaré first observed
that, with µ(D) the volume of D,

∫
D×D

[V (x)− V (x′)]2 dx dx′ = 2µ(D)
∫
D
V2 − 2

(∫
D
V
)2

.

Therefore

k2 = 2µ(D) min
V 6=0:

∫
D V=0

∫
D ‖∇V‖2∫

D×D[V (x)− V (x′)]2 dx dx′

= 2µ(D) min
V 6=0

∫
D ‖∇V‖2∫

D×D[V (x)− V (x′)]2 dx dx′
,

(3)

as the minimized expression does not change by adding a constant to
V . Using a complicated argument based upon a spherical type change
of variable, on which we return later, and upon a reduction to a one-
dimensional problem of the calculus of variations, Poincaré obtained,
for continuously differentiable functions V such that

∫
D V = 0, the

inequality

k2 ≥
6K0µ(D)
πd5 , (4)

where K0 is some numerical constant and d the diameter of D.
This first formulation of the Poincaré inequality allowed him to ex-

tend his result limn→∞ kn = +∞ to the case of a ‘general’ domain.
If one decomposes D in n − 1 convex parts Dj (1 ≤ j ≤ n − 1),
and if µ(Dj )/d5

j ≥ α for any Dj and some α > 0, one easily gets
kn ≥ 6K0α/π . The quantity α (of the order of d−2

j ) can be taken ar-
bitrarily large by taking n sufficiently large and choosing suitably the
parts Dj . Hence, for such a domain D, kn →∞ when n→∞.
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Poincaré returned to inequality (4) in the third section ‘Preliminary
lemma’ of his second memoir [29] on the equations of mathematical
physics. He substantially simplified his argument and obtained a more
explicit expression than in (4). For simplicity, we restrict to the case of
a bounded convex open setD of R2, for which Poincaré only stated the
result. To estimate the right-hand member of (3), Poincaré introduced,
like in the preceding memoir, the change of variables

x = ξ + ρ cosϕ, y = ρ sinϕ,

x′ = ξ + ρ′ cosϕ, y′ = ρ sinϕ.
(5)

Geometrically, ξ is the first component of the intersection of the line
joining (x,y) to (x′, y′) with the first axis,ϕ the angle of the segment
joining (ξ,0) to (x,y) with this axis, ρ the distance of (x,y) to (ξ,0)

and ρ′ the distance of (x′, y′) to (ξ,0). The aim of this change of
variables is essentially to reduce the inequality to the one-dimensional
case. Letting T (ξ,ϕ,σ ) = (ξ+σ cosϕ,σ sinϕ), and using the Cauchy
inequality, Poincaré obtained the estimate

[
∂
∂ρ

(V ◦ T )

]2

≤
(
∂V
∂x

◦ T
)2

+

(
∂V
∂y

◦ T
)2

= ‖∇V ◦ T‖2. (6)

If µ(D) denotes the area of D, using (6), one has

µ(D)
∫
D
‖∇V‖2 =

∫
D×D

‖∇V (x)‖2 dx dx′. (7)

The idea consists in using the transformation (5) to compute the right-
hand member integral as well as

∫
D×D[V (x)−V (x′)]2 dx dx′, to notice

that, for ρ′ > ρ, the Schwarz inequality implies, with T ′ = T (ξ,ϕ,σ ′),

(V ◦ T − V ◦ T ′)2 ≤ (ρ′ − ρ)
∫ ρ′
ρ

[
∂
∂σ

(V ◦ T )
]2

dσ,

integrate this inequality over the other variables and use (6) to obtain
the Poincaré inequality in the plane

∫
D
‖∇V‖2 ≥ 24

7d2

∫
D
V2, (8)

for any continuously differentiable function V such that
∫
D V = 0.

When D is a bounded convex open subset of, a similar approach
gives the Poincaré inequality in space

∫
D
‖∇V‖2 ≥ 16

9d2

∫
D
V2 (9)

for all continuously differentiable functions V such that
∫
D V = 0.Mod-

ern treatments of the Poincaré inequality only prove, using a compact-
ness argument, the existence of a constant c > 0 such that

∫
D
‖∇V‖2 ≥ c

∫
D
V2 (10)

when
∫
D V = 0, without information about the dependence of c with

respect to D. A recent work [3] shows that the best constant c for

a convex D ⊂ Rn is equal to π2

d2 for all n. On the other hand, the
inequality (10) for the functions which vanish on S, often referred as
the Poincaré inequality in the literature, does not occur in the work of
the French mathematician, but can be traced to Herman A. Schwarz.

Poincaré uses inequalities (8)–(9) to show that, given p functions
ϕ1, . . . , ϕp and V =

∑p
i=1αiϕi, one can choose the αi in such a way

that
∫
D ‖∇V‖2/

∫
D V2 is larger than any number given in advance. First,

if D can be decomposed into p − 1 convex open sets Di of diameters
smaller thand, choosing theαi in order that

∫
Di V = 0 (1 ≤ i ≤ p−1),

inequality (9) applied to Di implies that

∫
D
‖∇V‖2 =

p−1∑
i=1

∫
Di
‖∇V‖2 ≥ 16

9d2

p−1∑
i=1

∫
Di
V2 =

16
9d2

∫
D
V2.

If now D is convex and contained in a cube of side Λ, one divides this
cube into q3 equal cubes of side Λ/q. The intersection of such a small
cube withD is convex and has diameter smaller thanΛ√3/q. If one has
p − 1 intersections, the reasoning above shows that one can choose
the αi in such a way that

∫
D
‖∇V‖2 ≥ 16q2

27Λ2

∫
D
V2.

It will be possible to do it a fortiori if p is larger than the number of
intersections plus one, and it suffices to takep ≥ q3 +1. Consequently,
forD convex, one can choose the αi in such a way that

∫
D
‖∇V‖2 ≥ Lp

∫
D
V2 (11)

with Lp = 16q2

27Λ2 and q3 the largest perfect cube contained in p−1. IfD
can be decomposed intom convex sets, one still obtains the inequality
(11) for a suitable choice of the αi, with q3 the largest perfect cube
contained in p−1

m . Similar arguments work in dimension 2, and, when
p →∞, Lp ' p2/3 if n = 3 and Lp ' p if n = 2.

More details on Poincaré’s contributions to his inequality can be
found in [1] and [16].

Eigenvalues and eigenfunctions of the Dirichlet problem
One of the main contributions of the memoir [29] of 1894 is to provide
the first rigorous proof of the existence of eigenvalues and eigenfunc-
tions for the Dirichlet problem in an arbitrary bounded domain. The
existence of the first eigenvalue had been shown in 1885 by Herman A.
Schwarz [41] and that of the second one in 1893 by Émile Picard [22].
Poincaré’s result was announced in a note in the Comptes Rendus of
26 February 1894 [28].

Given a bounded domain D ⊂ R3 with boundary S, a continuous
function f overD, and ξ ∈ R, Poincaré’s idea was to start by the study
of the non-homogeneous Dirichlet problem

∆v + ξv + f = 0 in D, v = 0 on S, (12)

and to detect the eigenvalues as the values of ξ for which the solu-
tion of (12) is infinite, i.e. for which resonance occurs. Following a
method of Schwarz, he searched the solution in the form of a series
v =

∑∞
k=0 ξkvk, leading formally to the sequence of Dirichlet problems
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Front covers of some of Poincaré ’s publications [30–31, 34]

for the Laplacian

∆v0 + f = 0 in D, v0 = 0 on S,

∆vk + vk−1 = 0 in D, vk = 0 on S (k = 1,2, . . .),

each of which having a unique solution by the sweeping out method.
Using the ‘Schwarz’ integrals’

Wm,n :=
∫
D
vmvn, Vm,n :=

∫
D
∇vm · ∇vn(m,n = 0,1,2, . . .),

which are such that Wm,n = Wm+n,0 := Wm+n, Poincaré showed
that the sequence (Wn+1/Wn) converges to some 1/R such that
R ≥ Q

√
µ(D). This implies the uniform convergence (with respect to

x) of the series
∑∞
n=0 ξnvn(x) for |ξ| < R, and that problem (12)

has a solution v = [f , ξ] for any |ξ| < R, and in particular for any
|ξ| < Q

√
µ(D).

If ϕj (1 ≤ j ≤ p) are p given functions, wj = [ϕj , ξ] (1 ≤ j ≤ p),
ϕ =

∑p
j=1αjϕj , v =

∑p
j=1αjwj , then, by linearity, v = [ϕ,ξ] =∑∞

n=0 ξnvn. Using an argument of nested closed sets, Poincaré
showed that the αj can be chosen in such a way that the correspond-
ing R is larger or equal to Lp , where Lp is given by (11). To apply this
observation to problem (12), let

v = [f , ξ] =
∞∑
n=0

ξnvn, uj = [vj−2, ξ] (2 ≤ j ≤ p).

If uj =
∑∞
n=0 ξnuj,n, one has, with the zero Dirichlet condition on the

boundary,

∆uj,0 + vj−2 = 0,∆uj,1 +uj,0 = 0, . . . ,∆uj,n +uj,n−1 = 0, . . .

and hence, by uniqueness of Dirichlet problem,

uj,0 = vj−1, uj,1 = vj , . . . , uj,n = vj+n−1, . . .

i.e. uj =
∑∞
n=0 ξnvj+n−1 (2 ≤ j ≤ p). Let noww = α1v +

∑p
j=2αjuj .

By linearity,

w =
∞∑
n=0

ξnwn =

α1v +
p∑
j=2

αjuj , ξ


=

∞∑
n=0

ξn
α1vn +

p∑
j=2

αjvj+n−1

 .
(13)

Using the result above, one can choose the αj in such a way that
the series (13) has a radius of convergence at least equal to Lp .
Identifying the coefficients of the two power series for w and using
Cramer’s rule, one gets the expression v = P (x,y, z, ξ)/D(ξ), with
D(ξ) =

∑p−1
j=0 (−1)jαp−jξj and P (x,y, z, ξ)

=

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

w(x,y, z, ξ) α2 α3 · · · αp−1 αp
v0(x,y, z) −ξ 0 · · · 0 0

v1(x,y, z) 1 −ξ · · · 0 0
...

...
...

...
...

vp−2(x,y, z) 0 0 · · · 1 −ξ

∣∣∣∣∣∣∣∣∣∣∣∣∣∣
.

As v0, v1, . . . , vp−2 do not depend upon ξ and w is holomorphic in ξ
for |ξ| < Lp , the function v = P/D is meromorphic in ξ for |ξ| < Lp .
As we can take p as large as we want, v is meromorphic in ξ in the
whole complex plane. It is not difficult to see that P (·, ξ) vanishes on
S, has partial derivatives of the first and second order with respect to
x,y, z, and satisfies the partial differential equation
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∆P = ∆(vD) = D∆v = −ξDv +Df = −ξP +Df. (14)

The poles of modulus smaller or equal to Lp of the meromorphic func-
tion v are the zeros of the polynomial D. If ξ = k is a simple zero of
D, and Pk = P (·, k), then (14) implies ∆Pk + kPk = 0, which shows that
k is a characteristic number associated to the harmonic function Pk,
i.e., in present terminology, Pk is an eigenfunction of−∆ with Dirichlet
conditions upon S, associated to the eigenvalue k. Poincaré justified
as follows his obsolete terminology: “The various simple sounds that
a membrane can produce are characterized by equations of the form∆u+ku = 0, the function being requested to vanish at the boundary. It
is well known that those simple sounds have been called harmonics.”

Poincaré showed then that v only admits simple poles, and hence,
up to a multiplicative constant, Pk is the residue of v at k. Through
relatively elementary considerations, he also showed that v cannot be
holomorphic in the whole plane, which insures the existence of har-
monic functions, that one cannot have more than p − 1 linearly inde-
pendent harmonic functions linearly with characteristic number smaller
than Lp , and hence that to any characteristic number can correspond
only a finite number of linearly independent harmonic functions, and fi-
nally that all the characteristic numbers are real and positive. Poincaré
normed the harmonic functions by the condition

∫
D P2 = 1.

Poincaré’s clever proof has been rapidly forgotten, because of the
development, by Ivar Fredholm et David Hilbert, of the spectral theory
of linear integral equations, that it had strongly inspired. Informations
about the developments of the spectral theory in the twentieth century
can be found in [7], and more details on Poincaré’s contributions are
given in [16] and [40].

The next chapter of the memoir [29] studies the maximum principle
for problem

∆v = −f in D,
∂v
∂n

+ hv =ϕ on S, (15)

when f > 0, h > 0 and ϕ > 0. Its most original contribution is the
introduction of the idea of weak solution of problem (15). Poincaré
observed that if v is a solution of (15) and u is an arbitrary function
twice continuously differentiable, then the relation∫

D
uf dx +

∫
D
v∆udx +

∫
S
vϕdσ =

∫
S
v
(
hu +

∂u
∂n

)
dσ, (16)

that Poincaré called the modified condition, holds. Conversely, if condi-
tion (16) holds for anyu, the equations (15) are also satisfied, provided
v and ∂v

∂n are continuous. Poincaré then showed that if v is just con-
tinuous and satisfies (16) for allu, the maximum principles developed
in the classical frame remain valid. After having recalled the idea of
Neumann’s method for the Dirichlet problem on which we will come
back later, Poincaré applied it to the mixed problem

∆v + f = 0 in D,
∂v
∂n

+ hv = 0 on S,

when D is a bounded convex open set. He did not succeed in proving
that the solution v obtained by this method of successive approxima-
tions has a normal derivative on S and, a fortiori, that it satisfies the
boundary condition. But he proved that it satisfies the condition (16)
(with ϕ = 0), anticipating again the concept of weak solution when
writing: “We are not sure that the expression ∂v

∂n has a meaning and
that the boundary condition ∂v

∂n + hu = 0 is fulfilled. But we can as-

sert that we have the modified condition. It is obviously physically
equivalent.”

Finally, the remaining part of the memoir was a tentative extension
of his proof for the existence of the eigenvalues to the problem

∆v + ξv + f = 0 in Ω, ∂v
∂n

+ hv = 0 on S,

which met the same difficulty concerning the regularity of the coeffi-
cients vn on the boundary. Poincaré left the complete solution to his
followers: “One can see that I have not been able to obtain in the gen-
eral case results as satisfactory as in the case h = ∞; one can see how
many gaps still remain. I will not try to fill them more [...]. I think how-
ever that those results, even incomplete, were not completely without
interest, and I have decided to publish them. I would be happy if this
publication could suggest new researches on this topics.”

No doubt that Poincaré’s desire has been fully realized. The memoir
ends with some partial results on the expansion of a function in series
of harmonic functions.

Neumann’s method for the Dirichlet problem on an arbitrary domain
In 1878, Carl Neumann [20] had justified mathematically a formal
method, introduced by Beer around 1860, to obtain the existence of a
solution to the Dirichlet problem

∆V = 0 in D, V = Φ on S, (17)

when Φ is continuous and D is bounded, convex, with sufficiently
regular boundary S. The method consisted in searching V in the form
of a double layer potential of unknown density ρ, i.e. as a surface
integral

V (x) =
∫
S
ρ(s)

∂
∂n

1
‖x − s‖ dσ.

It is well known that V is harmonic outside S, and that, for y ∈ S, the
limits

V i(y) = lim
x→y ;x∈D

V (x), V e(y) = lim
x→y ;x 6∈D

V (x)

exist and satisfy V i(y)−V e(y) = −4πρ(y). Letting, for y ∈ S, V (y) =
1
2 [V i(y)+V e(y)], Neumann tried to determine V in such a way that, on
S, the relation

V i − V e = λ(V i + V e) + 2Φ (18)

holds for some real parameter λ. If the problem is solved for λ = −1,
then V i = Φ on S, and V is a solution of (17). Searching V as a series
V =

∑∞
n=0 λnVn, which gives V i =

∑∞
n=0 λnV in, V e =

∑∞
n=0 λnV en, and,

on S, Vn = 1
2 (V in + V en), one finds, identifying in (18) the coefficients of

the similar powers of λ, the recurrence relations, for x ∈ S,

V0(x) = −
∫
S

Φ(s)
2π

∂
∂n

1
‖x − s‖ dσ,

Vn(x) = −
∫
S

Vn−1(s)
2π

∂
∂n

1
‖x − s‖ dσ (n = 1,2, . . .).

(19)
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WhenD is convex, Neumann proved the existence of a constantC such
that the series

∑∞
n=0 λn(Vn−C) converges for |λ| ≤ 1. Poincaré’s mem-

oir [33] of 1896, announced in note [32] of 18 February 1895, proved
the convergence of Neumann’s method when D is simply connected
and S has at each point a tangent plane and two curvature radii. We
do not give the details of this highly technical and today almost for-
gotten proof. The historical importance of [33] is, together with [29],
to have inspired Ivar Fredholm in building his theory of linear integral
equations. Indeed, the relations (19) give

∞∑
n=1

λnVn(x) = −λ
∫
S

1
2π

∞∑
n=1

λn−1Vn−1(s)
∂
∂n

1
‖x − s‖ dσ,

i.e.

V (x) + λ
∫
S

1
2π

∂
∂n

1
‖x − s‖V (s)dσ +

∫
S

1
2π

∂
∂n

1
‖x − s‖Φ(s)dσ = 0.

In other terms, V satisfies what is now called a Fredholm integral equa-
tion of second kind with kernel 1

2π
∂
∂n

1
‖x−s‖ . Paper [9] where Fredholm

introduced his first study of an integral equation of second kind, en-
titled ‘Sur une nouvelle méthode pour la résolution du problème de
Dirichlet’, starts as follows:

“In his profound researches (Acta Mathematica t. 20) on the con-
vergence of Neumann’s well-known method in potential theory, Mr.
Poincaré has considered the Dirichlet problem as a special case of an-
other problem, that he calls Neumann’s problem. [...] Neumann has
solved this problem in expanding the unknown function according to
the power of a parameterλ.But it follows from Mr. Poincaré’s research-
es that V is a meromorphic function. Hence it is clear that Neumann’s
series expansion cannot converge for all values of λ. But because we
know that a meromorphic function can always be written as a quotient
of two entire functions, I have found natural to search directly those
entire functions.”

Poincaré immediately grasped the importance of Fredholm’s work
on integral equations, generalized it in several ways and applied it to
the theory of tides and to the diffraction of Hertzian waves. Half of
Poincaré’s lectures delivered in Göttingen in April 1909, upon Hilbert’s
invitation, deal with Fredholm integral equations and their applica-
tions [38].

Heat equation and telegraph equation
In the third section ‘The laws of cooling’ of his memoir [26], Poincaré
considered the non-stationary Fourier problem, namely finding V =

V (t, x) such that V (0, x) = V0(x) (x ∈ D) and

∂V
∂t

= a2∆V in ]0,∞[×D,

∂V
∂n

+ hV = 0 on ]0,∞[×S,
(20)

If the Un are the fundamental functions of the stationary problem and
kn the corresponding characteristic numbers (n = 1,2, . . .), one should
be able to expand V0 as V0 =

∑∞
n=1AnUn, to deduce that, for all t > 0,

V (t, x) =
∑∞
n=1Ane−a

2kntUn(x). Observing that he “was not yet able
to prove the possibility of the expansion in a general setting”, Poincaré
showed that the averaged error

S0 :=
∫
D

V0 −
n∑
p=0

ApUp

2

is minimal whenAp =
∫
D V0Up := J0

p (1 ≤ p ≤ n). For this choice of the

coefficients Ap, if Jp(t) = J0
pe−a

2kpt , Poincaré showed that one can
take n large enough so that the averaged error made on the tempera-
ture at time t,

S(t) :=
∫
D

V (t, x)−
n∑
p=1

Jp(t)Up(x)

2

dx,

can be made as small as one wants. One recognizes in those consid-
erations the beginning of the use of a Hilbertian norm instead of a
uniform one in the study of a parabolic problem.

In an interesting note [27] in the Comptes Rendus of 26 Decem-
ber 1893, Poincaré gave the first general solution of the initial value
problem for the telegraph equation on an indefinite line

∂2V
∂t2 + 2

∂V
∂t

=
∂2V
∂x2 , (21)

which describes the propagation of an electrical current in a conduct-
ing wire. This equation had been introduced in 1857 by Gustav Kirch-
hoff [12], starting from Weber’s electromagnetic theory, and deduced
from Maxwell’s theory by Oliver Heaviside [11] in 1876. Those authors
had only given special solutions of this equation. It is noticeable that
Poincaré’s motivation is not wire telegraphy, but to give a theoreti-
cal explanation to some experimental discrepancies in measuring the
speed of propagation of electricity in wires. LettingV = Ue−t , equation
(21) becomes

∂2U
∂t2 =

∂2U
∂x2 +U. (22)

Given the initial conditions U (0, x) = f (x) and ∂U
∂t (0, x) = f1(x) in the

form of Fourier integrals

f (x) =
∫ +∞

−∞
θ(q)eiqx dq, f1(x) =

∫ +∞

−∞
θ1(q)eiqx dq,

searching the solutionU (x, t) in the form of a Fourier integral, Poincaré
classically arrived to the expression

U (x, t) =
∫ +∞

−∞
eiqx

θ(q) cos(t
√
q2 − 1) + θ1(q)

sin(t
√
q2 − 1)√

q2 − 1

 dq

or, in complex form,

U (x, t) =
∫ +∞

−∞
α(q)ei[qx+t

√
q2−1] dq +

∫ +∞

−∞
β(q)ei[qx−t

√
q2−1] dq

with

α(q) =
θ(q)

2
+

θ1(q)

2i
√
q2 − 1

, β(q) =
θ(q)

2
− θ1(q)

2i
√
q2 − 1

.
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For initial conditions θ ≡ 0 and θ1 ≡ 1, contour integration allowed
him to find the expression

U (x, t) =


0 if x > t

Λ(x, t) if − t < x < t
0 if x < −t

with

Λ(x, t) :=
1
2

∫ 2π

0
eix cosϕei sinϕ dϕ = πJ0(

√
x2 − t2),

and J0 is the Bessel function of index 0.
Poincaré then obtained a formula for the solution in the case where

f ≡ 0 and f1(x) 6= 0 if b ≤ x ≤ a, f1(x) = 0 if x < b or if x > a, and
in the case where f1 ≡ 0 and f (x) 6= 0 if b ≤ x ≤ a, f (x) = 0 if x < b
or if x > a. The combination of those two solutions gives the general
solution when f and f1 have compact support, and a detailed analysis
of this solution allowed him to describe precisely the behaviour of an
initial perturbation bounded in time and space: “One first sees that
the head of the perturbation propagates with some speed, in such
a way that, before this head, the perturbation is zero, in contrast to
what happens in Fourier’s heat theory, and according to the laws of
propagation of light or sound through plane waves, deduced from the
vibrating string equation. But there is, with respect to this last case, an
important difference, because the perturbation, during its propagation,
leaves behind a residue which is not zero [...] and can then trouble the
observations.”

So it is the diffusion of the wave in the wire which makes difficult
the measure of its speed.

The study of the telegraph equation was considered with more
details in [30–31, 35]. See [17] for a more complete description of
Poincaré’s contributions to the telegraph equation, and of his motiva-
tions.

A non-linear elliptic equation
The theory of Fuchsian functions leads to the study of solutions of the
partial differential equation ∆u = keu (k > 0), already considered by
Joseph Liouville between 1847 and 1853, and by Émile Picard between
1890 and 1893. It is related to the theory of surfaces with constant
negative curvature, closely linked to Lobatchevsky’s geometry, and
therefore to Fuchsian functions. Although Poincaré, in a memoir [37]
of 1898, announced in a note [36] of 28 February of the same year,
considered this equation on a Klein surface, we present his ideas, for
simplicity, in the analogous more standard case of the homogeneous
Neumann problem on a bounded planar domain D with boundary S.

Let θ be a positive smooth function and Φ a regular function on
D := D ∪ S. The problem consists in finding a function u such that

∆u = θ(x)eu − Φ(x) in D,

∂u
∂n

= 0 on S.
(23)

Starting from the fact that Neumann’s problem for equation

∆u =ϕ(x) in D (24)

is solvable if and only if
∫
Dϕ = 0, Poincaré first considered Neumann’s

problem for the linear equation

∆u = ηu−ϕ(x) in D, (25)

whereη > 0. To do so, he introduced the family of equations depending
upon the parameter λ > 0,

∆u = ληu−ϕ(x)− λψ(x) in D, (26)

with
∫
Dϕ = 0, and showed that a unique solution of Neumann’s prob-

lem for (26), of the form u =
∑∞
k=0ukλk, exists if 2βλ < 1, with β > 0

a constant related to problem (24). Assuming then that Neumann’s
problem for equation

∆u = ηu− Φ(x) in D

has a unique solution for every Φ, Poincaré showed that the same
problem for

∆u = (η + λη′)u− Φ(x) in D (27)

with η′ > 0 has a unique solution, of the form u =
∑∞
k=0ukλk, when

λ < η/η′.
To deal with (25), Poincaré introducedp positive numbersλ1, . . . , λp

such that
∑p
k=1 λk = 1, and wroteϕ(x) =ϕ1(x)+λ1ψ1(x),with

∫
Dϕ1 =

0. From the result on (26), Neumann’s problem for equation

∆u = λ1ηu−ϕ1(x)− λ1ψ1(x) in D

has a unique solution if λ1 < 1/2β. From the result on (27), the same
is true for equation

∆u = λ1ηu + λ2ηu−ϕ(x) in D

when λ2 < λ1, and for equation

∆u = (λ1 + λ2)ηu + λ3ηu−ϕ(x) in D

when λ3 < λ1 + λ2. Continuing in the same way, Neumann’s problem
for equation

∆u = (λ1 + · · · + λp−1)ηu + λpηu−ϕ(x) in D,

i.e. for equation (25), has a unique solution ifλp < λ1 +· · ·+λp−1. The
conditions on the λk can all be fulfilled by taking p sufficiently large.
The underlying idea to this proof is clearly a continuation method.

Returning to the non-linear problem (23), integrating both members
of the equation over D, using the Green formula and the boundary
condition, Poincaré showed that

∫
D Φ > 0 was a necessary condition

for the existence of a solution to (23). If U denotes a solution of
Neumann’s problem for the linear equation

∆u = −Φ(x) +
1
|D|

∫
D
Φ in D,
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the change of variable u = U + v leads to the equivalent Neumann
problem for equation

∆v = θ(x)eU (x)ev − 1
|D|

∫
D
Φ in D,

which, together with the necessary condition, shows that it suffices to
consider the case of a positive Φ.

Poincaré noticed that a first idea to prove the existence of a solu-
tion consists in using Dirichlet’s principle, i.e. finding a function u
minimizing the energy integral

∫
D

[
‖∇u(x)‖2

2
+ θeu(x) − Φ(x)u(x)

]
dx,

bounded from below when Φ is positive, but the existence of a mini-
mum is not guaranteed. Hence Poincaré returned to the continuation
method already used for (25). Assuming that problem

∆u = θ(x)eu −ϕ(x) in D,
∂u
∂n

= 0 on S

has a unique solution u0, Poincaré introduced the family of equations

∆u = θ(x)eu −ϕ(x)− λψ(x) in D, (28)

and searched a solution for Neumann’s problem in the form u =∑∞
k=0ukλk. Letting

eu = 1 +u +
∞∑
k=2

wkλk,

he showed that wk = wk(u1, . . . , uk−1) and that maxT∪S |uk| ≤
maxD |wk| for every k ≥ 2. The convergence of

∑∞
k=1ukλk, follows,

as well as the existence of a unique solution to (28) if

|λ| < (log 4− 1)
maxD(|ϕ|/θ)

maxD(|ψ|/θ)
.

But, for any α > 0, the problem

∆u = θ(x)eu −αθ(x) in D,
∂u
∂n

= 0 on S

has the unique solution u(x) = logα. Hence, if ψ is positive, Neu-
mann’s problem for equation

∆u = θ(x)eu −αθ(x)− λψ(x) in D

has a unique solution for 0 ≤ λ < α(log 4− 1)/ maxD(ψ/θ), the same
is true for

∆u = θ(x)eu −αθ(x)− λψ(x)− µψ(x) in D,

∂u
∂n

= 0 on S

if

0 ≤ µ < (log 4− 1)
maxD[α + (λψ/θ)]

maxD(ψ/θ)
,

and hence in particular if 0 ≤ µ < λ < α(log 4 − 1)/ maxD(ψ/θ).
Continuing in this way, problem (28) has a unique solution for any 0 ≤
λ < nα(log 4−1)/ maxD(ψ/θ), and anyn ≥ 1. Taking nowψ = Φ−αθ,
with 0 < α < minD∪S (Φ/θ) in order that ψ be positive, and taking n
such that nα(log 4− 1)/ maxD[(Φ −αθ)/θ] > 1, Neumann’s problem
for equation

∆u = θ(x)eu −αθ(x)− λ[Φ(x)−αθ(x)] in D

has a unique solution for λ = 1, which is the wanted result.
Notice that a very similar approach had been used and very clear-

ly presented, for a Dirichlet problem associated to semi-linear ellip-
tic equations, in the PhD thesis of Édouard Le Roy [13–14] (dedicat-
ed to Poincaré, who also wrote the report). Despite of the proximity
of publication dates, neither author quoted the other one. As men-
tioned in the Introduction of [37], Poincaré had previously, like Félix
Klein, used a continuation method, in a finite dimensional setting, in
the theory of Fuchsian functions. The method and results of Le Roy
and of Poincaré are briefly described by Arnold Sommerfeld in [42].
His short description starts with: “Finally, to deal with the equations∆u+a ∂u∂x +b ∂u∂y +c ∂u∂z = fu and∆u+a ∂u∂x +b ∂u∂y +c ∂u∂z = F (x,y, z,u),
Ed. Le Roy has introduced the following method of analytic continua-
tion...” and ends as follows: “H. Poincaré also uses the same ideas in
his researches referred in Nr. 12 [∆u = keu].” Consequently, the intro-
duction of a continuation method to study semi-linear elliptic bound-
ary value problems, generally attributed to Sergei N. Bernstein’s paper
[4] of 1906, must be traced to Le Roy and Poincaré’s contributions of
1898, which are not quoted in [4], despite of the very close relations of
Bernstein with the French mathematical community. For more details
on Le Roy’s and Poincaré’s contributions, and the development of the
continuation method, see [18].

Partial differential equations in Poincaré’s monographs
When he occupied the chair of mathematical physics and probabilities
at the University of Paris, Poincaré changed almost every semester the
topics of his lectures. Most of them were then written down by one
or two (bright) students and revised by Poincaré before publication.
Although partial differential equations are present in other ones, we
only describe the most significant ones.

The telegraph equation is discussed in the monograph [30], de-
scribing Poincaré’s lectures on electrical oscillations during the first
semester of the academic year 1892–1893. It is edited by Charles
Maurain (1871–1967), a future well-known geophysicist. The telegraph
equation is introduced and discussed on pp. 182–189 of a ‘Comple-
ment to Chapter IV’ starting as follows: “Since this course has been
given, several experiments have been done and I will be forced to add
from time to time several supplementary lines to inform the reader
about the present state of science; in this way, I must mention the nice
experiments of M. Blondlot on the propagation of electricity.”

After describing the experiments of Hippolyte Fizeau (1819–1896)
and Eugène Gounelle (1821–1864) of 1850 in order to measure the
speed of propagation of electricity in metallic wires, Poincaré men-
tioned that: “Everything happens as if the perturbation shaded off in
such a way to occupy more space on the wire at the arrival than at
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the departure. This phenomenon, placed beyond any doubt by the ex-
periments of M. Fizeau, has been called by this physicist the diffusion
of the current. [...] It is likely that this diffusion is due to the Ohmic
resistance that we have neglected up to now.”

Poincaré then showed how the equations of propagation of electric-
ity are modified by the presence of this resistance, and arrived, for the
variations of the electrical potential in a wire transmitting an electrical
perturbation, to the equation

A
∂2V
∂t2 + 2B

∂V
∂t

= C
∂2V
∂x2 ,

which is known under the name of telegraph equation (équation des
télégraphistes in French).

Poincaré then solved this equation in a way entirely similar to the
one given in [27].

During the first semester of the academic year 1893–1894, Poincaré
devoted his lectures to the analytical theory of the propagation of heat.
They were written down by Rouyer and René Baire (1874–1932). The
book starts as follows:

“Fourier’s heat theory is one of the first examples of the application
of analysis to physics. [...] The results he has obtained are surely inter-
esting by themselves, but what is still more interesting is the method
he has used to reach them, which always will remain a model for those
who will want to cultivate a branch of mathematical physics. I will
add that Fourier’s book has a fundamental importance in the history of
mathematics, and that pure analysis maybe owes him still more than
applied analysis.”

After discussing the various types of propagation of heat, Poincaré
established Fourier’s heat equation and gave it in various systems of
coordinates. The case of an infinite rectangular solid was then treated
by separation of variables and Fourier series (giving Poincaré an op-
portunity to recall Dirichlet’s and Abel’s contributions). Fourier series
are then used to solve Fourier’s equation on a closed wire. The case
of an infinite wire led Poincaré to Fourier’s integral whose main prop-
erties are established. Follows then an interesting chapter on ‘linear
equations analogous to that of heat’, where the vibrating string and
telegraph equations are solved using the method of Fourier integrals,
and their solutions compared to those of heat equation in the case of
an initial perturbation with compact support.

The heat equation on an infinite wire or solid is then solved by
Laplace method, and the justification of Fourier’s formal results on the
cooling of a sphere, led Poincaré to a description of Cauchy’s theory
on asymptotic values of some integrals. The case of the cooling of an
arbitrary body D with boundary S is reduced, by separation of time
and space variables, to the problem of finding a non-trivial function
U (x,y, z) and a number k such that

∆U + kU = 0 in D,
∂U
∂n

+ hU = 0 on S.

For this problem, “losing in rigour what we will gain in generality”,
Poincaré reproduced his results of the memoir [26] giving the corre-
sponding eigenvalues and eigenfunctions by an extension of Dirichlet’s
principle, and only quoted the second memoir [29] where the rigorous
proof of existence of eigenvalues and eigenfunctions is given. The re-
maining part of the book is devoted to the use of special functions in
solving various problems of analytical heat theory.

Poincaré’s lectures of the first semester of the academic year 1894–

1895, devoted to the theory of Newtonian potential, were written down
by Édouard Le Roy and Georges Vincent. The first part of the book gives
a rather standard presentation of the computation of the various inte-
grals expressing the Newtonian potential for volumes, surfaces and
lines. As a curiosity (called to my attention by Michel Willem), one
should mention Poincaré’s remark that many of the used results on
particular integrals of potential theory are a special case of the follow-
ing theorem on integrals, stated on p. 121:

Theorem. Consider the integral∫
(S)
f (x,y, z)dxdy

extended to some domain S. Assume that the following conditions
hold:
1. The curve C bounding S does not depend upon z.
2. One has, at any point of S,

f (x,y, z) < ϕ(x,y)

whereϕ is a positive function.
3. The integral

∫
ϕ(x,y)dxdy, extended to the domain S, exists.

4. Finally one has

lim
z→0

f (x,y, z) = f (x,y,0)

for any fixed x,y.
In those conditions, one has the relation

lim
z=0

∫
(S)
f (x,y, z)dxdy =

∫
(S)
f (x,y,0)dxdy.

The reader has already noticed the similarity of the statement with
that of Lebesgue’s dominated convergence theorem, even if the back-
ground here is, of course, not Lebesgue integration theory, but some
improper integrals. Poincaré then described the properties of harmon-
ic functions (mean value and maximum principles), and the use of
Green’s functions in solving the Dirichlet problem, followed by the spe-
cial case of the circle and the sphere, and the double layer potential.

The last hundred pages of the book are more closely related to
Poincaré’s recent researches in potential theory, giving a presentation
of his results of [26] on the sweeping out method (Chapter VII), Neu-
mann’s method on convex sets (Chapter VIII), and his extension of
Neumann’s method to simply connected domains given in [33] (Chap-
ter IX).

This short description suffices to show that, in his lectures, Poincaré
not only gave a masterly presentation of the classical theory of partial
differential equations of mathematical physics and their evolution, but
did not hesitate to present his most recent results in this area. It is hard
to find a better illustration of the necessary and wonderful interaction
between research and teaching at the university level.

Conclusion
Poincaré’s contributions to partial differential equations would have
been amply sufficient to place him among the greatest mathematicians
of the end of the nineteenth century and the beginning of the twentieth
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century. But Poincaré is also the father of automorphic functions,
dynamical systems and chaos, algebraic topology and modern celestial
mechanics, to quote only his main achievements [15]. He is one of the

greatest mathematicians of history, and, in addition, his important
contributions to physics and to the philosophy of science place him at
a high level in those disciplines. k
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Carré, Paris, 1899.
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