
1 1

1 1

40 NAW 5/12 nr. 1 maart 2011 A problem from IMO 2010 Hans Zantema

Hans Zantema
Faculteit Wiskunde & Informatica

Technische Universiteit Eindhoven

Postbus 513

5600 MB Eindhoven

H.Zantema@tue.nl

Event International Mathematical Olympiad 2010

A problem from IMO 2010

Every year there is an International Mathematical Olympiad (IMO) for
high school students; in 2010 it was held in Kazakhstan, with 517
participants from 97 countries. As every year, they got six problems
to solve. Problem 5 of IMO 2010 was proposed by Hans Zantema.
He was inspired by some observations in his research in theoretical
computer science. This paper presents some of this background, and
includes a full solution.

Problem 5 of IMO 2010 is formulated as follows:

Problem 5. In each of six boxesB1, B2, B3, B4, B5, B6 there is initially
one coin. There are two types of operation allowed:

Type 1: Choose a nonempty box Bj with 1 ≤ j ≤ 5. Remove one
coin from Bj and add two coins to Bj+1.
Type 2: Choose a nonempty box Bk with 1 ≤ k ≤ 4. Remove one
coin from Bk and exchange the contents of (possibly empty) boxes
Bk+1 and Bk+2.

Determine whether there is a finite sequence of such operations
that results in boxes B1, B2, B3, B4, B5 being empty and box B6 con-
taining exactly 201020102010

coins. (Note that abc = a(bc ).)

The Ackermann function
Some functions grow faster than others. Restricting to functions from
natural numbers to natural numbers, by extremely simple means one
can construct a wide range of functions, some of which turn out to grow
extremely rapidly. A basic building block is the successor function s
mapping every x to its successor s(x) = x + 1. A fresh function f
may be defined recursively by defining f (0), and expressing f (s(x))

as a function in f (x). For instance, one can define the function double

mapping x to double(x) = 2x by

double(0) = 0

double(s(x)) = s(s(double(x))).

Next, one can define the function exp mapping x to exp(x) = 2x by

exp(0) = s(0)

exp(s(x)) = double(exp(x)).

A very fast growing function power can be obtained by defining

power(0) = s(0)

power(s(x)) = exp(power(x)),

representing power(x) = 222···
, a tower of height x. So for instance,

power(5) = 265536, being a number having over 19,000 digits in decimal
notation, probably being much more than the number of atoms in the
universe. Functions that are composed in this way are called primitive
recursive. More precisely, the class of primitive recursive functions
is defined to be the smallest class of functions from tuples of natural
numbers to natural numbers such that
− the constant zero function and the successor function s are primitive

recursive;
− the class is closed under projection and composition;
− if f and g are primitive recursive, then h defined by

h(0, x1, . . . , xk) = f (x1, . . . , xk)

h(s(y), x1, . . . , xk) = g(y,h(y,x1, . . . , xk), x1, . . . , xk)

is primitive recursive too.
As our function definitions for double, exp and power all follow this

pattern of primitive recursion, we see that some primitive recursive
functions like power already grow extremely fast. A fundamental ques-
tion now is the following. Is it possible to define functions recursively,
but not following the format of primitive recursion, that grow even
faster? The answer is: yes, this is possible. A standard example is the
Ackermann function A defined by

A(x,y) =


y + 1 if x = 0

A(x − 1,1) if x > 0 and y = 0

A(x − 1, A(x,y − 1)) if x > 0 and y > 0.

Although on a first view this function definition looks simple and in-
nocent, very small arguments already give amazingly high values. For
instance,A(4,2) = power(5)−3 again has over 19,000 digits in decimal
notation, while A(5,1) = power(65533) − 3 is much larger. It was con-
jectured by David Hilbert in the 1920’s that a three argument variant
of this function is not primitive recursive. This was proved in 1928
by his student Wilhelm Ackermann, after whom the function has been



2 2

2 2

Hans Zantema A problem from IMO 2010 NAW 5/12 nr. 1 maart 2011 41

Il
lu

st
ra

ti
e:

Ry
u

Ta
jir

i



3 3

3 3

42 NAW 5/12 nr. 1 maart 2011 A problem from IMO 2010 Hans Zantema

named. The current binary version A was proposed later by Péter and
Robinson, but is usually called the Ackermann function nowadays.

Relation to the IMO problem
But how does this ancient theory relate to the above mentioned IMO
problem? It turns out that after generalizing the number of boxes
to arbitrary numbers, the game described in the problem can mimic
functions closely related to the Ackermann function. More precisely,
we will show now that starting from a sequence of 2x+1 boxes of which
the leftmost containsy +1 coins and the others are empty, by applying
the operations of the two types we can reach the configuration in which
the rightmost box contains f (x,y) coins and the others are empty.
Here f is the function exceeding the Ackermann function defined by

f (x,y) =


y + 1 if x = 0

f (x − 1,3) if x > 0 and y = 0

f (x − 1, f (x,y − 1) + 4) if x > 0 and y > 0.

In order to do so we start by giving some notation. Write [a1, a2, a3, . . .]
for a sequence of boxes, containing a1, a2, a3, . . ., respectively, from
left to right. So the type 1 operation states that in such a sequence
two consecutive numbers a,b may be replaced by a− 1, b + 2 in case
a > 0, and the type 2 operation states that in such a sequence three
consecutive numbers a,b, c may be replaced by a−1, c, b in case a >
0. We prove the claim by induction on x. For x = 0 it is trivial by doing
no steps at all and using f (0, y) = y + 1. For x > 0 we apply induction
on y. For y = 0 we first replace the initial configuration [1,0,0, . . .] by
[0,0,4,0, . . .] by doing three steps of type 1, and then apply the outer
induction hypothesis yielding the desired number f (x−1,3) = f (x,0)

coins in the rightmost box. For y > 0 we keep one coin in the leftmost
box and apply the inner induction hypothesis to replace the initial
configuration [1,0,0, . . .] by

[1,0,0, . . . ,0, f (x,y − 1)]

followed by applying steps of type 1 yielding

[0,1,1, . . . ,1,0, f (x,y − 1) + 4].

Next we apply steps of type 2 for each of the 1’s, executed from right to
left, yielding

[0,0, f (x,y − 1) + 4,0,0, . . . ,0],

from which the outer induction hypothesis yields a replacement to the
desired configuration in which the last box contains f (x − 1, f (x,y −
1) + 4) coins, concluding the proof.

Note that in this construction steps of type 2 are only applied if the
leftmost of the two exchanging boxes is empty.

Knowing that by the relation to the Ackermann function extremely
high numbers of coins can be achieved from simple initial configura-
tions, it is a natural question what is the smallest number of boxes for
which this extreme blow-up shows up. It turned out that this already
occurs for six boxes. Moreover, it turned out that these investigations
could be given completely elementary, by which the idea was born to
propose this as an IMO problem. It is a kind of tradition that if high
numbers occur in an IMO problem, an instance of a high number is cho-
sen reflecting the year. So high numbers occurring in IMO 2010 should
refer to the number 2010. An obvious choice now was 20102010. In my
original proposal for the IMO problem the question was to make this
number 20102010; later on this was extended to 201020102010

. Another

difference with my original proposal is that in the eventual problem it
is asked whether the particular configuration can be reached, while in
my original proposal it was asked to prove that it can be reached, so
already including the information that it can be reached indeed. An
issue from my original version that has been kept is the fact that this
value has to be reached exactly.

Now we present an elementary solution for the problem not referring
to the above relationship with the Ackermann function.

A Solution
Indeed, the intended final configuration can be reached. Write M =

201020102010
. We write→1 for doing a type 1 step,→2 for doing a type

2 step, and →∗ for doing any number of steps. So we have to prove
that [1,1,1,1,1,1] →∗ [0,0,0,0,0,M].

We will use the function power as introduced above by power(0) = 1

and power(x + 1) = 2power(x) for x ≥ 0, so power(x) = 222···
, containing

x copies of 2. First we derive a bound onM in terms of power.
Since 20102010 < (211)2010 = 222110 < 2215

, we obtain

M = 201020102010
< (211)2

215

= 211∗2215

< 22216

= power(6).

In the sequel, k,n are arbitrary numbers≥ 0. Starting from [n+1, k,0]

we can do k steps of type 1 yielding [n + 1,0,2k], so

[n + 1, k,0] →∗ [n + 1,0,2k] →2 [n,2k,0]. (1)

Starting from [n + 1,0,0] →1 [n,2,0], applying (1) exactly n times
yields [0,2n+1,0], so

[k + 1, n + 1,0,0] →∗ [k + 1,0,2n+1,0] →2 [k,2n+1,0,0]. (2)

Now starting by [k + 1,0,0,0] →1 [k,2,0,0] and then apply (2) exactly
k times yields

[k + 1,0,0,0] →∗ [0, power(k + 1),0,0]. (3)

In order to apply the key observation (3) we first have to make the last
three numbers equal to zero, and in front of it a number that is at least
6. One way to do so is

[1,1,1,1,1,1] →1 [1,1,1,1,0,3] →2 [1,1,1,0,3,0]

→2 [1,1,0,3,0,0] →2 [1,0,3,0,0,0]

→1 [0,2,3,0,0,0] →∗1 [0,0,7,0,0,0].

Now (3) yields [0,0,0, power(7),0,0]. Next, applying power(7) − M/4

steps of type 2 yields [0,0,0,M/4,0,0], followed by type 1 steps yield-
ing the desired end configuration [0,0,0,0,0,M], concluding the proof.

This construction allows several variations, some of which yielding
values much greater thanM, for instance,

[1,1,1,1,1,1] →1 [1,1,0,3,1,1] →1 [1,1,0,2,3,1]

→∗1 [1,1,0,2,0,7] →2 [1,1,0,1,7,0] →∗1 [1,1,0,1,0,14]

→2 [1,1,0,0,14,0] →1 [0,3,0,0,14,0] →1 [0,2,2,0,14,0]

→2 [0,2,1,14,0,0] →∗ [0,2,1,0,214,0] →∗2 [0,1,214,0,0,0]

→∗ [0,1,0, power(214),0,0] →2 [0,0, power(214),0,0,0]

→∗ [0,0,0, power(power(214)),0,0].



4 4

4 4

Hans Zantema A problem from IMO 2010 NAW 5/12 nr. 1 maart 2011 43

Then similar as above for any numberN divisible by 4 satisfyingN/4 ≤
power(power(214)), the configuration [0,0,0,0,0, N] can be obtained, for
instance for N = 201020102010···

, being a tower of height 2010, or of
heightM.

Relation to rewriting
We saw that it is possible to start in a configuration with only a few
boxes and a few coins, and end up in a configuration with an amazing
high number of coins in the rightmost box. On the other hand, the
game can not go on forever, since in every step the sequence of num-
bers lexicographically decreases, and the lengths of the sequences are
fixed. Such a game that can not go on forever is called terminating. In
the past years I did a lot of research in proving termination of computa-
tion, in particular in a standard format describing computation called
rewriting. In this area a game like this is of particular interest: it is easy
to describe, it is terminating, but it allows computations of extremely
high numbers of steps. Several encodings of this game in rewriting
were described already years ago. For instance, in [1] Hofbauer and
Lautemann gave an encoding as a term rewriting system, and gave a
similar argument as we did for showing the relationship with the Ack-
ermann function. In [2] Touzet gave an encoding as a string rewriting
system. A simpler string rewriting system with the same property is the
following:

ab → baa, abb → bc, ca→ ac, c → b.

This means that the strings to be rewritten are finite sequences only
composed from the three symbols a,b, c. The rules state that any
occurring pattern ab may be replaced by baa, any pattern abb by bc,
and so on. For instance, one can rewrite

abba→ bca→ bac → bab → bbaa.

Modern termination provers like AProVE or TTT2 easily prove termi-
nation of this string rewriting system fully automatically. On the
other hand, rewrite sequences may be very long. Writing an for
n consecutive copies of a, and encoding [n1, n2, n3, n4, n5, n6] by
an1ban2ban3ban4ban5ban6 , we see that a type 1 step can be mim-
icked by an application of the first rule ab → baa. Further, a type 2
step replacing n + 1,0, k by n,k,0 can be mimicked by first an appli-
cation of the rule abb → bc, then k applications of the rule ca → ac,

and finally an application of the rule c → b. For instance, for k = 2 we
have

abbaa→ bcaa→ baca→ baac → baab.

In the given solution of the IMO problem all type 2 steps were of the
shape replacingn+1,0, kbyn,k,0. As a consequence of this solution,
using these four rewrite rules it is possible to start in abababababa
and end inbbbbbaM , being a string ending inM = 201020102010

copies
of the symbol a. As in every rewrite step the length of the string
increases by at most one, the number of rewrite steps to reach this final
string is more than M. Using our argument relating the game to the
Ackermann function shows that it is possible to make computations of
which the size of the final string, and hence also the number of rewrite
steps, is a non-primitive recursive function in the size of the initial
string. Currently this four rule string rewriting system is the smallest
known terminating string rewriting system of which the computation
length is non-primitive recursive in the size of the initial string.

Concluding remarks
Even after understanding the solution of the problem, it remains amaz-
ing that by these extremely simple rules such unwieldy high values
can be obtained, starting in such a small initial configuration. The
particular game and its Ackermann function like behavior were already
well-known. My contribution mainly restricted to some investigations
for small initial configurations, the formulation of the problem and
passing it to the source of potential IMO problems. As every year only
six problems are chosen from a resource of over 100 proposals, it is
an honor if a particular problem is chosen. In this way the hundreds
of IMO participants, being promising future scientists from around 100
countries, have become in touch with these remarkable observations.
As a participant of IMO 1974, after having been the winner of its pre-
ceding Dutch Mathematical Olympiad, for me personally it was a great
experience to play such a complementary role in the IMO of 36 years
later.

In my current research in computer science I see how the mathemat-
ical way of working by abstraction and giving formal proofs does not
restrict to traditional mathematics, but is also the basis of theoretical
computer science. Along this line I am happy that the IMO does not
restrict to problems from traditional mathematics, but also presented
this problem with such a computational flavor. k

www.imo2010org.kz

References
1 D. Hofbauer and C. Lautemann. ‘Termina-

tion proofs and the length of derivations’, in
N. Dershowitz, editor, Rewriting Techniques
and Applications, 3rd International Conference,
RTA’89, volume 355 of Lecture Notes in Comput-
er Science, pages 167–177. Springer, 1989.

2 H. Touzet. ‘A complex example of a simplify-
ing rewrite system’, in K. Larsen, S. Skyum, and
G. Winskel, editors, Automata, Languages and
Programming, 25th International Colloquium,
ICALP’98, volume 1443 of Lecture Notes in Com-
puter Science, pages 507–517. Springer, 1998.


