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This Problem Section is open to everyone; everybody is encouraged to send in solutions
and propose problems. Group contributions are welcome.
For each problem, the most elegant correct solution will be rewarded with a book token
worth 20 euro. At times there will be a Star Problem, to which the proposer does not
know any solution. For the first correct solution sent in within one year there is a prize
of 100 euro.
When proposing a problem, please either include a complete solution or indicate that
it is intended as a Star Problem. Electronic submissions of problems and solutions are
preferred (problems@nieuwarchief.nl).
The deadline for solutions to the problems in this edition is March 1, 2009.

Problem A (proposed by Alexey Kanel)

Is there a polynomial with rational coefficients whose minimum on the real line is
√

2?

Problem B (proposed by Frans Oort)

Are there infinitely many positive integers whose positive divisors sum to a square?

Problem C (proposed by Gabriele Dalla Torre)

For which odd positive integers n do there exist an odd integer k > n and a subset
S ⊂ Z /kZ of size n such that for every non-zero element r ∈ Z /kZ the cardinality of
the intersection S ∩ (S + r) is even? What about even n?

Star problems. In the June 2008 edition of the NAW we revisited a selection of unsolved
star problems. Whoever sent in a solution first before July 1, 2009 would receive a book
token. In this and upcoming editions we will publish some of the solutions we have
received.

Edition 2009-2 We received solutions from Rob van der Waall (Huizen), Thijmen Krebs
(Nootdorp), Ruud Jeurissen (Nijmegen), Tejaswi Navilarekallu (Amsterdam), Hendrik
Lenstra (Leiden), and Jaap Spies (Emmen).

Problem 2009-2/A In how many ways can one place coins on an n × n chessboard
such that for every square the number of (horizontally or vertically) adjacent squares
that contain a coin is odd?

Solution We received solutions from Tejaswi Navilarekallu and Thijmen Krebs. Tejaswi
Navilarekallu will receive the book token.
We contend that the required task is impossible if n is odd and that it can be performed
in exactly 2n ways if n is even.
We use integral coordinates (i, j) with 1 ≤ i, j ≤ n for the squares of the board. We color
a square (i, j) white if i + j is even, and black if it is odd. The problems of placing coins
on the white and on the black squares are independent. We say that a configuration of
coins is legal at a square if that square has an odd number of neighbors containing a coin.
First we treat the case of even n, so n = 2k for some integer k.
Claim: Any configuration of coins on the white half-diagonal (1, 1), (2, 2), . . ., (k, k) ex-
tends to a unique configuration on all the white squares that is legal at all black squares.
Proof. We show by induction on m that any configuration on the half-diagonal extends
uniquely to a configuration on the white squares (i, j) with i + j ≤ 2m that is legal at all
black squares (i, j) with i + j < 2m. Note that the uniqueness implies that this configu-
ration will be symmetric in the sense that there is a coin on (i, j) if and only if there is a
coin on ( j, i).
The case m = 1 is trivial. For m ≤ n the induction step is easy, working outwards from
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the edge towards the square (m, m) on the diagonal. The symmetry guarantees that there
is no conflict at the square (m, m). �

It follows that the number of legal configurations on the white squares is 2k. Of course
the same holds for the black squares, so the total number of legal configurations on the
board is 2k · 2k = 2n.
We shall now prove by contradiction that there are no legal configurations if n is odd.
Let k be such that n = 2k + 1. Assume that we are given a legal configuration. Legality
at the corner square (1, 1) implies that exactly one of (1, 2) and (2, 1) contains a coin.
Legality at (2, 2) then implies that either both or none of (2, 3) and (3, 2) have a coin.
Continuing this alternating process we see that for all i either both or none of (2i, 2i + 1)
and (2i + 1, 2i) have a coin. In particular either both or none of (n− 1, n) and (n, n− 1)
have a coin, which contradicts legality at the corner square (n, n).

Problem 2009-2/B A magic n × n matrix of order r is an n × n matrix whose entries
are non-negative integers and whose row and column sums all equal r. Let r > 0 be an
integer. Show that a magic n× n matrix of order r is the sum of r magic n× n matrices of
order 1.

Solution This problem was solved by Ruud Jeurissen, Thijmen Krebs, Tejaswi Navi-
larekallu, and Jaaps Spies. The following is essentially the solution by Ruud Jeurissen,
which was similar to all others. Ruud Jeurissen is the winner of the book token.
We prove the statement by induction on r, the case r = 1 being trivial. Suppose M is
a magic n × n matrix of order r. We associate to M the bipartite graph where the two
underlying sets R and C of vertices consist of the rows and columns of M respectively,
and the i-th row and j-th column are connected by Mi j edges. Each subset S ⊂ R of
size k is connected by kr edges to columns in C. Since each column in C has only r
edges, this implies that there are at least k columns in C that are connected to S. By
Hall’s theorem (also known as the marriage theorem), this implies there is a matching
from R to C, meaning there is a magic matrix M′ of order 1, such that the entries of
M′′ = M − M′ are non-negative. This implies that M′′ is a magic matrix of order r − 1,
so by the induction hypothesis M′′ is a sum of r − 1 magic matrices of order 1. We
conclude that M = M′′ + M′ is the sum of r magic matrices of order 1.

Problem 2009-2/C (proposed by Tejaswi Navilarekallu) Find all finite groups G with the
property that for all g, h ∈ G at least one of (g, h), (g, gh) and (h, hg) is a pair of conjugate
elements.

Solution We received solutions from Rob van der Waall and Hendrik Lenstra. The pro-
poser and Hendrik Lenstra had similar solutions, and the following is based on both.
Hendrik Lenstra will receive the book token.
We claim that the only groups satisfying the given condition are {1}, Z/2Z, and the
dihedral groups of order 6 and 10.
Clearly the trivial group and the group of order two satisfy the condition, so assume G
has n > 2 elements.
Let 1 = d1 , d2 , . . . , dk be the sizes of the conjugacy classes of G. Therefore, d1 + · · ·+ dk =
n. Then the set

{(g, h) ∈ G× G|g, h are conjugates}

has precisely d2
1 + d2

2 + · · ·+ d2
k elements. Similary, the sets

{(g, h) ∈ G× G|g, gh are conjugates}

and
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have exactly d2
1 + · · ·+ d2

k elements. Note that (1, 1) belongs to all three sets. For G to
satisfy the condition in the problem, we need the union of the above three sets to be
G× G. In particular, this gives the inequality 3(d2

1 + . . . + d2
k) ≥ n2 + 2 or equivalently,

3(d2
2 + · · ·+ d2

k) ≥ n2 − 1. (1)

Note that the di divide n. If for all i we have di ≤ n/3 then

3(d2
2 + · · · + d2

k) ≤ 3(d2 + · · · + dk)
n
3

= (n − 1)n

contradicting the inequality (1). So there must be a conjugacy class C with exactly n/2
elements. We are going to show that, except for the identity, all other conjugacy classes
have exactly 2 elements.
Since the conjugation action of G on C is transitive the centralizer of an element c ∈ C
has at most two elements, and since that centralizer contains c it follows that c2 = 1, so
all elements of C have order 2.
Let a and b be elements of C. We will show by contradiction that ab is not in C. Assume
that ab is in C. Then abab = 1, so aba−1 = b, so a = b, since the stabilizer of b consists of
only 1 and b. We conclude that ab = 1, a contradiction.
Next we show that the complement H = G− C is a subgroup. Let x and y in H be given
and fix an r ∈ C. By the above x and y can be written as ar and rb respectively, with
a, b ∈ C. Then xy equals ab, which is an element of H.
The action by conjugation of an element c ∈ C on H is an involution, since c2 = 1. The
only fixed point of this action is 1 ∈ H, because chc−1 = h implies h−1ch = c and the
centralizer of c is {1, c}.
Any finite group H with an involutionσ that fixes only 1 ∈ H is necessarily abelian, and
the involution must be inversion. To see this, first observe that by a counting argument,
every element x ∈ H can be written as x = σ(h)h−1 for some h ∈ H, then apply σ to
obtain σ(x) = x−1. Hence the automorphism is inversion, and therefore the group is
abelian.
So we may assume d1 = 1, d2 = n/2, and d3 = · · · = dk = 2. Together with the
inequality (1) this implies that n ≤ 10. It is now easy to check that only the dihedral
groups of order 6 and 10 satisfy the required condition (with n > 2.)

Problem (Star) 2008-2/3 Let A and B be n × n matrices over C . Suppose that
limk→∞(Ak + Bk) exists. Show that there exists M ∈ C n×n such that limk→∞ Ak − kM
and limk→∞ Bk + kM exist. Give necessary and sufficient conditions on A and B for M
to be zero.

Solution This problem was solved by Alex Heinis and Wim Hesselink. As Wim Hesselink
sent in a solution first, he will receive the prize. The following is based on both solutions.
Clearly the matrix M is unique, if it exists. For any linear map f : C n → C n, the vec-
tor space C n is the direct sum of the generalized eigenspaces E f ,λ = ker( f − λ)n for
eigenvalues λ of f by the theory of Jordan normal forms.
Lemma 1. For any linear map f on C n we have limk f k = 0 if and only if every eigenvalue
λ of f satisfies |λ| < 1.
Proof. The only-if part being obvious, we assume that every eigenvalue λ of f satisfies
|λ| < 1. Let λ be such an eigenvalue. Then the restriction fλ of f to the generalized
eigenspace E f ,λ can be written as λ · id + m, with mn = 0. We get f k

λ = ∑ j<n
(k

j
)
λk− jm j,

which tends to 0, because in each term
(k

j
)

only grows polynomially in k. We conclude
that f tends to 0. �
Lemma 2. Every eigenvalue λ of A or B satisfies |λ| < 1 or λ = 1.
Proof. For two sequences (Xk)k and (Yk)k of matrices we write Xk ∼ Yk if limk(Xk −Yk) =
0. Set C = limk(Ak + Bk). Then we have

C − Ak+1 ∼ Bk+1 ∼ B(C − Ak) = BC − BAk ,
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eigenvalue λ. Then λk(Bx − λx) = (B − A)Akx converges, namely to (B − I)Cx. We
conclude that either |λ| < 1 or λ = 1, or Bx = λx = Ax, in which case 2λkx = (Ak + Bk)x
converges, and we also find |λ| < 1 or λ = 1. The statement for eigenvalues of B follows
from symmetry. �
Let a and b denote the linear maps on C n defined by multiplication by A and B respec-
tively, whose eigenvalues are given in the previous lemma. Let p, m, r : C n → C n be the
unique linear maps that equal 0, 0, and a, respectively, on the generalized eigenspaces
Ea,λ of a associated to eigenvalues λ with |λ| < 1, while their restrictions to Ea,1 equal id,
a− id, and 0 respectively. In other words, with respect to the decomposition

C n ∼= Ea,1 ⊕

 ⊕
|λ|<1

Ea,λ


the maps p, m, r are given as

p =
(

id 0
0 0

)
, m =

(
a − id 0

0 0

)
, r =

(
0 0
0 a

)
.

Then m is nilpotent, we have a = p + m + r, and the identities

p2 = p, pm = m = mp, pr = mr = 0 = rm = rp, limkrk = 0

hold, the latter by Lemma 1. Similarly, we may write b = q + l + s where l is nilpotent
and

q2 = q, ql = l = lq, qs = ls = 0 = sl = sq, limksk = 0.

Of course the decomposition in generalised eigenspaces for a and b are not necessarily
the same. We have

ak + bk = rk + sk + p + q + ∑
1≤ j<n

(
k
j

)
(l j + m j).

As this has a limit and limk rk = limk sk = 0, we find that all terms l j + m j for 1 ≤
j ≤ n vanish. In particular, l + m = 0 and l2 + m2 = 0, so that l = −m and m2 = 0.
We conclude ak = p + rk + km and bk = q + sk − km, so that limk ak − km = p and
limk bk + km = q. The first statement of the problem follows for the matrix M associated
to m. The matrix M is zero if and only if the restriction of a to the generalized eigenspace
Ea,1 is the identity.

Problem (Star) 2008-2/11 Let V be the complex vector space of all functions f : C → C.
Let W be the smallest linear subspace of V with the properties:
• the function f (z) = z belongs to W,
• for all f ∈ W, | f | ∈ W.
Does f (z) = z belong to W?

Solution The following solution is due to David Preiss (Warwick), and was communicat-
ed to us by Miklos Laczkovich. Since the solution was already known, there is no prize
winner.
We will show that f (z) = z does not belong to W. We claim that it suffices to show that
there is a complex vector space S of complex valued functions on the circle R/2πZ with
the properties that
• h(x) = eix belongs to S,
• for all h ∈ S, |h| ∈ S,
• h(x) = cos(x) does not belong to S.
Indeed, if the function f (z) = z is in W, then the function

eix + f (eix)
2

= cos(x)

belongs to S.
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φ,ψ : R → R are continuous, ψ ≤ 0 < φ and {x : ψ(x) = 0} is locally finite in R.
Let H be the set of functions F on C for which there is a region U ∈ U so that F is
holomorphic on U, and such that there is an a < 1 with lim supz∈U,|z|→∞ |F(z)|/|z|a = 0.
Let F be the set of continuous functions f : R/2πZ → R with the property that there
exist a positive integer n and functions F1 , . . . , Fn ∈ H (with corresponding regions
U1 , . . . , Un ∈ U) and open intervals I1 , . . . , In covering the circle minus a finite number
of points so that cos x ∈ U j and f (x) = Fj(cos x) for all 1 ≤ j ≤ n and all x ∈ I j.
Let S be the set of all functions R/2πZ → C of the form f + ig + ceix where f , g ∈ F and
c ∈ C. The set S is a linear subspace of the complex vector space of all complex-valued
functions on the circle.
Clearly h(x) = eix is an element of S.
Proof that S is closed under h 7→ |h|. Let h be a function in S, and write h as

h(x) = Fj(cos x) + iG j(cos x) + ceix

on the open interval I j, with Fj , G j ∈ H. Let a j < 1 be such that

lim sup
z ∈U j ,|z|→∞|F(z)|/|z|a j = 0 and lim sup

z∈U j ,|z|→∞|G(z)|/|z|a j = 0.

Assuming, as we may, that sin x does not change sign on any I j, we have that on each
I j, |h(x)|2 = H j(cos x) where H j is a linear combination of 1, F2

j , G2
j , Fj(z)z, Fj(z)γ(z),

G j(z)z, G j(z)γ(z), where γ is a suitable branch of
√

1− z2. Removing from I j the finite
set where h(x) = 0 we have that on each remaining interval |h| coincides with a branch
of H1/2

j and one verifies that |h| ∈ F, where the constant can be taken to be (a + 1)/2.

Proof that h(x) = cos x does not belong to S. Assume that cos x = f (x) + ig(x) + ceix

where c ∈ C and f , g ∈ F. Writing c = u + iv and using that f , g are real, we get
f (x) = (1− u) cos x + v sin x, g(x) = −v cos x− u sin x. For any interval I on which we
can use the definition of f , g ∈ F (and on which sin x 6= 0) we therefore have F, G ∈ H
and U ∈ U so that F(z) = (1− u)z + vγ(z) and G(z) = −vz− uγ(z), where γ is a branch
of
√

1− z2 on U. We have that

lim sup
|z| →∞,z∈U

|F(z)|
|z| = lim sup

|z|→∞,z∈U

|((1 − u)z + vγ(z))|
|z| =

√
(1 − u)2 + v2 .

Since this limit has to be zero we conclude that u = 1 and v = 0. A similar argument for
G gives that u = v = 0, a contradiction.


