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Confessions of an
industrial mathematician
Mathematical Study Groups with Industry provide since long a unique opportunity for mathe-
maticians, from young to old, from student to professor, to try their math skills at large. The
first ones were held in the 1960s in Oxford and soon the phenomenon spread all over the
world. The gatherings connect people from industry with academics for the benefit of both.
Chris Budd, an enthusiast for over 20 years, tells about this exciting field. This article appeared
earlier in the February 2008 issue of Mathematics Today.

What is industrial mathematics? Or indeed
more generally what is applied mathemat-
ics? One view, commonly held amongst many
‘pure’ mathematicians is that applied maths
is what you do if you can’t do ‘real’ mathemat-
ics and that industrial mathematics is more
(or indeed less) of the same only in this case
you do it for money. My own view is very
different from this (including the money as-
pect). Applied mathematics is essentially a
two way process. It is the business of ap-
plying really good mathematics to problems
that arise in the real world (or as close an
approximation to the real world as you think
it is possible to get). It constantly amazes
me that this process works at all, and yet it
does. Abstract ideas developed for their own
sake turn out to have immensely important
applications, which is one (but not the on-
ly) reason for strongly supporting abstract re-
search. However, just as importantly, applied
mathematics is the process of learning new
maths from problems motivated by applica-
tions. Anyone who doubts this should pon-
der how many hugely important mathematical
ideas have come from studying applications,
varying from calculus and Fourier analysis to

nonlinear dynamics and cryptography. It is
certainly true that nature has a way of fighting
back whenever you try to use maths to under-
stand it, and the better the problem the more
that it fights back at you! To solve even seem-
ingly innocuous problems in the real world
can often take (and lead to the creation) of
very powerful mathematical ideas. Calculus
is the perfect example of this. The beauty
of the whole business is the way that these
same ideas can take on a life of their own,
and find applications in fields very different
from the one that stimulated them in the first
place. This process of applying mathemat-
ics in as many ways as possible can change
the world. A wonderful example of this is the
discovery of radio waves by Maxwell. Here a
piece of essentially pure mathematics led to
a whole technology which has totally trans-
formed the world in which we live. Imagine
a world without TV, radio, mobile phones and
the Internet. But that is where we would be
without mathematics.

So, how does industrial maths fit into the
above? It is still hard to define exactly what
industrial maths means, but as far as I’m con-
cerned it’s the maths that I do when I work

with organisations that are not universities.
This certainly includes ‘traditional’ industry,
but (splendidly) it also includes the Met Of-
fice, sport, air traffic control, the forensic ser-
vice, zoos, hospitals, Air Sea rescue organisa-
tions, broadcasting companies and local edu-
cation authorities. I will use the word industry
to mean all of these and more. Even tradition-
al industry contains a huge variety of different
areas ranging from textiles to telecommunica-
tions, space to food and from power genera-
tion to financial products. What is exciting is
that all of these organisations have interest-
ing problems and that a huge number of these
problems can be attacked by using a mathe-
matical approach. Indeed, applying the basic
principles I described above, not only can the
same mathematics be used in many differ-
ent industries (for example the mathematics
of heat transfer is also highly relevant to the
finance industry) but by tackling these prob-
lems we can learn lots of new maths in the
process. It is certainly true that many industri-
al problems involve routine mathematics and,
yes, money is often involved, but this is not
the reason that I enjoy working with industry.
Much more importantly, tackling industrial
problems requires you to think out of the box
and to take on challenges far removed from
traditional topics taught in applied mathe-
matics courses. The result is (hopefully) new
mathematics. I think it is fair to say that sig-
nificant areas of my own research have fol-
lowed directly from tackling industrial pro-
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Figure 1 A scramble crossing in Japan. The behaviour of the pedestrians in this crossing can be analysed by using the theo-
ry of discontinuous dynamical systems.

blems. An example of this is my interest in
discontinuous dynamics: the study of dynam-
ical systems in which the (usual) smoothness
assumption for these systems is removed.
Discontinuous dynamics is an immensely rich
area of study with many deep mathematical
structures such as new types of bifurcation
(grazing, border-collisions, corner-collisions),
chaotic behaviour and novel routes to chaos
such as period-adding. It also has many ap-
plications to problems as diverse as impact,
friction, switching, rattling, earthquakes, the
firing of neurons and the behaviour of crowds
of people (see illustration). Studying both
the theory and the applications has kept me,
my PhD students and numerous collaborators
and colleagues busy for many years. How-
ever, for me at least, and for many others,
the way into discontinuous dynamics came
through an industrial application. In my case
it was trying to understand the rattling be-
haviour of loosely fitting boiler tubes. Trying
to solve this problem by using the ‘usual’ the-
ory of smooth dynamical systems quickly ran
into trouble as it became apparent that the
phenomena that were being observed were
quite different from those predicted by the
text books. Trying to address this problem
immediately forced us to look at non-smooth
dynamics (inspired, I should say, by some
brilliant theoretical work by the industrialist
who was interested in the problem and was
delighted to find an academic they could talk
to). However the way into this fascinating
field could equally well have been a prob-
lem in power transmission in a car or the mo-
tion of buildings in an earthquake. The point

is that an interesting industrial problem, far
from just being an excuse to use cheap and
dirty maths to make money, has in contrast
led to some very exciting new mathematical
ideas with many novel applications.

I must confess that I find this constant
need to rise to a mathematical challenge to
solve an industrial problem intensely stimu-
lating and it continues to act as a driver for
much of my research (although I don’t neglect
the ‘pure’ aspects of my research as both are
needed to be able to do good mathematics).
Presently I’ll develop this a bit further through
a couple of case studies.

How does industrial mathematics work?
Working at the interface of academia and in-
dustry is, and continues to be, a constant con-
flict of interest. Industry, quite rightly, has to
concentrate on short term results, obtained
against deadlines and may well want the sec-
ond best answer tomorrow, rather than the
best answer in a year (or indeed never). The
picture I described in the previous section,
of the beautiful development of a mathemat-
ical theory stimulated by industrial research,
may cut little ice to the manager that needs an
answer tomorrow. (Indeed, to be quite hon-
est with you, whilst I now know vastly more
about discontinuous dynamics than when I
first started to look at the problem, I still can-
not solve the original question of the boiler
tube which turns out to be immensely diffi-
cult!). In contrast, the average academic is
under intense pressure to publish scholarly
research in leading journals, to develop long
term research projects and to work with PhD

students who often require a lengthy period
of training before they are up to (mathemati-
cal) speed. This seems, at first sight, to be the
exact opposite of the requirements of indus-
try. It can, in fact, be very hard to persuade
some of our colleagues on grant review panels
that it is worth investing in industrial maths
at all; the argument being that if it were any
good then industry would pay for it, and if it is
not any good then it doesn’t deserve a grant!
Indeed it gets worse, whilst the life blood of
academics is publishing results in the open
literature; industry is often constrained (quite
reasonably) by the need for strict confidential-
ity. At first there would appear to be no middle
way in which both parties are satisfied. For-
tunately however, there are a number of ways
forward in which it is possible to satisfy both
parties. Perhaps the best of these are the
celebrated Study Groups with Industry found-
ed in the 1960’s by Alan Tayler CBE and John
Ockendon FRS. The format of a typical study
group is rather like a cross between a learned
conference and a paintballing tournament. It
lasts a week. On the first day around eight
industrial problems are presented by indus-
trialists themselves. Academics then work in
teams for a week to try to solve the problems.
On the last day the results of their work are
presented to an audience of the industrial-
ists and the academics on the other teams.
Does this method always lead to a problem
being cracked? Sometimes the answer is yes,
but this usually means that the problem has
limited scientific value. Much more value to
both sides are problems that lead both to new
ideas and new, and long lasting collabora-
tions, taking both academics and industrial-
ists in completely new directions. The discon-
tinuous dynamics example above was in fact
brought to just such a meeting in Edinburgh
in 1988. Another vital aspect of the Study
Groups is the training that it gives to PhD stu-
dents (not to mention older academics) in the
skills of mathematical modelling, working in
teams and of developing effective computer
code under severe time pressure. It is remark-
able what can be done in the hot house atmo-
sphere of the Study Groups. As a way of stim-
ulating progress in industrial applied mathe-
matics, the Study Groups have no equal. The
model which started in Oxford has now been
copied all over the world. I have personally
been attending such Study

Groups (again all round the world) since 1984
and have worked on a remarkable variety of
problems including: microwave cooking, land
mine detection, overheating fish tanks, fluo-
rescent light tubes, fridges, aircraft fuel tanks,
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electric arcs, air traffic control, air sea rescue,
weather forecasting, boiler tubes and image
processing, to name just a few. Of course one
week is not long enough to establish a viable
collaboration with industry and it is worth
considering some other effective ways of link-
ing academia to industry. A key develop-
ment has been the foundation in 1987 of EC-
MI, the European Consortium for Mathemat-
ics in Industry by a group of active industri-
al mathematicians including John and Hilary
Ockendon, Alan Tayler (Oxford), Sean McKee
(Strathclyde) and Helmut Neunzert (Kaisers-
lautern) amongst others. ECMI has acted to
coordinate industrial mathematics across Eu-
rope, so that the European Study Groups with
Industry (ESGI) take place in different Euro-
pean countries throughout the year, as part
of a carefully managed programme of indus-
trial engagement with academia, which also
includes regular conferences and reports on
success stories. The study groups are sup-
plemented with training camps in which stu-
dents from all over Europe work together to
learn the techniques for mathematical mod-
elling. Indeed the training of PhD students in
the hands on techniques to solve industrial
mathematics problems is one of the best fea-
tures of the study groups. The importance of
involving students in industrial mathematics
cannot be over emphasised, both in terms of
the training that they get, and the originality
that they bring to the business of solving prob-
lems. Indeed, one of my favourite mecha-
nisms for linking academia to industrial prob-
lems is through the use of MSc projects. For
seven years at Bath we have been running
an MSc programme in Modern Applications
of Mathematics which has been designed to
have very close links with industry. All of
the students on this course do a short three
month project which is often linked to indus-
try, with both an academic and an industrial
supervisor. The nice feature about this sys-
tem is that everyone wins. First and foremost,
the students have an interesting project to
work on. Secondly we are able to work to-
gether with industry on a project with some-
thing more closely approximating an indus-
trial timescale and with little real risk of any-
thing seriously going wrong. Thirdly (and to
my mind perhaps most importantly) the MSc
project can easily lead on to a much more
substantial project, such as a PhD project,
with the student hitting the ground running
at the start. Ideas for such MSc projects may
well come from previous Study Groups, from
the Industrial Advisory Board of the MSc or
(in a recent development) from the splendid

Knowledge Transfer Partnership (KTP) in In-
dustrial Applied Mathematics coordinated by
the Smith Institute. The KTP is partly fund-
ed by the DTI and part by EPSRC and ex-
ists to establish, and maintain, links between
academia and industry. Similar organisations
such as MITACS in Canada or MACSI in the
Republic of Ireland, have closely related mis-
sions.

Where is industrial mathematics going (or

leading us)?
I think it fair to say that some of the great
driving forces of 20th Century mathematics
have been physics, engineering and latter-
ly biology. This has been a great stimulus
for mathematical developments in partial dif-
ferential equations, dynamical systems, op-
erator theory, functional analysis, numerical
analysis, fluid mechanics, solid mechanics,
reaction diffusion systems, signal processing
and inverse theory to name just a few ar-
eas. Many of the problems that have arisen
in these fields, especially the ‘traditional’ in-
dustrial mathematics problems (and certainly
anything involving fluids or solids) are con-
tinuum problems described by deterministic
differential equations. Amongst the variety
of techniques that have been used to solve
such equations (that is to find out what the
answer looks like as opposed to just prov-
ing existence and uniqueness) are simple an-
alytical methods such as separation of vari-
ables, approximate and formal asymptotic ap-
proaches, phase plane analysis, numerical
methods for ODEs and PDEs such as finite
element or finite volume methods, the calcu-
lus of variations and transform methods such
as the Fourier and Laplace transforms. (It
is worth noting that formal asymptotic meth-
ods have long regarded as somewhat sec-
ond rate methods to be used to find rough
answers rather then wait till ‘proper’ maths
did the job correctly. However, stimulated in
part by the need to address very challeng-
ing applied problems, asymptotic methods
have become an area of intense mathemat-
ical study, especially the area of exponential
asymptotics which looks at problems in which
classical asymptotic expansions have to be
continued to all orders so that exponential-
ly small — but still very significant — effects
can be resolved.) One of the consequences
of concentrating on continuous problems de-
scribed by PDES is that applied mathemat-
ics has, for some considerable time, been
almost synonymous with fluid or solid me-
chanics. Whilst these are great subjects of
extreme importance, and are central to ‘tra-

Figure 2 There is lots of maths in chocolate, and it tastes
good too!

ditional’ industries involving problems with
heat and mass transfer, they only represent
a fraction of the areas that mathematics can
be applied to. Here I believe we may see in-
dustry driving the agenda of many of possi-
ble developments of 21st Century mathemat-
ics in a very positive and exciting way. At the
risk of making a fool of myself and gazing in-
to the future with too much abandon, I think
that the key drivers of mathematics will be
problems dealing with information (such as
genetics, bio-informatics and, of course the
growth of the Internet and related systems),
problems involving complexity in some form
(such as problems on many scales with many
connecting components and with some form
of network describing how the components
interact with each other), and problems cen-
tred not so much in the traditional industries
but in areas such as retail and commerce. To
address such problems we must move away
from ‘traditional’ applied mathematics and
instead look at the mathematics of discrete
systems, systems with huge complexity and
systems which are very likely to have a large
stochastic component. We will also have to
deal with the very difficult issues of how to
optimise such systems and to deal with the
increasingly large computations that will have
to be done on them. One reason that I believe
this is that I have seen it happening before
my eyes. I have had the privilege (or have
been foolish enough) to organise three Study
Groups. The first of these, in 1992, had ev-
ery problem (with one exception) posed in
terms of partial differential equations. In con-
trast the Study Group I organised in Bath in
2006 had ten problems. Of these precise-
ly one involved partial differential equations,
one other involved ordinary differential equa-
tions. All the rest were a mixture of (dis-
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crete) optimisation, complexity, network the-
ory, discrete geometry, statistics and neural
networks. I have seen similar trends in oth-
er Study Groups around the world. At a dis-
cussion forum at the Bath Study Group the
general feeling was one of excitement (mixed
with apprehension it must be said) that in-
dustry was prepared to bring such challenging
problems to be looked at by mathematicians.
Personally I greatly welcome this challenge. I
also welcome the fact that much of the math-
ematics that needs to be used and developed
to solve these sort of problems is mathemat-
ics that has often been thought of as very
pure. Two obvious examples are number the-
ory which comes into its own when we have
to deal with discrete information (witness the
major application of number theory to cryp-
tography) and graph theory which lies at the
heart of our understanding of networks. As
someone that calls themselves a mathemati-
cian (rather than a pure mathematician or an
applied mathematician) I strongly welcome
these developments. Of course, the new di-
rections that industry is taking applied math-
ematics pose interesting, and equally chal-
lenging, questions about how we should train
the ‘applied mathematicians’ of the future. It
is clear to me (at least) that any such training
should certainly include discrete mathemat-
ics, large scale computing and methods for
stochastic problems. How we do this is of
course another matter.

Figure 3 A domestic mode-stirred microwave oven with
four temperature probes used to test the predictions of the
model

Some case studies
I thought that it would now be appropriate to
flesh out the rather general comments above,
by looking at a couple of examples. The first is
(mainly) an example of a continuum problem
whilst the second has a more discrete flavour
to it.

Case Study one: Maths can help you to eat
One of the nicest (well certainly it tastes nice)

applications of mathematics (well in my opin-
ion at least) arises in the food industry. The
food industry takes food from farm to fork, af-
ter that it’s up to you. Food has to be grown,
stored, frozen, defrosted, boiled, transported
(possibly when frozen), manufactured, pack-
aged, sorted, marketed, sold to the customer,
tested for freshness, cooked, heated, eaten,
melted in the mouth (in the case of chocolate)
and digested. Nearly all of these stages must
be handled very carefully if the food is going
to be safe, nutritious and cheap for the cus-
tomer to eat. It is very easy to think of working
on food as a rather trivial application of math-
ematics, but we must remember that not only
is the food industry one of the biggest sources
of income to the UK, but also that we all eat
food, it affects all of our lives and mistakes
in producing food can very quickly make a lot
of people very ill. Trivial it is not. Food is al-
so a source of some wonderful mathematical
problems, and (a point I take very seriously)
the application of maths to food is a splendid
way of enthusing young people into the im-
portance of maths in general (especially if you
bring free samples along with you!) Some of
this maths is very ‘traditional’ applied maths
much of the issues in dealing with food in-
volve classical problems of fluid flow (usually
non-Newtonian), solid mechanics (both elas-
tic and visco-elastic), heat transfer, two phase
flow, population dynamics (such as fish popu-
lations) and free boundary problems. Choco-
late manufacture for example, involves very
delicate heat flow calculations when manu-
facturing such delicate items as soft centre
chocolates However problems involving the
packaging, marketing, distribution and sale
of food lie more properly in the realms of opti-
misation and discrete mathematics. It is clear
that the food industry will act as a source of
excellent mathematical problems for a very
long time to come.

Two problems, in particular, that I have
worked on concern the micro-wave cooking
and the digestion of food. For the sake of the
readers sensitivities I shall only describe the
former in any detail, although it is worth say-
ing that modelling digestion is a fascinating
exercise in calculating the (chaotic) mixing of
nutrients in a highly viscous Non-Newtonian
flow driven by pressure gradients and peri-
staltic motion and with uncertain boundary
conditions. As any student knows, a pop-
ular way of cooking (or at least of heating)
food is to use a micro-wave cooker. In such a
cooker, microwaves are generated by a Mag-
netron (also used in Radar sets) and enter the
oven cavity via a waveguide or an antenna.

An electric field is then set up inside the oven
which irradiates any food placed there. The
microwaves penetrate the food and change
the orientation of the dipoles in the moist part
of the food leading to heating (via friction) of
the foodstuff and consequent phase changes.

A problem with this process is that the field
can have standing wave patterns, which can
result in localised ‘cold-spots’ where the field
is relatively weak. If the food is placed in a
cold-spot then its temperature may be lower
there and it will be poorly cooked (see figure).
To try to avoid this problem the food can either
be rotated through the field on a turntable, or
the field itself can be ‘stirred’ by using a rotat-
ing metal fan to break up the field patterns.

Figure 4 Thermal camera image of food in a domestic
turntable oven, showing a distinct ‘cold spot’ in the centre
caused by a local minimum in the radiant electro-magnetic
field

An interesting ‘industrial mathematics’ prob-
lem is to model the process by which the food
is heated in the oven and to compare the ef-
fectiveness of the turntable and mode-stirred
designs of the micro-wave oven in heating a
moist foodstuff. This problem came to me
through the KTN and a Study Group and was
‘sub-contracted’ to a PhD CASE student An-
drew Hill. One way to approach it is to do a full
three dimensional field simulation by solving
Maxwell’s equations, and to then use this to
find the temperature by solving the porous
medium equations for a two-phase material.
The problems with this approach are (i) the
computations take a very long time, making
it difficult to see the effects of varying the
parameters in the problem (ii) it gives little
direct insight into the process and the way
that it depends upon the parameters and (iii)
micro-wave cooking (especially the field dis-
tribution) is very sensitive to small changes in
the geometry of the cavity, the shape and type
of the food and even the humidity of the air.
This means that any one calculation may not
necessarily give an accurate representation of
the electric field of any particular micro-wave
oven on any particular day. What is more use-
ful is a representative calculation of the ave-
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Figure 5 Three trip-wires are hidden in this image. Can you find them?

rage behaviour of a broad class of (domestic)
micro-wave ovens in which the effects of vary-
ing the various parameters is more transpar-
ent. Here a combination of both an analytical
and a numerical calculation proved effective.
In this calculation we used a formal asymptot-
ic theory both to calculate an averaged field
and to determine how it penetrated inside a
moist foodstuff. (Note, contrary to popular
myth, microwaves do not cook food from the
inside. Instead they penetrate from the out-
side, and if the food is too large then the inte-
rior can receive almost no micro-wave energy,
and as a result little direct heating. This is
why the manufacturers of micro-wave cook-
able foods generally insist that, after a peri-
od of heating in the oven, the food is stirred
to ensure that it is all at a similar tempera-
ture.) The temperature T of the food satisfies
the equation ut = k∇2T + P (x,y, z, t) where
u is the enthalpy and P is the power trans-
ferred from the microwave field to the food.
As remarked above, findingP exactly was very
hard, however a good approximation could
be found asymptotically (in particular by us-
ing the WKBJ method) for ovens with either a
mode-stirrer or a turntable. This approxima-

tion showed that the overall the field de-
cayed exponentially as it penetrated the food
but that on top of this decay was superim-
posed an oscillatory contribution (due to re-
flexions of the radiation within the food) the
size of which depended upon the dimen-
sions of the food. A relatively simple cal-
culation showed that these oscillations were
small provided that the smallest dimension
of the food was larger than about 2cm. For-

Figure 6 Left: a square; right: the Radon Transform of the square on the left. The four straight lines that make up the sides
of the square show up as points of high density.

tunately, most foodstuffs satisfy this condi-
tion. As a result it was possible to use a much
simpler description of the electric field in the
enthalpy equation than that given by a full so-
lution of Maxwell’s equations, and numerical
approximations to the solution of these sim-
plified equations were found very quickly on
a desktop PC. When compared against exper-
imental values of both the temperature and
the moisture content these solutions were
surprisingly accurate, given the approxima-
tions that are made, and gave confidence in
the use of the model for further design calcu-
lations. It was the combination of mathemat-
ics, numerical methods, physical modelling
and the careful use of experimental data that
made this whole approach successful and is
typical of the mix of ideas that have to be com-
bined to do effective industrial mathematics.

Case Study Two: Maths Can Save Your Life
One of my favourite ‘industrial mathematics’
problems came up in a recent study group,
and is an example of an application of sig-
nal processing and information theory which
can potentially save peoples lives. One of the
nastiest aspects of the modern world is the ex-
istence of anti-personnel land mines. These
unpleasant devices, when detonated, jump
up into the air and kill anyone close by. They
are typically triggered by trip-wires which are
attached to the detonators. If someone catch-
es their foot on a trip wire then the mine is det-
onated and the person dies. To make things a
lot worse, the land mines are typically hidden
in dense foliage and thin nylon fishing line is
used to make the trip wires almost invisible.
One way to detect the land mines is to look for
the trip wires them selves. However, the fo-
liage either hides the trip-wires, or leaf stems
can even resemble a trip wire. Any detection
algorithm must work quickly, detect trip-wires
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when they exist and not get confused by find-
ing leaves. An example of the problem that
such an algorithm has to face is given in fig-
ure 5 in which some trip-wires are hidden in
an artificial jungle.

In order to detect the trip wires we must
find a way of finding partly obscured straight
lines in an image. Fortunately, just such a
method exists; it is the Radon Transform (or
its various discrete versions). In this trans-
form, the line integralR(θ,ρ) of an image with
intensity u(x,y) is computed along a line at
an angle θ and a distance ρ from the centre
of the image so that

R(θ,ρ) =
∫
u(ρ cos(θ)− s sin(θ),

ρ sin(θ) + s cos(θ))ds.

This transformation lies at the heart of the CAT
scanners used in medical image processing
and other applications as it is closely related
to the formula for the attenuation of an X-Ray
(which is long and straight, like a trip-wire) as
it passes through a medium of variable den-
sity (such as a human body). Indeed, finding
(quickly) the inverse to the Radon Transform
of a (potentially noisy) image is one of the
key problems of modern image processing. It
has countless applications, from detecting tu-
mours in the brain of a patient (and hence sav-
ing your life that way), to finding out what (or
who) killed King Tutankhamen. For the prob-
lem of finding the trip-wires we don’t need
to find the inverse, instead we can apply the
Radon transform directly to the image. In fig-
ure 6 see on the left a square and on the right
its Radon Transform.

The key point to note in these two images
is that the four straight lines making up the

Figure 7 The three trip wires detected using the Radon
Transform

sides of the square show up as points of high
intensity (arrowed) in the Radon Transform
and we can easily read off their orientations.
Basically the Radon Transform is good at find-
ing straight lines which is just what we need to
detect the trip-wires. Of course life isn’t quite
as simple as this for real images of trip-wires
and some extra work has to be done to de-
tect them. In order to apply the Radon trans-
form the image must first be pre-processed
(using a Laplacian filter and an edge detector)
to enhance any edges. Following the applica-
tion of the transform to the enhanced image a
threshold must then applied to the resulting
values to distinguish between true straight
lines caused by trip wires (corresponding to
large values of R) and false lines caused by
short leaf stems (for which R is not quite as
large). However, following a sequence of cali-
bration calculations and analytical estimates
with a number of different images, it was pos-
sible to derive a fast algorithm which detected

the trip-wires by first filtering the image, then
applying the Radon Transform, then apply-
ing a threshold and then applying the inverse
Radon Transform. (The beauty of this is that
most of these algorithms are present in the
MATLAB Signal Processing Toolbox. Indeed,
I consider MATLAB to be one of the greatest
tools available to the industrial mathemati-
cian.) The result of applying this method to
the previous image is given in figure 7 in which
the three detected trip-wires are highlighted.

Note how the method has not only detect-
ed the trip-wires, but, from the width of the
lines, an indication is given of the reliability
of the calculation. All in all this problem is a
very nice combination of analysis and compu-
tation.

Signal processing problems of this form
are not typically taught in a typical applied
mathematics undergraduate course. This is
not only a shame, but denies the students on
those courses the opportunity to see a major
application of mathematics to modern tech-
nology.

Conclusions
I hope that I have managed to convey some
of the flavour of industrial mathematics as
I see it. Far from being a subject of limit-
ed academic value, only done for money, in-
dustrial maths presents a vibrant intellectu-
al challenge with limitless opportunities for
growth and development. This poses signif-
icant challenges for the future, not least in
the way that we train the next generation of
students to prepare them for the very exciting
ways that maths will be applied in the future,
and the new maths that we will learn from
these applications. k


