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Forensic Statistics

Lately, forensic science has been receiving
much attention in the media. Popular pro-
grams such as ‘Crime Scene Investigation’
show how forensic investigations can con-
tribute to obtaining and reporting results in
criminal law. These investigations cover a
broad range of areas of expertise, varying
from DNA profiling to examining shoe prints,
and from toxicology to handwriting. Experts
in other scientific fields are also regularly
called upon to appear in court. Statistics and
probability theory frequently underlie state-
ments made by experts and therefore play an
important role in the judicial system. Nev-
ertheless, the fields themselves are seldom
placed in the limelight. Forensic statistics is
a broad and dynamic field, in which there is
still much work to be done. For the mathe-
matician it is a fascinating applied field with
exciting examples. Marjan Sjerps works as a
statistician at the Netherlands Forensic Insti-
tute. This text is a translation of a 2004 prize
winning article from the Nieuw Archief voor
Wiskunde.

According to those in the know, the role of
experts in criminal law is on the rise (Nij-
boer, 2002). Since statistics forms an im-
portant component of many areas of exper-

tise, it also enjoys increasing attention. Out-
side of the Netherlands a number of publi-
cations and websites are dedicated to statis-
tics in (criminal) law. Examples are Finkel-
stein and Levin 1990, Aitken and Stoney 1991,
Gastwirth 2000, Good 2001, websites of the
Federal Judicial Centre and of Charles Bren-
ner. There are only a few references in Dutch;
see for example van Koppen et al. 2002 and
Broeders 2003, which mentions it briefly. In
2005 different authors contributed to a book
(Sjerps and Coster van Voorhout). Since very
diverse areas of expertise such as pathology,
biology, physics, chemistry and psychology
are involved, the statistical techniques that
are used are also very diverse. Nevertheless,
these areas have a number of aspects in com-
mon when applied to criminal law. For exam-
ple, there is usually a suspect and a chosen
characteristic of this suspect is compared to
trace evidence associated to the crime. The
DNA profile of the suspect can be compared to
the DNA profile of a trace found in the under-
wear of a victim of sexual abuse (see figure 1),
or a rifle found in the suspect’s house can be
compared to a bullet found at the scene of an
armed robbery. In another case a dog may
compare the suspect’s scent to a scent that
is thought to be on an object touched by the

perpetrator, after which the expert must re-
port the evidential value of the dog indicating
(or not) a similarity between the scents. In
this type of research, the important factor is
the evidential value of observed similarities
and differences. Up to approximately twenty
years ago, there was no general usable defi-
nition of the term evidential value and every
area of expertise had its own method to re-
flect the evidential value of its research re-
sults. This void was filled by the emergence
of the so-called Bayesian approach in foren-
sic statistics (also called the ‘logical’ or ‘like-
lihood ratio’ approach). A model was devel-
oped that was based on a well-known rule
of Bayes from probability theory. It gives a
quantitative expression for the evidential val-
ue of different types of evidence but can al-
so be used as a guiding principle for experts
reporting their conclusion verbally. The stan-
dard texts in this field are Aitken (1995) and
Robertson and Vignaux (1995). This approach
is applied to an increasing number of sub-
fields, sometimes giving rise to interesting
questions (see the frames). In this article
we will briefly explain the Bayesian model.
We will also discuss three pitfalls in which
the average lawyer easily falls when interpret-
ing evidence, and many mathematicians with
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Formulating hypotheses
A still unsolved problem concerning the
foundations of statistics is the follow-
ing. Suppose that at the site of a crime
committed by two perpetrators two blood
traces A and B are found, possibly orig-
inating from the two perpetrators. The
blood traces are tiny and of terrible quali-
ty, making only a partial DNA-profile pos-
sible. The profiles show that the two
blood traces were made by different per-
sons. The ‘match probability’ is one in a
million for trace A and one in a hundred
for trace B. The police catch one suspect,
whose DNA profile corresponds to that of
trace A. The evidential value, measured
by the likelihood ratio (LR), now depends
on the wording of the hypotheses. The LR
for the two hypotheses (1a) The suspect is
the donor of one of the two traces (1b) The
suspect is not the donor of either of the
two traces is half a million; the LR for the
two hypotheses (2a) The suspect is the
donor of trace A (2b) The suspect is not
the donor of trace A is one million. One
difference between the pairs of hypothe-
ses is that the first pair can be stated with-
out knowing the DNA profiles of the traces
and of the suspect, while the second is
based on this information. In both cas-
es the computation of the LR is based on
the assumption that the traces A and B
were made by different persons, but this
is only known after DNA profiling is car-
ried out. The discussion now centres on
the following. May the expert formulate
his hypotheses using the available evi-
dence and then present the LR for these
hypotheses? Or is it illegal to use avail-
able evidence because the statements of
the hypotheses should be independent
of the evidence (see also Meester and
Sjerps 2004 and the discussion with Da-
wid).

him. See Broeders (2003) for a fairly com-
plete overview of this type of pitfall. A com-
pletely different branch of forensic statistics
concentrates on the way data is collected.
This can for example concern environmental
crime, with questions like how to sample a
landfill, or barrels containing XTC production
waste. Designing experiments for investiga-
tions also belongs to this subfield. I will touch
upon this briefly. To indicate why forensic
statistics is more than just the application of
ordinary statistics to an unusual field, I will

also briefly discuss the specific forensic as-
pects. Finally, I will look beyond my own
sphere of activities, the statistical aspects
of the technical forensic research done by
the Netherlands Forensic Institute, and briefly
mention some other areas in which statistics
is used for criminal law.

How strong is the evidence: the Bayesian

model
To express the value of evidence, the
Bayesian approach in forensic statistics uses
a general model based on Bayes’ theorem:

P [A|B] =
P [B|A] · P [A]

P [B]
.

In this expression, P [A] is the probability of
A being true and P [A|B] is the conditional
probability ofA being true given thatB is true.
If we apply this rule to two hypothesesHp and
Hd and evidence E, we can deduce (using a
subjective definition of probability) that

P [Hp|E]

P [Hd|E]
=
P [Hp]

P [Hd]
· P [E|Hp]

P [E|Hd]
.

We interpret this formula as meaning that the
ratio of the probability of two hypotheses is
modified by introducing evidence. The new
odds (on the left) arise from the old odds (in
the middle) by multiplication by the likelihood
ratio LR (the ratio on the right). In words: the
posterior odds equal the prior odds times the
likelihood ratio.

In criminal law this rule can be applied
as follows: the prosecutor has a hypothe-
sis Hp, for example ‘the suspect wrote this
threatening letter’, and the defender has an-
other hypothesis Hd, for example ‘someone
else wrote the letter’. The judge will convict
the suspect if the prosecutor’s hypothesis is
much more probable than the defender’s, that
is, if the posterior odds of these two hypothe-
ses are large. At the start of the trial, the
judge has a certain estimate of the prior odds.
During the trial, evidence is brought forward:
some of it in favour of the suspect and some
of it against. Every time a piece of evidence
is brought forward, the judge will adjust his
estimate of the probability ratio according to
Bayes’ rule. That is, he multiplies it by an LR
greater than one when the evidence is against
the suspect and with a LR smaller than one
when the evidence is in favour of the sus-
pect. Once all evidence has been presented,
the judge makes a decision based on his final
estimate of the probability ratio between the
prosecutor’s hypothesis and the defender’s.

Figure 1 A suspect’s DNA profile is compared to the DNA
profile of a trace from the victim’s underwear in a case of
sexual abuse.

Although this appears to be a simple applica-
tion, this thought process has consequences
for the way experts must report their results.
The expert cannot make a pronouncement
about the posterior odds of the prosecutor’s
and defender’s hypotheses without making
an assumption on the prior odds. For ex-
ample, the forensic handwriting expert can-
not say anything about the probability that
the suspect has written the threatening letter
without making assumptions about the prob-
ability before he studies the letter.

Such assumptions are pre-eminently part
of the judge’s tasks, not the expert’s. It fol-
lows that based on his knowledge, the expert
can only make a pronouncement concerning
the LR of the evidence for the hypothesis Hp
versus the hypothesis Hd. According to the
Bayesian model, this is exactly the expert’s
task: reporting this LR so that the judge can
subsequently adjust his estimate of the prob-
ability ratio ofHp versusHd.

An example based on a true case
At the scene of a burglary the perpetrator cuts
himself on the glass of a window that was
smashed. The DNA expert determines the
DNA profile of the blood on the glass, which
is then compared to that of the suspect. In
the courtroom the prosecutor claims that the
blood comes from the suspect (Hp), while the
suspect’s lawyer says that his client has noth-
ing to do with the case and that the blood
is someone else’s (Hd). Suppose that the
DNA profiles are a perfect match; what is then
the LR? The numerator is the probability of a
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The value of a DNA database match
A bank is robbed by a masked person.
The car that is used to leave the crime
scene is dumped and set on fire. The
mask is found inside. The traces of sali-
va found on the partially burnt mask re-
sult in a DNA profile that has a probabil-
ity of one in ten thousand of matching
the profile of an random person (due to
the low quality of the traces only a par-
tial DNA profile is obtained). The saliva
profile is compared to a DNA database
of 3000 suspects, one of whom has the
same DNA profile. The trace was com-
pared to 3000 persons instead of only
one. Question: does comparison with
the DNA database increase or decrease
the value of the DNA match as evidence?
Answer 1: by making several comparisons
the probability of a chance hit increas-
es. If there were ten thousand people in
the database, you would already expect a
match to occur simply by chance. The val-
ue of the match as evidence therefore de-
creases. Answer 2: the information that
the 2999 ‘non-matching’ persons in the
database can be excluded as perpetrator
increases the value of the evidence. If
the whole world population were in the
database and there were only a single
match, we would be certain that he is the
donor of the saliva. The evidential value
of the match therefore increases. For the
correct answer, see the frame at the end
of this article.

match when the blood sample comes from
the subject. If no mistakes are made, this
probability is one. The denominator is the
probability of a match when the blood sample
comes from an random person.

Based on reference material, the expert
has some knowledge of this ‘match probabil-
ity’: it is less than one in a billion. The LR
is therefore one billion, which means that the
probability ratio ofHp versusHd is increased
by a factor of one billion. However, the ex-
pert cannot say how large this ratio becomes
since this depends on the prior odds. This
way, the Bayesian approach provides both a
definition of the expert’s task and a quanti-
tative definition of the notion of ‘evidential
value’. Indeed, it follows from the model that
the size of the LR reflects exactly how much
more probable the prosecutor’s hypothesis
becomes with respect to the defender’s when
evidence is added. In other words, the LR ex-

actly reflects the value of the evidence. In the
example given above, the evidential value is
at least one billion. If the blood sample were
of such low quality that only a partial DNA
profile could be obtained with a match proba-
bility as large as one in a million, the LR would
have been a million. The Bayesian model can
also be used to combine several pieces of ev-
idence. If the hypotheses remain unchanged,
it easily follows that the LR of the combination
of two independent pieces of evidence is the
product of the LRs of the individual pieces.
This means that, in principle, when analyzing
hair a morphological study can be combined
with DNA profiling. In less simple cases, the
analysis rapidly becomes very complex. At
present, research is being done into the use
of ‘Bayesian belief networks’ for combining
evidence.

The LR approach has been applied suc-
cessfully in cases where numbers are avail-
able. One example is DNA profiling (see for
example Evett and Weir 1998, and Sjerps and
Kloosterman 2003), where the LR is used not
only for simple comparisons of a trace with a
suspect but also in more complex situations
where the numerator of the LR is not one. DNA
testing to establish relatedness is such an
area, where, for example, an unknown victim
is compared with puatitve parents, or a foetus
with the mother and her putative rapist. Less
well-known examples are automatic speak-
er recognition, where a computer program is
used to compare the voice of someone on a
telephone tap to a suspect’s voice (see Broe-
ders 2003 and references found therein), and
the comparison of glass (Curran et al. 2000).
LRs can also be computed for scent identi-
fication tests with dogs, face recognition by
witnesses and polygraph tests (see Van Kop-
pen et al. 2002 and references found there;
here the LR is usually referred to as the ‘diag-
nostic value’). Even if there is some discus-
sion concerning the formulation of hypothe-
ses and the reporting of an LR in areas where
the LR can be calculated effectively, nowa-
days most experts agree that it is their task
to report an LR. In areas where numbers are
less readily available, the Bayesian model has
raised a great deal of controversy and it is
not generally accepted that an expert must re-
port an LR. For a long time, verbal statements
have been made in these areas concerning
the probability of the prosecutor’s hypothe-
sis and few experts are inclined to change
this. For example, an fire arms expert may
conclude that ‘the probability that the bullet
was fired by the suspect’s gun is very high’.
In the Bayesian model he cannot make such

a conclusion based on his expertise because
the probability depends on the prior odds. In
Bayesian terms, the expert should state his
conclusion in another way; for example: ‘our
investigation gives a very strong indication
that the bullet came from the suspect’s gun’.
Few lawyers will recognize the difference be-
tween these two statements. The discussion
concerning reporting is therefore still ongoing
in such areas.

Fallacies in the appreciation of evidence
In addition to providing the definition of the
expert’s role and of evidential value, the
Bayesian way of thinking has also revealed a
number of fallacies. These are based on com-
mon errors of thinking and have been known
for some time in psychology (Kahneman et
al. 1982). Within forensic literature, howev-
er, they have only been seriously considered
in the last thirteen years (Evett 1995, Broeders
2003). The most well-known is the prosecu-
tor’s fallacy. Suppose, for example, that the
perpetrator’s blood is found at a crime scene.
The (partial) DNA profile is compared to that
of suspect J. Smith and matches. The proba-
bility that an arbitrary person would have this
profile is, let’s say, one in a million. The pros-
ecutor can present the following reasoning:
1. The probability that the profiles match

while the blood is not J. Smith’s is one in a
million.

2. The profile matches, so the probability that
the blood is not J. Smith’s is one in a mil-
lion.

3. The probability that the blood is J. Smith’s
is therefore 99.9999%.
Obviously the prosecutor makes a mistake

when he concludes (2) from (1). Indeed, the
probability that the samples match given that
the blood is not J. Smith’s is not equal to the
probability that the blood is not J. Smith’s giv-
en that the samples match. Nevertheless,
the literature shows that this error is made
by many. My own restricted experience and
that of my colleagues also shows that Dutch
lawyers sometimes make this mistake. The
consequences can be considerable in cas-
es where the ‘match probability’ is relatively
large and there is barely any other evidence.
In the same case, the defender can reason as
follows:
1. The Netherlands has about 16 million in-

habitants other than J. Smith.
2. We can expect 17 persons, including

J. Smith, to have the same DNA profile.
3. The probability that the blood is J. Smith’s

is about 1 in 17, that is, approximately 6%.
In itself, this reasoning is correct but it is



4 4

4 4

Marjan Sjerps Forensic Statistics NAW 5/9 nr. 2 June 2008 153

based on a number of hidden assumptions,
for example that the perpetrator is Dutch and
that all Dutch (including all women, babies,
elderly, handicapped, etc.) have the same
prior probability of being the perpetrator. This
reasoning is also sometimes used in Dutch
courtrooms. In the literature it is called the
defence fallacy. Finally, there is also the base
rate fallacy. In this case, the LR is not scaled
by the prior odds. Suppose, for example, that
a masked robbery takes place where the per-
petrator’s saliva is found on a cap lying in the
car used to leave the crime scene. If there
aren’t any suspects yet, the expert can com-
pare the frequency of the DNA profile of the
saliva in different populations.

Suppose that in population A the frequen-
cy is one in a million and in population B it is
one in a billion. The LR for the hypothesis that
the perpetrator comes from population A and
not B is then one thousand. The base rate
fallacy is now that one tends to think that this
means that the probability that the perpetra-
tor comes from population A is much higher
than that he comes from B. However, the prob-
ability that the perpetrator comes from pop-
ulation A of course also depends on a great
number of other factors, of which the size of
the population is the most obvious.

The above makes it clear that it is not suf-
ficient for a forensic expert to decide what his
statement is about, he must also consider
how he can prevent fallacies and misunder-
standings when formulating his conclusions.
However, the ultimate solution for the preven-
tion of fallacies and misunderstandings is yet
to be found; the importance of psychological
research in this is increasing.

Gathering data
The above concerns situations where conclu-
sions must be made based on research re-
sults. However, a large part of the ques-
tions my colleagues and I were asked recent-
ly concerned situations where observations
still had to be carried out. Environmental
investigation, for example, is an area where
sampling is of great importance for the final
conclusions. Often the question is whether
the concentration of certain substances ex-
ceeds the legal limit. Sampling and sam-
ple analysis are very expensive, while the
batches that are concerned can be large and
heterogeneous (see figure 2). Consequent-
ly, in the sampling protocols that are legal-
ly mandated, a large batch can be approved
or rejected based on only a few ianalytical
results. In the Dutch regulation concerning
the sampling and analysis of building mate-

Figure 2 Environmental investigation is an area where sampling is of great importance for the final conclusions. Up to now
laboratories have always spent much time and money optimizing their analytical methods, while little attention is payed to
the taking of samples. Nowadays it has been recognized that the biggest source of error is not in the lab but in the field.

rials (execution decree 1998), for example, a
2000 tonne lot is approved or rejected based
on three analytical results, each obtained by
mixing four samples. In practice, it turns out
that the lots do not always satisfy the as-
sumptions, for example because illegal sub-
stances were mixed in, making the lot more
heterogeneous than was assumed. Further-
more, ‘hot-spots’ in the lot can cause out-
liers during analysis. The effects of this and
the correct statistical treatment are still un-
clear. For statisticians, this area forms an
enormous challenge (see among others Keith
1996, Gilbert 1987, Patil and Rao 1994 and
Stelling and Sjerps 1999). Sampling often
still does not receive the attention it deserves.
Laboratories spend much time and money op-
timizing their analytical methods, while they
pay remarkably little attention to the samples
they receive. In practice, the most important
source of error is not in the lab but in the field.
The differences between samples are usually
much bigger than the differences between re-
peated analyses of the same sample. The leg-
islature also pays little attention to this fact:
the suspect is allowed a counter analysis in an
independent laboratory but the samples used
there are taken right next to the samples that
were analyzed before.

In setting up a forensic investigation, one
always comes across the question of how ob-
servations must be collected. An example is
a case where the suspect claimed that his gun
went off accidentally while he made a certain
manoeuvre. The fire arms experts of the NF
determined the probability of such an event
through an experiment in which they repeat-
ed the suspect’s manoeuvre with his weapon
approximately 400 times. Many days and
blisters later the experts found that the gun
had not gone off a single time. In gener-

al, however, experiments are done within the
framework of a research project, for example
to introduce a new method. A third situa-
tion where the gathering of data is important
concerns the sampling of a batch of discrete
units, such as numerous bags of narcotic sub-
stances or pills, a set of barrels with unknown
contents that has been dumped somewhere
in an abandoned area, or a great number of
fibres found on a victim’s clothing, of which
only a limited number can be analyzed more
closely. There are different methods of sam-
pling in such cases. At present a directive for
sampling in batches of narcotic substances is
being developed on a European level, which
includes a discussion of the advantages and
disadvantages of these methods (ENFSI Drugs
WG 2003).

Specific forensic aspects
Forensic statistics is characterized by a num-
ber of particular aspects. First of all, of
course, we have the multifaceted field in
which it is applied, which asks for a broad
range of statistical techniques, e.g. ex-
perimental design, classification, reliabili-
ty intervals, Bayesian methods, simulation
techniques, non-parametric methods, con-
trol charts, regression and population genet-
ics. Moreover, the objects that are stud-
ied are not commonplace. In DNA-profiling
it can, for example, concern blood, saliva
or sperm traces, which are sometimes avail-
able only in very small quantities, partial-
ly decayed or mixed together. In physical
investigations, it can, for example, concern
garbage bags, screwdrivers, shoes (see fig-
ure 3), bullets, handwriting, voice or noise; in
chemical investigations, it can be explosives,
gunshot residue, glass fragments, tape, ink
or car paint. Even in comparing ear prints
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Figure 3 In legal cases it is often important to know the probability that, for example, a suspect’s shoe caused a given
print. Many forensic statisticians believe that the Bayesian, or subjective, notion of probability is better adapted to this type
of question than the mathematical notion of probability that is based on Kolmogorov’s axioms.

quite a bit of statistics is involved. Casework
aimed at individualisation, where a trace is
compared to a certain characteristic or ob-
ject associated to the suspect, has the par-
ticular property that the attention is turned
towards the relation between the trace and
one specific object or individual. The lawyer,
for example, wants to know the probability
that this particular shoe of suspect Jones has
caused the shoe print. Because of this the
Bayesian or subjective notion of probability is
much better suited to the situation than the
frequentist or mathematical notion of prob-
ability based on Kolmogorov’s axioms. In
a forensic context it is very artificial to see
a probability as the ratio of the number of
times that Jones’ shoe made the print when
one hundred thousand prints are made, or
as some abstract probability measure. Often
the police find a number of pieces of forensic
evidence in one case. At a burglary, for exam-
ple, fingerprints, shoe prints, DNA traces and
tool marks can be found. A specific forensic
question is then not only what the evidential
value of the different pieces of evidence are
but also what the evidential value is of the
combination of all these pieces. In this case
the Bayesian model offers a directive, as de-
scribed above. The legal context in which the
investigation is always conducted also deter-
mines a number of characteristic properties.
For example, in general the expert knows what
hypothesis the prosecutor will present during
the trial but usually not exactly what hypoth-
esis the defender will bring forward. More-
over, the hypotheses can change at any time
if new information becomes available or if the
defence unexpectedly comes up with an al-
ternative scenario. The expert can of course

himself come up with alternative hypotheses.
Once the hypotheses have been stated, the
assessment of the prior odds is left to the
judge. While most scientists want to make
statements concerning the posterior odds of
the hypotheses they are studying (for exam-
ple: this is the probability that the patient
has a certain illness, given the symptoms),
according to the Bayesian theory described
above, the forensic expert should restrict his
statements to reporting the evidential value.
The legal context also causes the forensic ex-
pert to be interested in a different type of error
when reviewing hypotheses in the traditional
manner. When comparing the refractive in-
dex of glass fragments found in the clothing
of the suspect to the refractive index of sam-
ples of the smashed-in window at a burglary
site, the usual null hypothesis is that the two
populations do not differ (Rudin and Inman
2003). In general, the statistician is then in-
terested in a type I error, the probability of re-
jecting the null hypothesis when it is actually
true, and the procedure is aimed at control-
ling this error, for example keeping it smaller
than 5% or 1%. This error is associated with
the probability that the suspect is wrongfully
acquited. Indeed, this is the probability that
the expert concludes that the glass fragments
do not come from the window while they in
fact do. For experts this is not the most im-
portant error. It is more important to control
the type II error, the conclusion that the glass
fragments come from the window while this
is not the case, which can lead to a wrongful
conviction.

Other research in forensic statistics
Statistics is used much more often in legal

applications than people realize. Sometimes
it forms the basis for an expert’s conclusion,
for example in criminal psychology, which
considers, among other things, the evidential
value of recognition by witnesses, or of the
result of a polygraph test (Van Koppen et al.
2002). The evidential value of scent identifi-
cation tests with specially trained dogs is al-
so in part based on statistical considerations
(Schoon and Van Koppen 2002). A complete-
ly different area where statistics plays a role
is in assessing the probability of recidivism
in TBS patients (persons who have been ad-
mitted, involuntarily, to a forensic psychiatric
hospital in the Netherlands) (De Ruiter 2002,
Brand and Diks 2001). A great variety of ques-
tionnaires can be used for this, which com-
bined with a clinical evaluation by the psychi-
atrist or psychologist lead to an estimation of
this probability. Subsequently, this is used
by the lawyer in his judgment of whether TBS
must be extended. Probability theory also
contributes to criminal law, for example in de-
termining whether a game must be regarded
as a game of skill or one of chance (Van der
Genugten et al. 2001). Other examples are
the probability analysis carried out in cases
such as that of Bianca K., the child care work-
er who was accused of causing a special form
of suffocation in a number of children whom
she was responsible for at a daycare centre.
A similar well-known case is that of Lucia de
B., the nurse suspected of being responsible
for a number of enigmatic deaths in her de-
partment. In this type of case, the size of
the probability that certain observations are
based only on chance plays an important role
(Elffers 2003). k

Solution:answer2iscorrect.Theevidential
valueoftheDNAmatchisincreasedbythe
databasesearch.However,theprobabilitythat
thematchingpersonisthedonorofthesaliva
tracemaystillberelativelysmallinsuchcas-
es.Indeed,ifthesuspectisidentifiedbya
databasesearch,thereneednotbeanyother
evidenceagainstthesuspect.Inotherwords,
theprioroddsmaybeextremelysmall,much
smallerthaninthesituationwhereDNAiscom-
paredfromasuspectwhoisidentifiedbyother
evidence.Hence,theonlythingspecialabouta
databasesearchisthattheotherevidencemay
becompletelymissing,oronlyinfavourofthe
suspect.SeeMeesterandSjerps(2003,2004)
andthereferencesmentionedthere.
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