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The Netherlands has an intricate network of railway tracks to connect its many closely situated
cities. Recently, the railroad timetable has been completely updated. Unlike the yearly manual
adjustments of the past, this update was done using mathematical techniques. For the Dutch
public, this was a rare opportunity to come into contact with mathematics. The research
that resulted in the new timetable won a team of CWI consisting, besides Lex Schrijver, of
Gábor Maróti and Adri Steenbeek the prestiguous Franz Edelman Award for Achievement in
Operations Research and the Management Sciences.

In December 2006, Nederlandse Spoorwegen
(NS, Dutch Railways) introduced the Spoor-
boekje 2007 (Timetable 2007). It included a
new structure of the train timetable and new
plans for train circulation and crew schedul-
ing. Several new connections were made
and train lengths were better matched to the
number of passengers, while on the other
hand train times were scheduled less tight-
ly, a number of transfers were cancelled and
some direct train connections were cut into
parts in order to reduce the propagation of
delays.

Mathematicians were involved in design-
ing the algorithms that created the new sched-
ules. Until 2007, new timetables were made
by ‘manually’ adapting the timetable intro-
duced in 1975. The increase in passenger
numbers and the addition of extra infrastruc-
ture (new lines and forks, four tracks, and
fly-overs) was met mainly by shifting train
times and inserting new trains between ex-
isting trains. The need for a completely new
timetable arose since hardly any trains could
be added to the existing schedule where
needed. The schedulers at NS felt they need-
ed algorithms to better exploit the capacity of
the railway network, and that is why NS asked

mathematicians.
While the Netherlands is not large, it is one

of the most densely populated countries of
the world. The Dutch railway network is corre-
spondingly rather dense, with many short tra-
jectories, run by frequent trains, having sever-
al transfer connections on the way. Moreover,
space to extend infrastructure is limited in the
Netherlands.

These characteristics mean that railway
optimization in the Netherlands is faced with
rather specific problems compared to most
other countries and no adequate off-the-shelf
software was therefore available. The algo-
rithms for timetabling and train circulation
were made at the Center for Mathematics and
Computer Science (CWI) in Amsterdam, for
crew scheduling at the University of Padova,
and for routing trains through stations at the
Erasmus University in Rotterdam.

As might have been expected, the changes
raised much public discussion. In an editorial
commentary, the Dutch nationwide newspa-
per NRC Handelsblad characterized the new
timetable as “the only form of higher math-
ematics that arouses furious emotions in the
country”. In a reaction, the CEO of NS claimed
that the new timetable was the best possible

given the existing infrastructure.
Journalists phoned to ask me if indeed

mathematically no better schedule was pos-
sible. My answer amounted to the fact that
optimality depends on the boundary condi-
tions, that is, in this case, the input of the
algorithm: which trains and connections do
you want to have, how often, where do trains
stop, etc. This is not a question of math-
ematics but a question of company policy,
and not only passenger comfort plays a role
here but also other objectives and constraints
like crew scheduling, profit, punctuality and
infrastructure. Given these constraints and
these choices made by the company, the al-
gorithm searches for an optimum timetable.

Economically, the new timetable appears
to be successful. The yearly profit of NS is pro-
jected to increase by 70 million euros due to
the new schedules. On trajectories with the
largest timetable improvements, the number
of passengers has increased by 10–15%. The
effect of this on societal economics and wel-
fare has been estimated tentatively at hun-
dreds of millions of euros. Moreover, despite
more trains, the punctuality has increased
and the economical effect of this is of the or-
der of tens of millions of euros.

As mentioned, Timetable 2007 means not
only the introduction of a new timetable but
also of new systems for rolling stock circu-
lation, to increase seat availability for pas-
sengers, for crew scheduling, to improve
train personnel rosters, and for routing trains
through stations. At CWI we made algo-
rithms for timetabling and for rolling stock
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circulation. Although the timetabling prob-
lem (in particular finding the cyclic, hourly
pattern) is also interesting from a network
point of view, in this article we just focus on
rolling stock circulation, also because of its
historical interest.

Transportation and circulation problems
belong to the classical problems in operations
research and are motivated by application to
railways. Flow techniques are basic to it and
we first describe two results that are of histor-
ical interest. After that, we get back to railway
circulation at NS.

Cargo transportation in the Soviet Union
The earliest attributions to the mathematical
study of transportation problems are usual-
ly to around 1940. The transportation prob-
lem was formulated by Hitchcock [4] and a
cycle criterion for optimality was considered
around the same time independently by Kan-
torovich in the Soviet Union and Koopmans in
the USA. For political reasons, they published
their results only later ([5,6]). When Kan-
torovich found his method, publishing about
economics in the Soviet Union was very risky,
as it was a politicized issue.

Koopmans, a Dutch mathematical econo-
mist who fled to the USA at the beginning of
the Second World War, found his methods
when appointed at the Combined Shipping
Adjustment Board, a British-American agency
that routed merchant ships during the Second
World War, as they had to sail in convoys un-
der military protection. In 1975, Kantorovich
and Koopmans received the Nobel Prize in
Economics for their work on transportation.

Less known is that earlier, in 1930, A.N.
Tolstoı̆ [7] found methods similar to those of
Kantorovich and Koopmans. His article called
Methods of finding the minimal total kilo-
metrage in cargo-transportation planning in
space was published in a book on transporta-
tion planning issued by the National Commis-
sariat of Transportation of the Soviet Union.

Tolstoı̆ presented a number of approach-
es for the transportation problem, including
the now well-known idea that an optimum so-
lution does not have any negative-cost cycle
in its residual graph. This residual graph is
obtained from the network by adding, to any
arc on which the flow is positive, an arc in the
reverse direction, with cost equal to the nega-
tive of the cost of the forward arc. Here ‘cost’
can be true cost, length or anything similar.

Tolstoı̆ seems to be the first to ob-
serve that this cycle condition is neces-
sary for optimality. Moreover, he assumed,
but did not explicitly state or prove, the

fact that checking the cycle condition is also
sufficient for optimality.

Tolstoı̆ illuminated his approach with ap-
plications to the transportation of salt, ce-
ment and other cargo between sources and
destinations along the railway network of the
Soviet Union. In the paper, he explains the
solution of a concrete cargo transportation
problem along the Soviet railway network. It
has 10 sources and 68 destinations, and 155
links between sources and destinations, and
is therefore quite large-scale for that time.

Tolstoı̆ ‘verifies’ the solution by consider-
ing a number of cycles in the network and he
concludes that his solution is optimum:

“Thus, by use of successive applications of
the method of differences, followed by a veri-
fication of the results by the circle dependen-
cy, we managed to compose the transporta-
tion plan which results in the minimum total
kilometrage.”

Checking Tolstoı̆’s problem with modern
linear programming tools shows that his so-
lution is indeed optimum.

Max-flow min-cut
The Soviet rail system also aroused the in-
terest of the Americans and again it inspired
fundamental research in optimization.
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Figure 1 Figure from Tolstŏı [7] to illustrate a negative cycle

In their basic paper Maximal Flow through a
Network (published in 1954), Ford and Fulker-
son [1] mention that the maximum flow prob-
lem was formulated to them by T.E. Harris as
follows:

“Consider a rail network connecting two cities
by way of a number of intermediate cities,
where each link of the network has a number
assigned to it representing its capacity. As-
suming a steady state condition, find a maxi-
mal flow from one given city to the other.”

It inspired Ford and Fulkerson to their fa-
mous Max-Flow Min-Cut Theorem: The maxi-
mum amount of flow that can be sent along
a network from a set of sources to a set of
destinations, subject to a given capacity up-
per bound, is equal to the minimum capacity
of the cuts of the network that separate all
sources from all destinations.

In their 1962 book Flows in Networks, Ford
and Fulkerson [2] give a more precise refer-
ence to the origin of the problem:

“It was posed to the authors in the spring of

1955 by T. E. Harris, who, in conjunction with
General F. S. Ross (Ret.), had formulated a
simplified model of railway traffic flow, and
pinpointed this particular problem as the cen-
tral one suggested by the model [11].”

Ford-Fulkerson’s reference 11 is a secret re-
port by Harris and Ross [3] entitled Funda-
mentals of a Method for Evaluating Rail Net
Capacities, dated 24 October 1955 and writ-
ten for the US Air Force. At our request, the
Pentagon downgraded it to ‘unclassified’ on
21 May 1999.

In fact, the Harris-Ross report solves a
relatively large-scale maximum flow problem
coming from the railway network in the West-
ern Soviet Union and Eastern Europe (‘satel-
lite countries’). And the interest of Harris and
Ross was not to find a maximum flow but
rather a minimum cut (‘interdiction’) of the
Soviet railway system. (Recall that the report
was written for the Air Force.) We quote:

“Air power is an effective means of interdict-
ing an enemy’s rail system, and such usage is
a logical and important mission for this Arm.

As in many military operations, however, the
success of interdiction depends largely on
how complete, accurate, and timely is the
commander’s information, particularly con-
cerning the effect of his interdiction-program
efforts on the enemy’s capability to move men
and supplies. This information should be
available at the time the results are being
achieved.

The present paper describes the funda-
mentals of a method intended to help the
specialist who is engaged in estimating rail-
way capabilities, so that he might more read-
ily accomplish this purpose and thus assist
the commander and his staff with greater ef-
ficiency than is possible at present.”

The Harris-Ross report stresses that spe-
cialists remain needed to make up the mod-
el (which is always a good tactic to get new
methods accepted):

“The ability to estimate with relative accuracy
the capacity of single railway lines is large-
ly an art. Specialists in this field have no
authoritative text (insofar as the authors are
informed) to guide their efforts, and very few
individuals have either the experience or tal-
ent for this type of work. The authors assume
that this job will continue to be done by the
specialist.”‘

Whereas experts are needed to set up the
model, to solve it is routine (when having the
‘work sheets’, which were added to the re-
port).

The Harris-Ross report describes an appli-
cation to the Soviet and East European rail-
ways. For the data it refers to several se-
cret reports of the Central Intelligence Agency
(CIA) on sections of the Soviet and East Euro-
pean railway networks. After the aggregation
of railway divisions to vertices, the network
has 44 vertices and 105 (undirected) edges.

The report applies flow techniques to ob-
tain a maximum flow from sources in the So-
viet Union to destinations in East European
‘satellite’ countries (Poland, Czechoslovakia,
Austria and East Germany) but the main objec-
tive was to find the corresponding minimum
cut separating the sources from the destina-
tions. In the report, the minimum cut is indi-
cated as ‘The bottleneck’ (see Figure 4).

While Tolstoı̆ and Harris-Ross had the
same railway network as object, their objec-
tives were dual.

Figure 2 A ‘koploper’
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Figure 3 Timetable Amsterdam-Vlissingen and Vlissingen-Amsterdam

Rolling stock circulation in the Netherlands
We will finally describe a more recent (and
more peaceful) application of flow methods
to railways, as used by Nederlandse Spoor-
wegen for Timetable 2007.

NS runs an hourly train service on its route
Amsterdam-Rotterdam-Roosendaal-Vlissingen
and vice versa, with the timetable shown
above.

The trains have more stops but for our pur-
poses only those given in the table are of inter-
est since at the stations given train sections
can be coupled or separated. For each of the
stages of any scheduled train, NS has esti-
mated the number of passengers, as given in
the table on the next page (all data concerns
weekdays and 2nd class seats).

The problem to be solved is:

What is the minimum amount of train stock
necessary to perform this train service in such
a way that at each stage there are enough
seats?

In order to answer this question, one
should know a number of further character-
istics and constraints. In a first version of the
problem considered, the train stock consist-
ed of one type of two-way train units (‘koplop-
ers’), each consisting of three carriages. Each
unit has 163 seats.

Each unit has at both ends an engineer’s
cabin and units can be coupled together up to
a certain maximum length (often 15 carriages,
meaning in this case 5 train units).

The train length can be changed, by cou-
pling or decoupling units, at the terminal sta-
tions of the line, that is at Amsterdam and
Vlissingen and en route at the intermediate
stations Rotterdam and Roosendaal. Any
train unit decoupled from a train arriving at
place p at time t can be linked up to any
other train departing from p at any time later
than t (the Amsterdam-Vlissingen schedule is

such that in practice this gives enough time
to make the necessary switchings).

A last condition is that for each place
p ∈ {Amsterdam, Rotterdam, Roosendaal,
Vlissingen}, the number of train units stay-
ing overnight at p should be constant during
the week (but may vary for different places).
This requirement is made to facilitate survey-
ing the stock and to equalize at any place
the load of overnight cleaning and mainte-
nance throughout the week. It is not re-
quired that the same train unit, after a night
in Roosendaal, for example, should return to
Roosendaal at the end of the day. Only the
number of units is of importance.

Given these problem data and characteris-

Figure 4 From Harris and Ross [3]: Schematic diagram of the railway network of the Western Soviet Union and East Euro-
pean countries, with a maximum flow of value 163,000 tons from Russia to Eastern Europe and a cut of capacity 163,000 tons
indicated as ‘The bottleneck’

tics, one may ask for the minimum number of
train units that should be available to perform
the daily cycle of train rides required.

It is assumed that if there is sufficient stock
for Monday till Friday then this should also
be enough for the weekend services since at
the weekend a few early trains are cancelled
and on the remaining trains there is a smaller
expected number of passengers. Moreover, it
is not taken into consideration that stock can
be exchanged during the day with other lines
of the network. In practice this will happen
but initially this possibility is ignored.

A network model
If only one type of railway stock is used, clas-
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Figure 5 Number of required seats

sical minimum-cost flow techniques (root-
ed in the work of Tolstoı̆) can be applied.
To this end, a directed graph G = (V,A)

is constructed as follows. For each place
p ∈ {Amsterdam, Rotterdam, Roosendaal,
Vlissingen} and for each time t at which any
train leaves or arrives at p, we make a vertex
(p, t). So the vertices of G correspond to all
198 time entries in the timetable (Figure 3).

Figure 6 The graph G. All arcs are oriented clockwise.

For any stage of any train ride, leaving place
p at time t and arriving at place q at time
t′, we make a directed arc from (p, t) to
(q, t′). For instance, there is an arc from
(Roosendaal,7.43) to (Vlissingen,8.38).

Moreover, for any placep and any two suc-
cessive times t, t′ at which any train leaves or
arrives at p, we make an arc from (p, t) to
(p, t′). Thus in our example there will be arcs
for example from (Rotterdam, 8.01) to (Rot-
terdam, 8.32) and from (Rotterdam, 8.32) to
(Rotterdam, 8.35).

Finally, for each place p there will be an
arc from (p, t) to (p, t′), where t is the last
time of the day at which any train leaves or
arrives at p and where t′ is the first time of
the day at which any train leaves or arrives at
p. So there is an arc from (Roosendaal,23.54)

to (Roosendaal,5.29).
We can now describe any possible routing

of train stock as a functionf : A −→ Z+, where
for any arc a, f (a) denotes the following. If

a corresponds to a ride stage, then f (a) is
the number of units deployed for that stage.
So if a is the arc from (Roosendaal, 7.43)
to (Vlissingen, 8.38), then f (a) = 4 means
that 4 coupled train units will run this train
stage. If a corresponds to an arc from (p, t)
to (p, t′), then f (a) is equal to the number
of units present at place p in the time period
t–t′ (possibly overnight).

First of all, this function is a circulation.
That is, at any vertex v ofG one should have:

∑
a∈δ+(v)

f (a) =
∑

a∈δ−(v)

f (a), (1)

the flow conservation law. Here δ+(v) de-
notes the set of arcs of G that are entering
vertex v and δ−(v) denotes the set of arcs of
G that are leaving v.

Moreover, in order to satisfy the demand
and capacity constraints, f should satisfy the
following condition for each arca correspond-
ing to a stage:f (a) ≤ 5 and 163f (a) ≥ d(a).

Here, d(a) is the ‘demand’ for that stage,
that is, the lower bound on the number of
seats given in Figure 5 (and 163 is the number
of seats of a Type 3 ‘koploper’).

To find the total number of train units used
by a given circulation f , one may add up the
flow values on the four ‘overnight arcs’. So if
we wish to minimize the total number of units
deployed, we minimize

∑
a∈A◦ f (a).

Here A◦ denotes the set of overnight arcs.
So |A◦| = 4 in the Amsterdam-Vlissingen ex-
ample.

It is easy to see that this fully models the
problem. Hence determining the minimum
number of train units amounts to solving a
minimum-cost circulation problem, where the
cost function is quite trivial: we have cost(a) =

1 if a is an overnight arc and cost(a) = 0 for
all other arcs.

Having this model, standard minimum-
cost flow algorithms give an optimum rolling
stock circulation in a fraction of a second. It
turns out that for the circulation described
above, 22 train units are needed.

It is quite direct to modify and extend the
model so as to contain several other prob-
lems. Instead of minimizing the number of
train units one can minimize the amount of
carriage-kilometres that should be made ev-
ery day, or any linear combination of both
quantities.

In addition, one can put an upper bound
on the number of units that can be stored at
any of the stations.

Instead of considering one line only, one
can more generally consider networks of lines
that share the same stock of railway materi-
al, including trains that are scheduled to be
split or combined. Nederlandse Spoorwegen
has hourly trains from Amsterdam, The Hague
and Rotterdam to Enschede, Leeuwarden and
Groningen that are combined into one train on
a common trajectory. This network is called
‘The North-East’.

If only one type of unit is employed for that
network, each unit having the same capacity,
the problem can be solved quickly even for
large networks.

Mixing several types of train units
The problem becomes harder if there are sev-
eral types of train units of different capaci-
ty that can be deployed for the train service
and for that NS asked for the help of math-
ematicians. Clearly, if for each scheduled
train we would prescribe the type of unit that
should be deployed, the problem could be
decomposed into separate problems of the
type above. But if we do not make such a
prescription and if different types can be cou-
pled together to form a train of mixed com-
position, we should extend the model to a
‘multi-commodity circulation’ model.

Let us restrict ourselves to the case
Amsterdam-Vlissingen again, where now we
can deploy two types of two-way train units
that can be coupled together. The two types
are type 3, each unit of which consists of 3 car-
riages, and type 4, each unit of which consists
of 4 carriages. Indeed, NS has ‘koplopers’ of
both lengths. Types 3 and 4 have 163 and 218
seats, respectively.

Again, the demands of the train stages are
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given in Figure 5. The maximum number of
carriages that can be in any train is again 15.
This means that if a train consists ofx units of
type 3 andy units of type 4 then 3x+4y ≤ 15

should hold.
It is quite direct to extend the model above

to the present case. Again we consider the
directed graph G = (V,A) as above. At each
arca, let f (a) be the number of units of type 3
on the stage corresponding to a and let g(a)

similarly represent type 4. So both
f : A −→ Z+ and g : A −→ Z+ are circulations,
that is, each satisfies the flow circulation law
(1). For each stage a, the capacity constraint
is now 3f (a) + 4g(a) ≤ 15 and the demand
constraint is 163f (a)+218g(a) ≥ d(a), where
again d(a) denotes the number of required
seats on stage a (Figure 5).

Let cost3 and cost4 represent the cost of
purchasing one unit of type 3 and one unit
of type 4, respectively. Although train units
of type 4 are more expensive than those of
type 3, they are cheaper per carriage; that is,
cost3 < cost4 < 4

3 cost3. This is due to the
fact that engineer’s cabins are relatively ex-
pensive.

Then we must minimize∑
a ∈A◦

(
cost3f (a) + cost4g(a)

)
.

However, there is an important further con-
straint that makes the problem much harder:
it is required that at any of the four stations
given (Amsterdam, Rotterdam, Roosendaal
and Vlissingen) one may either couple units
to or decouple units from a train but not both
simultaneously. Moreover, one may couple
fresh units only to the front of the train and
decouple laid off units only from the rear. So
if one must decouple a unit of type 3 from the
train, it should be at the rear. Similar rules
apply at the terminal stations.

This makes the problem more combinato-
rial, as the order of the different units in a
train does matter. This does not fit directly
in the circulation model described above and

requires an extension.
To this end, one describes a train composi-

tion on a stagea by a vector z(a) in RCa . Here
Ca is the set of compositions that are allowed
for stage a. This takes the number of seats
required for stage a into account and also the
maximum train length. So for a certain stage
a, one might have

Ca = {3333,33333,3334,3343,3433,

4333,3344,3434,4334,3443,4343,

4433,444,4443,4434,4344,3444}

Here 3433 (for instance) means that the train
consists of four units, of types 3, 4, 3 and
3, respectively, seen from the front of the
train. Then z(a)c is equal to 1 for precise-
ly one c ∈ Ca (namely, the composition c
running stage a) and z(a)c = 0 for all other
c ∈ Ca. This can be described by integer lin-
ear inequalities, and the values of f (a) and
g(a) are linear functions of z(a). So we have
an integer linear programming model.

A first attempt to include the coupling con-
ditions is to add linear constraints onz(a) and
z(a′), where a and a′ are consecutive stages
of a train ride (like Amsterdam-Rotterdam and
Rotterdam-Roosendaal of train 2127) so as to
exclude transitions that are forbidden by the
rule that units should be added only at the
front of a train or removed only at the rear of
the train and not both at the same stop.

Figure 7 The North-East

This however turned out to be computational-
ly infeasible. For those who understand inte-
ger linear programming, the linear relaxation
of this problem is too loose to obtain good
bounds in a branch-and-bound approach.

It took us a long time to realize that by
adding even more variables, the problem can
be solved relatively fast. For every allowed
transition, say composition c ∈ Ca on stagea
is allowed to be followed by composition c′ ∈
Ca′ in the subsequent stage a′, we introduce
a variablewa,c,a′,c′ ≥ 0 and require for every
pair of two consecutive stages a and a′:

z(a)c =
∑

c′∈Ca′
wa,c,a′,c′ for all c ∈ Ca and

z(a′)c′ =
∑
c∈Ca

wa,c,a′,c′ for all c′ ∈ Ca′ .

This describes all constraints and, important-
ly, one does not need to require the new vari-
ables wa,c,a′,c′ to be integers. Therefore, the
extra variables do not add to the complex-
ity (the branching tree) but rather serve as
oil to make the integer programming machin-
ery work. With this, the problem turns out
to be solvable with standard integer linear
programming software in a few minutes. The
number of extra variables is huge but this just
helps you to find a solution within a few min-
utes.

It turns out that for the Amsterdam-
Vlissingen problem, one needs 7 units of type
3 and 12 units of type 4. Comparing this so-
lution with the solution for one type only, the
possibility of having two types gives both a
decrease in the total number of train units
and in the total number of carriages needed.
The method can be extended to include com-
binations and splits of trains at intermediate
stations and thus also applies to the larger
network ‘The North-East’, where similar sav-
ings have been obtained and more passen-
gers can find a seat. k
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