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Interview Alain Connes

The flashes of insight
never came for free
The ‘Fellowship of Geometry and Quantum Theory’ (GQT), one of the four mathematics clusters
in the Netherlands, marked the end of its initial four-year funding period with a conference at
Nijmegen in June. One of the speakers at this conference was Fields Medallist Alain Connes,
who may be regarded as one of the intellectual fathers of the cluster. GQT-members Gunther
Cornelissen, Klaas Landsman, and Walter van Suijlekom interviewed Connes on June 29, 2010.

Alain Connes (1947) is among the few mathe-
maticians who created an entire area of math-

Noncommutativity
The history of noncommutative geometry
goes back to the period 1900–1930, dur-
ing which both mathematics and physics
were revolutionised. In the former, func-
tional analysis emerged (cf. [1, 6]), whilst
in the latter quantum mechanics was dis-
covered [12]. The key idea behind func-
tional analysis is to look at functions as
points in some infinite-dimensional (topo-
logical) vector space, rather than individu-
ally, as in classical analysis. A sound phys-
ical principle underlying quantum mechan-
ics remains to be found, but the two main
mathematical properties of the new theo-
ry were as follows. First, in 1925 Heisen-
berg discovered that whereas in classical
physics the observables (like position, mo-
mentum, and energy) are represented by
functions (on a so-called phase space),
in quantum mechanics they are (typical-
ly infinite-dimensional) matrices. In par-
ticular, as Heisenberg observed, quantum-
mechanical observables no longer com-
mute (under multiplication). Second, in
1926 Schrödinger proposed that states of

a physical system (which assign values to
observables) are (‘wave’) functions (rather
then points in phase space).

Heisenberg was a postdoc in Göttingen
at the time, where Hilbert ran a seminar
on the mathematical structure of the new
quantum mechanics. In this context, it
was Hilbert’s assistant von Neumann (orig-
inally employed to help Hilbert with his
work on the foundations of mathematics)
who at one stroke saw the connection be-
tween functional analysis and quantum me-
chanics, as well as between Heisenberg’s
and Schrödinger’s ideas. In a nutshell,
Heisenberg’s matrices were to be regarded
as linear operators on some vector space,
whose elements were Schrödinger’s wave-
functions. The inner product that defines a
Hilbert space ultimately yields all probabil-
ities characteristic of quantum mechanics.
(At a heuristic level, similar ideas had been
forwarded by the physicist Dirac [7].) In
honour of his mentor, the specific topolog-
ical vector spaces needed in quantum me-
chanics were called Hilbert spaces by von

Neumann, who published his work on quan-
tum mechanics in 1932 [13].

Inspired by this development, Weyl (an-
other pupil of Hilbert’s) saw that Hilbert
spaces formed an ideal setting for the the-
ory of group representations, which turned
out to play a crucial role in studying sym-
metries of quantum systems. The en-
suing combination Hilbert space–quantum
mechanics–group representations (and al-
so ergodic theory) led von Neumann to
the theory of operator algebras on Hilbert
spaces (written down in a series of papers
published between 1936 and 1949, partly
with his assistant F.J. Murray). Such alge-
bras — currently known as von Neumann al-
gebras — generalize the addition and multi-
plication of complex matrices to infinite di-
mension and turn out to have an amazingly
rich structure. An important extension of
the class of operator algebras defined by
von Neumann was introduced by Gelfand
and Naimark in 1943 under the name of C*-
algebras; the three books of Takesaki [15]
present an exhaustive survey.

ematics. Roughly speaking, Connes’s non-
commutative geometry [2, 4] is a synthe-

sis and generalization of two seemingly un-
related areas of mathematics, namely opera-
tor algebras on Hilbert spaces (see box be-
low) and a branch of differential geometry
called spin geometry (see box on next page).
Both topics emerged from a close interaction
of mathematics and quantum physics, which
happens to be the central theme of the GQT-
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Spin geometry
Spin geometry is a refinement of Rieman-
nian geometry, a subject created by Bern-
hard Riemann in his (meanwhile) legendary
Habilitation lecture ‘Über die Hypothesen,
welche der Geometrie zu Grunde liegen’, de-
livered in Göttingen in 1854. In this lecture,
Riemann proposed a vast generalization of
the non-Euclidean geometries that had in-
dependently been discovered earlier that
century by Gauss (unpublished), Bolyai,
and Lobachevsky. Riemann’s concept of ge-
ometry was based on an infinitesimal ver-
sion of Pythagoras’s Theorem, so as to pro-
vide distances between points. Since “a2 =

b2 + c2”, this had the consequence that
geometric quantities tend to be quadrat-
ic in coordinates and/or derivatives. For
example, for any Riemannian geometry
the Laplacian ∆ = ∂2

∂x2
1

+ · · · + ∂2

∂x2
n

may

be intrinsically defined as a second-order

partial differential operator.
Through the Laplacian, the Schrödinger

equation for the quantum-mechanical wave-
function contains second-order derivatives
for the spatial coordinates, but it only in-
volves a first-order derivative in time. This
unequal treatment of space and time coor-
dinates bothered various physicists in the
late 1920’s, because it precludes consisten-
cy with Einstein’s theory of (special) rela-
tivity. Through sheer guesswork, in 1928
Paul Dirac found an equation (now named
after him) that is first-order in all coordi-
nates, at the price of extending (scalar)
wave-functions to four-component spinors.

Dirac’s equation turned out to have sen-
sational consequences in physics (like the
prediction of antimatter), but it also inter-
ested mathematicians. Through contribu-
tions by Hermann Weyl, Charles Ehresmann

and others, this interest eventually led to
the discovery of a special class of Rieman-
nian manifolds called spin manifolds, which
admit geometric quantities that are first-
order in the coordinates and/or derivatives.
In particular, the (generalized) Dirac equa-
tion for spinors on such manifolds was first
written down in 1963 by Michael Atiyah and
Isadore Singer. Atiyah and Singer were ac-
tually unaware of Dirac’s original equation;
their contribution was made in the (then)
purely mathematical context of index the-
ory, for which they would receive the Abel
Prize in 2004, cf. [10]. In any case, spin ge-
ometry, the Dirac equation, and index the-
ory are closely related [11], and it is their
combination that Connes in turn combined
with the theory of operator algebras in cre-
ating noncommutative geometry.

cluster.
In order to combine operator algebras and

spin geometry, Connes invented a whole arse-
nal of new techniques and ideas, drawing also
from other areas of mathematics (like homo-
logical algebra and algebraic topology). An
important feature of his work is the interplay
between abstract theory and examples. The
ensuing theory of ‘noncummutative geome-
try’ turned out to have a wide range of applica-
tions, both in mathematics (ranging through
algebra, analysis, geometry, number theory,
and stochastics) and physics (especially in
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Connes during his lecture in Nijmegen, June 29, 2010

solid state physics and elementary particle
physics).

Besides Connes’s own book [2] and his
book with Marcolli [4], a good place to start
is [9]. In the Netherlands, so far there have
been two MRI Master Classes specifically de-
voted to teaching noncommutative geometry
to advanced M.Sc. students: the first was in
2003–2004, and the second took place in
2009–2010. To the surprise and delight of the
participants (coming from all over the world),
the closing dinner of the latter was attended
by Connes himself!

Early days
Connes’s early work, for which he was award-
ed the Fields Medal in 1982, was concerned
with the classification of von Neumann alge-
bras.

This wasn’t a fashionable area at the time.
One might even say that operator algebras
formed a rather introverted and isolated area
of mathematics. It would have been more
natural for a talented young mathematician
in Paris to go to Grothendieck. Weren’t you
attracted by him?

“I started research in 1970 and at that time
I was actually repelled by the intellectual ar-
rogance of the followers of Grothendieck. I
never liked fashionable subjects and tried to
find an area of mathematics as remote as pos-
sible from algebraic geometry.”

Decades later, Connes had a change of
heart towards Grothendieck, both person-
ally and mathematically. Although they
never met, Connes came to appreciate
Grothendieck’s personality through the lat-
ter’s autobiographical memoir Récoltes et Se-
mailles, and in addition noncommutative ge-
ometry and algebraic geometry turned out to
have surprising relevance to each other [4].

Presumably Gelfand must have been one
of your favourite mathematicians? Did you
have much contact with him?

“Neither. Sure, we met and discussed
mathematics a couple of times. But I found
him difficult to interact with. Of course, math-
ematically he was a big influence and quite
often one step ahead. In operator algebras I
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“Time emerges from noncommutativity”
Some familiarity with Hilbert spaces (as-
sumed separable for simplicity) and oper-
ator theory is assumed in this box.

If M is some set of bounded operators
on a Hilbert spaceH, the commutantM′ of
M consists of all bounded operators on H
that commute will all elements of M. We
say that M is a von Neumann algebra if
M′′ =M. Indeed, such anM is automati-
cally closed under addition and multiplica-
tion of operators, with the further proper-
ties that A∗ ∈M whenever A ∈M (where
A∗ is the Hermitian conjugate or adjoint of
A), and if AnΨ → AΨ for all Ψ ∈ H, and
An ∈ M for all n, then A ∈ M (in other
words,M is strongly closed). Conversely, if
M satisfies all these closure properties and
contains the unit operator, thenM′′ = M:
this bicommutant theorem is the earliest re-
sult about von Neumann algebras.

A problem to which Connes made deci-
sive contributions already in his PhD thesis
is the classification of von Neumann alge-
bras up to algebraic isomorphism. In that
context, it may be assumed without loss
of generality that the Hilbert space H on
which M acts contains a vector Ω that is
cyclic and separating forM, in thatMΩ =

{AΩ, A ∈ M} is dense in H, and AΩ = 0

for A ∈M implies A = 0, respectively. (For
example, if H = Cn, then Ω = (1, . . . ,1) is
cyclic and separating for the algebra of all
diagonal matrices.) In that situation, Tomi-
ta defined an (unbounded) antilinear oper-
ator S by SAΩ = A∗Ω (whose closure we
denote by the same symbol). The (linear)
operator ∆ = S∗S then turns out to be of
great interest. Since ∆ is positive, for each
t ∈ R the operator ∆it is well defined and
unitary, so that one has a ‘time-evolution’
σt (A) = ∆itA∆−it (think of ∆ = exp(H) and
σt (A) = A(t), in which case ∆it = exp(itH)

and A(t) = exp(itH)A exp(−itH), as in
quantum mechanics). One of the main
theorems of Tomita and Takesaki is that
σt (A) ∈ M whenever A ∈ M. Another is
thatσt (A) = A for allA ∈M and t ∈ R ifM
is commutative, justifying Connes’s credo
that “time emerges from noncommutativi-
ty”.

In his thesis Connes took this argument
one step further by analysing the depen-
dence of this time-evolution on Ω. To state
the simplest version of his result, assume
that H contains two different vectors Ω1

and Ω2, each of which is cyclic and sep-

arating for M. We write σ it (A) for the
time-evolution derived from Ωi. Connes’s
Radon–Nikodym Theorem for von Neumann
algebras then states that there is a family
U (t) of unitary operators inM, t ∈ R, such
that

σ1
t (A) = U (t)σ2

t (A)U (t)∗; (1)

U (t + s) = U (s)σ2
s (U (t)). (2)

One symbolically writes U = DΩ1 : DΩ2, in
terms of which one has the property (DΩ1 :

DΩ2)∗ = DΩ2 : DΩ1, and, in the presence
of three such vectorsΩi, also (DΩ1 : DΩ2)·
(DΩ2 : DΩ3) = (DΩ1 : DΩ3).

The proof of this theorem is based on
the following idea. ExtendM to Mat2(M),
i.e., the von Neumann algebra of 2× 2 ma-
trices with entries in M, and let Mat2(M)

act on H2 = H ⊕ H in the obvious way.
Subsequently, let Mat2(M) act on H4 =

H ⊕ H ⊕ H ⊕ H = H2 ⊕ H2 by simply
doubling the action on H2. The vector
(Ω1,0,0,Ω2) ∈ H4 is then cyclic and sepa-
rating for Mat2(M), with corresponding op-
erator ∆ = diag(∆1,∆4,∆3,∆2). Here ∆1

and ∆2 are just the operators on H orig-
inally defined by Ω1 and Ω2, respective-
ly, and ∆3 and ∆4 are auxiliary operators
on H. Denoting elements of Mat2(M) by

A =

(
A11 A12

A21 A22

)
, we obtain

∆it (A 0
0 A

)∆−it =

σ (1)
t (A) 0

0 σ (2)
t (A)

 , (3)

with

σ (1)
t (A) =

(∆it1 A11∆−it1 ∆it1 A12∆−it4∆it4 A21∆−it1 ∆it4 A22∆−it4

)
; (4)

σ (2)
t (A) =

(∆it3 A11∆−it3 ∆it3 A12∆−it2∆it2 A21∆−it3 ∆it2 A22∆−it2

)
. (5)

But by the Tomita–Takesaki theorems, the
right-hand side of (3) must be of the form
diag(B,B) for some B ∈ Mat2(M), so that
σ (1)
t (A) = σ (2)

t (A). This allows us to replace∆it4 A22∆−it4 in (4) by ∆it2 A22∆−it2 . We then
put U (t) = ∆it1 ∆−it4 , which, unlike either∆it1 or ∆−it4 , lies in M, because each en-
try in σ (1)

t (A) must lie in M if all the Aij

do, and here we have taken A12 = 1. All
claims of the theorem may then be verified
using elementary computations with 2 × 2

matrices. For example, combining the iden-
tity

(
A 0

0 0

)
=

(
0 1

0 0

)(
0 0

0 A

)(
0 0

1 0

)

with the property σ (1)
t (AB) = σ (1)

t (A)σ (1)
t (B),

we recover (1). Using the identity

(
0 Ut
0 0

)
=

(
0 1

0 0

)(
0 0

0 Ut ,

)

and evolving each side to time s, we arrive
at (2).

A ‘Proof from the Book’!

Let us mention the main use of this re-
sult. An automorphism ofM is a linear map
σ : M → M satisfying σ (AB) = σ (A)σ (B)

and σ (A∗) = σ (A)∗. The set of all automor-
phisms ofM forms a group Aut(M) under
composition. With Ω fixed, σt is an auto-
morphism of M for each t, and the map
t 7→ σt is a group homomorphism from R
(as an additive group) to Aut(M). Its im-
age σR is a subgroup of Aut(M), which de-
pends on Ω. However, call an automor-
phism σ of M inner if it is of the form
σ (A) = UAU∗ for some unitaryU ∈M. The
inner automorphisms of M form a normal
subgroup Inn(M) of Aut(M), with quotient
group Out(M) = Aut(M)/Inn(M). Connes’s
Radon–Nikodym Theorem then implies that
the subgroup σR/Inn(M) of Out(M) is in-
dependent of Ω, and hence is an invariant
of M. This insight formed the basis for
all subsequent progress in the classifica-
tion problem (largely due to Connes himself,
Haagerup, and Takesaki); see [2], Chapter v.
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am too young to have met von Neumann, but I
was much more influenced at a personal level
by the Japanese: Tomita and also Takesaki.”
Minoru Tomita (1924) is a Japanese mathe-
matician who became deaf at the age of two
and, according to Connes, had a mysterious
and extremely original personality. His work
on operator algebras in 1967 was subsequent-
ly refined and extended by Masamichi Take-
saki and is known as Tomita–Takesaki Theory
(see box on previous page). It formed the es-

Renormalization as a Birkhoff decomposition
Quantum field theory was initially devel-
oped in the late 1920’s by Dirac, Heisen-
berg, and Pauli in order to describe electro-
dynamical processes in a quantum-mecha-
nical way. This turned out to lead to in-
finities in the calculations, whose system-
atic removal was achieved by Feynman,
Schwinger, Tomonaga, and Dyson in the
late 1940’s. The procedure they introduced
is called renormalization; the typical ‘Feyn-
man diagrams’ displaying particle interac-
tions have remained an important tool ever
since. In the early 1970’s, ’t Hooft and Velt-
man succeeded in extending the Feynman
diagram technique and ensuing renormal-
ization procedure to the weak and strong
nuclear interactions, earning them the No-
bel Prize for Physics in 1999. A fundamental
idea they introduced is dimensional regu-
larization, in which Feynman diagrams are
computed as a function of z = d− 4, where
d is the dimension of space-time. The in-
finities then emerge as singularities in the
limit d → 4, or z → 0, and can be removed
by subtracting the singular terms in a sys-
tematic way.

Whilst physicists simply use dimension-

al regularization and renormalization as a
recipe, mathematicians continue to look for
a sound mathematical basis for it. In a col-
laboration with Dirk Kreimer, Alain Connes
found a beautiful formulation in terms of a
Birkhoff decomposition.

In general, a Birkhoff decomposition of
a smooth invertible n × n matrix-valued
function f on the unit sphere (regarded
as the equator C of the Riemann sphere
S) is a product f = f− · δ · f+. Here
δ(z) = diag(zk1 , . . . , zkn ) for certain inte-
gerski, whereas thef± are boundary values
of holomorphic functions defined on the
complementsC± ofC in S (i.e., the northern
and southern hemispheres). In particular,

f+ is finite at z = 0.
In the application to quantum field the-

ory by Connes and Kreimer, the group of
matrices in which f takes values consists
of upper-triangular matrices of the form

In the first row one finds subgraphs of the
graph in the upper-right corner of the ma-
trix. Below each graph, one finds the same
graph but with its subgraph(s) contracted
to a vertex. Each matrix entry of f (z) is to
be read as the numerical value of the corre-
sponding Feynman diagram (as given by the
so-called Feynman rules), seen as a function
of z = d − 4. This forms the basis for the
systematics of renormalization: the physi-
cally relevant finite part of the diagrams in
question is determined by the Birkhoff de-
composition of f as f+(z = 0).

sential stepping stone between the first steps
in the classification of von Neumann algebras
taken by Murray and von Neumann, and the
work of Connes. A key ingredient of Connes’s
contribution was his cocycle Radon–Nikodym
Theorem for von Neumann algebras, whose
proof is based on a trick with 2 × 2 matrices
(see box on previous page). “This remains
my favourite result. It is very dear to me. Al-
though at the end of the day the argument
was very simple, it followed months of calcu-

lations and then came to me in a flash.”

Style of working
In a flash! Is that the way you typically ar-
rive at crucial insights, as suggested also by
Poincaré?

“Hardly. This happened extremely rarely,
as it did with my idea that renormalization
in quantum field theory corresponds to the
Birkhoff decomposition (see box below). But
even these so-called flashes of insight were
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Landsman introduces Connes’s lecture in Nijmegen, June 29, 2010

the culmination of massive computations,
and never came for free!”

So what is the goal of these computations?
Are they at least a path to structure, or to a
theorem?

“Long computations are, for me, a way to
get into a special state of mind, into a particu-
lar mood, in which a mental picture can slowly
emerge. As a preparation I go for a long walk
with a particular problem in mind, and start
computing in my head, before doing it in a
notebook.”

We have never seen you on such a walk
near Bures [i.e., Bures sur Yvette near Paris,
site of the IHÉS, where Connes holds his main
appointment, besides others at the College
de France in Paris and Vanderbilt University
in Nashville] . . .

“I avoid meeting other people during such
walks, especially mathematicians. I live in a
remote place where I can go for a walk within
a radius of 10 km around my house without
meeting anyone.”

So you do all your computations in your
head?

“No, during such walks the framework of
the computation is selected. Then I sit down
and really start to compute. One of the dear-
est memories I have is a case where, with my
collaborator and friend Henri Moscovici, we
had to compute, separately and with a spirit
of friendly competition, a cocycle which was a
sum of about a thousand complicated terms.
It took us three weeks of hard work, but at the
end of the day a hidden Hopf algebra structure
emerged from behind the scene."

Elsewhere, Connes describes the way
he works in more detail [14]. To his
amusement (see photo above), the fol-
lowing passage was read aloud by one
of us as an introduction to Connes as a
speaker at the GQT-conference; such open-

ness by a leading mathematician is rare:
“My impression is that I have never ob-

tained anything at low cost. All my results
have been preceded by preparatory ones, set-
ting up work, a very long experimentation,
hoping that at the end of this experimenta-
tion, an incredibly simple idea occurs which
comes and solves the problem. And then you
need to go through the checking period, al-
most intolerable because of the fear you have
of being mistaken. I will never let anyone

Statistical mechanics and number theory
In the language of operator algebras, a
quantum system is described by a C∗-
algebra A (representing the physical ob-
servables) endowed with a one-parameter
group α of automorphisms of A (describ-
ing time evolution). In this context, the
Gibbs equilibrium states of quantum sta-
tistical mechanics are described by an
operator-algebraic condition first proposed
by Haag, Hugenholtz, and Winnink in 1967,
which replaces the classical notion of a
partition function counting the energy lev-
els Ei with the well-known temperature-
dependent weights exp(−Ei/kBT ). The
states selected by this condition are close-
ly related to the vectors Ω in the Tomita–
Takesaki theory (see box “Time emerges
from noncommutativity” on one of the previ-
ous pages); for example, the time-evolution
σt induced by Ω turns out to coincide with
the physical time-evolution αt .

In the 1990’s, Jean-Benoît Bost and Alain
Connes discovered a quantum statistical
mechanical system with two interesting
number theoretical features. The first is
that its partition function is the Riemann
zeta function (see box on next page). The
second relates to its equilibrium states: in

the high temperature range, there is a (bor-
ing) unique equilibrium state for the sys-
tem, but at a specific low temperature,
there is a phase transition at which an in-
finite simplex of equilibrium states sudden-
ly emerges, whose extremal points (physi-
cally corresponding to pure thermodynam-
ic phases) are naturally indexed by. . . the
abelianized Galois group of the rational
numbers! This is an infinite topological
group that plays a central role in algebra-
ic number theory (especially in class field
theory); here the relevant property is that
it controls the ambiguity in distinguishing
roots of the equation Xn − 1 = 0 in purely
algebraic terms.

This discovery was followed by a phase
of intense activity, trying to use the theo-
ry as a tool for the explicit determination
of the maximal abelian extension of other
number fields, but up to now, all results
have been reformulations of known (deep)
number-theoretical descriptions in terms of
quantum statistical mechanics. In this lan-
guage, explicit class field theory is equiva-
lent to the description of a suitable set of
algebraic generators for the C∗-algebra of
the system.

believe that you can wait just like this until
results come all by themselves. I spent the
whole summer [of 2006] checking a formula
[. . .] There is always this permanent fear of er-
ror which doesn’t improve over the years. . ..
And there is this part of the brain which is per-
manently checking, and emitting warning sig-
nals. I have had haunting fears about this. For
example, some years ago, I visited Joachim
Cuntz in Germany, and on the return train I
looked at a somewhat bizarre example of my
work with Henri Moscovici on the local index
theorem. I had taken a particular value of
the parameter and I convinced myself on the
train that the theorem didn’t work. I became
a wreck — I saw that in the eyes of the peo-
ple I crossed on the suburban train to go back
home. I had the impression that they read
such a despair in me, they wanted to help. . ..
Back home, I tried to eat, but I couldn’t. At
last, taking my courage in both hands, I went
to my office and I redid the verifications. And
there was a miracle which made the theorem
work out in this case. . .. I have had several
very distressing episodes like this.”

So doing mathematics is largely a strug-
gle. . .. Your favourite composer must be
Beethoven, rather than, say, Mozart, to whom
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Noncommutative geometry and number theory
How could a theory that has its roots in
physics and differential geometry have any-
thing to do with number theory? Historical-
ly, there have been various attempts at ap-
plying physical ideas to such elusive num-
ber theoretical problems as the Riemann hy-
pothesis, which says that all the zeros of the
(analytic continuation of) the Riemann zeta
function ζ(s) =

∑
n≥1

1
ns with real part be-

tween 0 and 1, actually have real part equal
to 1/2. This seemingly innocuous state-
ment is vital to many deep number theo-
retical results.

As was observed by Pólya already before
WW1, the Riemann hypothesis would follow
if the imaginary parts of the zeros of ζ(s)
would be the eigenvalues of a self-adjoint
operator. But what should this operator
be, or, why should it even exist? In the
1950’s, Selberg observed that in the theory
of Riemann surfaces, one can define a zeta
function by replacing ‘primes’ by ‘lengths
of primitive geodesics’ (note that short-
est paths, like primes, cannot be broken
up into smaller pieces), and then proved
the famous trace formula named after him,
which establishes a relation between this
zeta function and the Laplace operator on

the surface. You should get excited now, be-
cause this Laplace operator is a self-adjoint
unbounded operator. The main contribu-
tion of Connes from the 1990’s was his use
of noncommutative geometry to write down
an analog of the trace formula of Selberg
that is actually equivalent to the Riemann
hypothesis. At this point, it was really nec-
essary to use a noncommutative underly-
ing space, since Connes’s trace formula can
never materialize on a usual commutative
manifold.

The initial optimism that the Riemann hy-
pothesis would now soon follow by ‘just’
proving the Connes trace formula from
the (noncommutative) geometry of the un-
derlying space has been converted in-
to various high-tech long-term programs
in noncommutative geometry, which in-
creasingly seem to involve a synthesis
with the algebraic and arithmetic geome-
try of Grothendieck and followers, and are
producing interesting spin-offs–much like
Kummer’s theory of ideals, which failed to
directly prove Fermat’s Last Theorem, but
produced the entire field of algebraic num-
ber theory. So let us wait and see. . ..

his music apparently appeared from Heaven,
without any effort?

“Actually, my favourite composer is Chopin.
One of my ambitions remains to play all
his Preludes well, especially number 8 these
days. Each one is a perfectly homogeneous
world of its own and has a different sound,
with an implicit idea behind. It must have
been a monumental struggle to manage to
express these ideas so well into written mu-
sic. A fascinating aspect of music — not only
Chopin’s, of course — is that it allows one to
develop further one’s perception of the pass-
ing of time. This needs to be understood
much better. Why is time passing? Or bet-
ter: why do we have the impression that time
passes? Is it because we are immersed in
the heat bath of the 3K radiation from the big
bang?”

Riemann hypothesis
Connes’s own research area is not as remote
from such questions as one might think. In-
deed, an idea he repeatedly expresses is
that “time emerges from noncommutativity”.
Even thermodynamics arises from noncom-
mutative geometry [5]: “Not only do [non-
commutative algebras] generate their own

time, but they have features which enable you
to cool them down or warm them up. You can
do thermodynamics with them.”

In the late 1960’s, besides the work of
Tomita and Takesaki, also the Dutch mathe-
matical physicists Nico Hugenholtz and Mar-
inus Winnink (in collaboration with Rudolf
Haag) played an important role in relating op-
erator algebras to time and thermodynamics.
As Connes remarks, the ensuing link between
Tomita–Taksesaki Theory for von Neumann al-
gebras and quantum statistical physics “has
become an indisputable point of interaction
between theoretical physics and pure math-
ematics” [2], p. 42. See also box “Time
emerges from noncommutativity” and the box
on the previous page.

In your recent book with Matilde Marcolli
[4] you even develop a thermodynamical ap-
proach to number theory and the Riemann
Hypothesis. You seem to have taken up the
highest challenge in pure mathematics. What
do you expect?

“It started with my work with Bost in the
early 1990’s on phase transitions on Hecke
algebras. The Riemann zeta function came
naturally as the partition function. Then in
1996, I showed that, using a formula due to

Guillemin for foliations, and using a natural
noncommutative space coming from the work
with Bost, one obtained the Riemann–Weil ex-
plicit formulas as a trace formula and also a
spectral realization of the zeros of zeta. The
explicit formulas show very clearly that due to
the archimedean places one needs not only
an analogue of the curve used by Weil in his
proof in characteristic p but also an ambient
space, which in the above construction is non-
commutative. But to transplant the geometric
ideas of Weil, which we started doing in our
collaboration with Consani and Marcolli, one
needs another version of that construction,
in which the points are concretely realized as
valuations and the Galois ambiguity is com-
pletely respected. It is a very difficult prob-
lem but it has many interesting byproducts as
shown in the recent work with Consani, which
was the subject of my talk here.” See also
boxes on this and previous page.

Yuri Manin maintains that a proof of the
Riemann Hypothesis that does not fit into
some program would not be interesting. . .

“The hope is that this problem cannot be
resolved without unfolding the hidden ge-
ometric structure of the above mysterious
curve and its ambient space. I share this hope
completely.”

Platonism
In your book ‘Triangle of thoughts’ [3] you
come out as an outspoken Platonist. So you
think that the kind of structure we just talked
about is going to be discovered, rather than
invented?

“Prime numbers are as real for me as this
table. For me, mathematical reality is com-
pletely analogous to physical reality.”

But we are in Holland now, so we have to
follow L.E.J. Brouwer in believing that mathe-
matics is constructed by the human mind. Do
you have a cogent argument for your Platonic
position?

“My position comes from the very impor-
tant distinction between provability and truth.
This is very well explained in a book by Jean-
Yves Girard [8] and it would take too long to
explain here, but I urge the reader to study
this book. We, mathematicians, are stuck
in something like a court of justice, making
deductions with limited information about an
external reality which I call ‘archaic reality’.
In this reality, there are facts, true sentences,
that are not provable in the court of justice,
as shown by Gödel. Gregory Chaitin even
showed that almost all true statements are
not provable in the court. Anyway, the point
is the existence of true — not just undecidable
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— but unprovable statements. Unless you un-
derstand that point it is worthless to debate
about Platonism.”

Physics
What is the place of physics in this archaic
reality? How do you see the relationship be-
tween physics and mathematics?

“The standard wisdom is that mathematics
is the language in which physics is written and
I certainly agree with that, but my hope is that
the relation goes much further and that basic
concepts such as the passing of time will on-
ly be really understood through the unfolding
of deeper mathematics. The boundary line
between physics and mathematics comes ul-
timately from the motivation of physicists to
model reality and thus confront their predic-
tions with experiment.”

You actually made a physical prediction
from noncummutative geometry, i.e., the
mass of the Higgs particle. The result was
slightly off experimental bounds. How are you
going to keep physicists on board?

“This prediction was based on the hypo-

thesis of the ‘big desert’, namely that there
will be no new physics up to the unification
scale, besides the Standard Model coupled
to gravity. Thus it was a bit like trying to see a
fly in a cup of tea by looking at the earth from
another planetary system. But very strange-
ly the model also predicted the correct mass
of the top quark, and a surprising number of
mechanisms such as the Higgs and the see-
saw mechanisms. After our work in 1996 with
Ali Chamseddine we gave up in 1998 because
of the discovery of neutrino mixing, only to un-
derstand 8 years later that there was one case
which we had overlooked, namely allowing
the KO-theory dimension of the finite space
to be 6 modulo 8, and which was giving for
free the neutrino mixing and much better fea-
tures for the model. [All this is explained in
Connes’s book with Marcolli [4].] As it is now,
I stopped doing such calculations and will just
wait for the experiments. If supersymmetry is
going to be found, it will be very hard to con-
vince the physicists of the noncommutative
geometry approach.”

But there is no contradiction between

supersymmetry and noncommutative geome-
try.

“You are right, but string theory would
claim the ground even more than they are al-
ready doing now. In any case, the Standard
Model [of elementary particle physics] is full
of tricks. What we need is simplicity. I think
that is what noncommutative geometry pro-
vides. The inverse line element is an opera-
tor. Its only invariants [under unitary transfor-
mations] are the eigenvalues. And these are
eventually what is observed in Nature. The
truth is that this simplicity is only a starting
point and a lot more work would be needed
to explore the quantum theory.”

Do you have a preference for mathematics
over physics?

“My heart lies with both.”

At this appropriate point Connes had to
leave for a dinner appointment with Sir
Michael Atiyah, another speaker at the GQT-
conference and a comparable source of inspi-
ration for our cluster. k
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