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This Problem Section is open to everyone; everybody is encouraged to submit solutions
and propose problems. Group contributions are welcome.
For each problem, the most elegant correct solution will be rewarded with a book token
worth 20 euro. At times there will be a Star Problem, to which the proposer does not
know any solution. For the first correct solution received within one year there is a prize
of 100 euro.
When proposing a problem, please either include a complete solution or indicate that it is
intended as a Star Problem. Electronic submission of problems and solutions is preferred
(problems@nieuwarchief.nl).
The deadline for solutions to problems in this edition is June 1.

Problem A (proposed by Arne Smeets)

Show that for each positive integer n there exists a sequence of n consecutive integers
such that for each k, the k-th term can be written as a sum of k distinct squares.

Problem B (proposed by Jos Brakenhoff)

The integers of the real line mark positions at which we may place chips. We start with
2n + 1 chips, alternatingly blue and red, at consecutive positions. A move is a translation
by an integer of a pair of differently coloured chips at adjacent positions to two empty
positions, as long as at least one of the new positions is adjacent to one that was already
occupied.

Show that it is possible, in a finite sequence of moves, to arrange the chips so that they
occupy 2n + 1 consecutive positions again, but now with all blue chips on one side and
all red chips on the other. Give upper and lower bounds for the smallest number of
moves required.

Problem C (proposed by Frank Redig)

Does a function f : R → R exist that is everywhere left-continuous, but nowhere contin-
uous?

Edition 2009-3 We received submissions from Daniël Worm (Leiden), Rutger Kuyper
(Nijmegen), Thijmen Krebs (Nootdorp), Jaap Spies (Emmen), Sander Scholtus (Den
Haag), Pieter de Groen (Brussel), Dan Dima (Bucharest), Wim Schikhof (Nijmegen), and
Sep Thijssen (Nijmegen).

Problem 2009-3/A Let k be a non-negative integer. Let S ⊂ Z be a set consisting of
2k+1 − 1 integers. Show there exists a subset T ⊂ S of cardinality 2k such that the sum of
the elements of T is divisible by 2k.

Solution This problem was solved by Daniël Worm, Thijmen Krebs, Rutger Kuyper,
Sander Scholtus, and Sep Thijssen. All submitted essentially the same solution. The
book token goes to Rutger Kuyper.
We use induction. For k = 0 the statement clearly holds. Suppose the statement holds for
some non-negative integer k. Let S ⊂ Z be a subset of cardinality 2k+2 − 1. Using the in-
duction hypothesis on two disjoints subsets of S of cardinality 2k+1 − 1 each, we can find
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divisible by 2k. Now note that the complement of T1 ∪ T2 in S has cardinality 2k+1 − 1,
so by using the induction hypothesis once more we find a subset T3 ⊂ S, disjoint with
T1 and T2, of cardinality 2k and such that the sum of its elements is divisible by 2k. To
conclude, choose i 6= j such that Ti and Tj have the same sum modulo 2k+1 and observe
that T = Ti ∪ Tj ⊂ S satisfies the requirements.

Problem 2009-3/B Find all functions f : R >0 → R >0 such that

f (x + y) ≥ f (x) + y f ( f (x)) (1)

for all x and y in R >0.

Solution This problem was solved by Dan Dima, Pieter de Groen, Thijmen Krebs, Sep
Thijssen, and Daniël Worm. The book token goes to Daniël Worm.
The following is essentially the solution by Thijmen Krebs and Daniël Worm.
Suppose such a function f exists. For all x, y > 0 we have f (x + y) > f (x), so f is
strictly increasing. For fixed x, the right-hand side of (1) is linear in y, so f is unbound-
ed. Therefore, we may choose an x > 0 such that f ( f (x)) > 1 and a y > 0 satisfying
y( f ( f (x))− 1) > x + 1. Then for z = x + y we have

f (z) = f (x + y) ≥ f (x) + y f ( f (x)) > y f ( f (x)) > x + y + 1 = z + 1.

However, from f (z + 1) ≥ f (z) + f ( f (z)) > f ( f (z)) and the fact that f is increasing, we
find z + 1 > f (z). From this contradiction we conclude that no such f exists.

Problem 2009-3/C Let V be an infinite-dimensional vector space. Show that the dimen-
sion of the dual space V∗ equals the cardinality of V∗.

Solution We received no solutions to this problem. Wim Schikhof pointed out that the so-
lution can be found in the literature (G. Köthe, Topologische Lineare Räume I, 1960), where
it is known as a theorem of Erdős and Kaplansky. Bas Edixhoven communicated the
following (folklore) proof.
We denote the cardinality of a set S by |S|.
Let V be an infinite-dimensional vector space over a field k. Clearly |V∗| ≥ dim(V∗), so
we only need to show |V∗| ≤ dim(V∗).
Choose a basis I of V, using Zorn’s Lemma. Let kI be the set of all functions from I to
k and let k[I] be the vector space of all polynomials in the elements of I. Consider the
‘evaluation’ map

e : kI → (k[I])∗ : f 7→
[

P 7→ P
(

f (i)i∈I
)]

.

We claim that the images of e are linearly independent. To see this, let f1 , . . . , fn be
distinct elements of kI and let

α1e( f1) + · · ·+αne( fn) = 0

be a linear relation amongst their images. Note that there is a finite subset J ⊂ I on
which the functions f are already distinct. In particular, for any 1 ≤ j ≤ n we can choose
a polynomial P ∈ k[J] ⊂ k[I] that evaluates to 1 on f j and to 0 on all the other f ’s, so that

α j = α1P
(

f1(i)i∈I
)
+ · · ·+αnP

(
fn(i)i∈I

)
= 0,

which proves the claim.
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|kI | ≤ dim(k[I]∗).

But kI is isomorphic to V∗ and k[I] is isomorphic to V (since I has the same cardinality
as the set of all monomials in I), so we conclude |V∗| ≤ (dim V∗).

Problem (Star) 2008-2/1 Let the continuous function f1 : (0, 1] → C be such that

∫ 1

0
f1(t)dt

exists (and is finite) as an improper Riemann integral. Prove that f1 has a unique exten-
sion to f : R + → C that is
• continuous on R +,
• differentiable on (1, ∞) and satisfies the differential-difference equation

f ′(x) = − 1
x

f (x− 1) (x > 1). (2)

Also, determine

lim
x→∞ x f (x).

Finally, show that, if
∫ 1

0 f1(t)dt = f1(1), then the series ∑∞
n=0 n f (n) and the integral

∫ ∞
0

f (t)dt

both converge absolutely and have the same value.

Solution We received solutions from Joris Bierkens and J. Arias de Reyna & J. van de
Lune. Joris Bierkens will receive the prize.
The following solution is based on the one given by Bierkens.
Define the functions fn : (n− 1, n] → C inductively, by

fn(x) := fn−1(n− 1)−
∫ x

n−1

1
t

fn−1(t− 1)dt,

and glue them to a function f on R +. By the properties of the Riemann integral, this f is
continuous on R + and differentiable on (1, ∞) and it satisfies the differential-difference
equation (2). If g : R + → C is another function with these properties, then we see that
g′(t) = f ′(t) on (1, 2]. From f (1) = g(1) we conclude f = g on (1, 2]. Repeating this
argument it follows that g = f everywhere on R +.
In order to determine limx→∞ x f (x), note that (2) implies

(x f (x))′ = f (x)− f (x− 1). (3)

Therefore

lim
x→∞ x f (x) = f (1) +

∫ ∞
1

(x f (x))′dx = f1(1)−
∫ 1

0
f1(x)dx,

provided that the limit limx→∞ x f (x) exists.
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n
f (t)dt =

∫ n

n−1
f (t)dt + (n + 1) f (n + 1)− n f (n) (n ≥ 1).

Now suppose
∫ 1

0 f1(t)dt = f1(1). This recursion implies

∫ n

n−1
f (t)dt = n f (n). (4)

We have for n > 1∫ n+1

n
| f (t)|dx =

∫ n+1

n

∣∣∣∣ f (n)−
∫ x

n

1
t

f (t− 1)dt
∣∣∣∣ dx

≤ | f (n)|+
∫ n+1

n

1
n

∫ n+1

n
| f (t− 1)|dtdx

≤ 1
n

∫ n

n−1
| f (t)|dt +

1
n

∫ n+1

n
| f (t− 1)|dt =

2
n

∫ n

n−1
| f (t)|dt.

So, by the ratio test, the series

∞
∑

n=1

∫ n

n−1
| f (t)|dt

converges. Since we have

∞
∑

n=1
|n f (n)| =

∞
∑

n=1

∣∣∣∣∫ n

n−1
f (t)dt

∣∣∣∣ ≤ ∫ ∞
0

| f (t)|dt =
∞
∑

n=1

∫ n

n−1
| f (t)|dt,

we conclude that both ∑∞
n=0 n f (n) and

∫ ∞
0 f (t)dt converge absolutely, and from (4) it

follows that they have the same limit.

Problem (Star) 2008-2/4 Let p : [0, 1] → R be a continuous function with p(t) ≥ 0 for
all t ∈ [0, 1] and

∫ 1
0 p(t)dt = 1. Does the function f : C → C given by

f (z) = ez −
∫ 1

0
p(t)eztdt

have infinitely many zeroes?

Solution We received solutions from R.A. Kortram and J. Arias de Reyna & J. van de
Lune. R.A. Kortram will receive the prize.
The following solution is based on the one given by Kortram.
We shall prove that the answer is ‘yes’. The function f has a Taylor series expansion
given by

f (z) =
∞
∑

n=1
an

zn

n!

with an = 1 −
∫ 1

0 tn p(t)dt. The coefficients an are real and satisfy 0 < an < 1 so for all
r ∈ R >0 we have

Mr( f ) := max
|z|=r

| f (z)| = f (r) < er . (5)

This shows that f is of order (at most) 1: the order of the entire function f is the infimum
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m
) as z → ∞.

From now on, assume that f has only finitely many zeroes z1 , . . . , zN with multiplicities
e1 , . . . , eN . Hadamard’s factorization theorem tells us how an entire function of given
order can be expressed as product in terms of its zeroes and leads in our case to

f (z) = φ(z)eλz+µ with φ(z) =
N

∏
j=1

(z− z j)e j

for certain λ, µ ∈ C . Since the Taylor coefficients of f are real, we have φ(z) ∈ R [z],
λ ∈ R and eµ ∈ R and hence there is a real number c with

f (z) = cφ(z)eλz .

Now put g(z) =
∫ 1

0 p(t)eztdt = ez − f (z). We have

g(z) =
∞
∑

n=0
bn

zn

n!
with bn =

∫ 1

0
tn p(t)dt > 0.

Hence for r ∈ R >0 we have

Mr(g) := max
|z|=r

|g(z)| = g(r) = er − f (r) = er − cφ(r)eλr .

The fact that f (0) = 0 implies deg(φ) ≥ 1; combining this with (5) we get λ < 1. So
there is an R ∈ R such that for all r > R we have Mr(g) > er/2.
Choose ε < 1/4 and δ ∈ [0, 1) with

∫ 1
δ p(t)dt < ε. Then also

∫ 1
δ tn p(t)dt < ε. Choose K

with δK < ε. For n ≥ K we have

∫ δ

0
tn p(t)dt ≤ δn

∫ δ

0
p(t)dt ≤ δn

∫ 1

0
p(t)dt < ε

and thus bn < 2ε.
For r ≥ R we get the following inequality:

er/2 < Mr(g) = g(r) <
K−1

∑
n=0

bn
rn

n!
+ 2ε

∞
∑

n=K

rn

n!
<

K−1

∑
n=0

bn
rn

n!
+ 2ε · er ,

which is a contradiction for large r.


