
1 1

1 1

Marc van Leeuwen Computing Kazhdan-Lusztig-Vogan polynomials for split E8 NAW 5/9 nr. 2 June 2008 113

Marc van Leeuwen
Université de Poitiers, Mathématiques

Téléport 2 - BP 30179

Boulevard Marie et Pierre Curie

86962 Futuroscope Chasseneuil Cedex

France

Marc.van-Leeuwen@math.univ-poitiers.fr

Research

Computing Kazhdan-Lusztig-Vogan
polynomials for split E8

In 2007, Lie group theorists suddenly became the center of the media’s attention when it was
announced that the structure of the most complicated of the exceptional simple Lie groups, E8,
had finally been mapped. The precise result was in fact much more complicated, and might
appeal less to the media: after intensive computer calculations, the Kazhdan-Lusztig-Vogan
polynomials for the split real Lie group of type E8 had been determined completely. The tale
behind this computer algebra project is told by Marc van Leeuwen, professor at the Université
de Poitiers, and one of the contributors to the solution of this problem.

On 19 March 2007, the project Atlas of Lie
groups and representations suddenly found
itself at the centre of a media blitz sur-
rounding the announcement of the compu-
tation of the Kazhdan-Lusztig-Vogan polyno-
mials for the split real Lie group of type E8,
which produced many gigabytes of data that
could ‘cover Manhattan’. While there had
been a deliberate decision by the American
Institute of Mathematics to organize public-
ity around a result obtained some months
before, which would otherwise certainly not
have attracted much attention outside the
project, the sudden interest the announce-
ment generated surprised all those involved.
As would be the case for most subjects in
mathematical research, it was impossible to
explain to a general public what exactly had
been done or why this was of such inter-
est; we had to accept reading gross descrip-
tions, such as that we had succeeded in
finally ‘decoding’ E8. One can only con-
clude that there must be many who, with-
out knowing the details or seeking to, love
mathematics in general and E8 in particular.

David Vogan has explained in the Notices
of the American Mathematical Society the
broader representation theoretic context in
which the computations of the Atlas project
take place and the one concerning E8 in par-
ticular. In this article I will pursue a more
modest goal of giving some indications of the
nature of the computation and the mathemat-
ical objects involved.

Computational Lie theory and ‘Atlas’
In Lie theory one studies groups that are also
differentiable manifolds, a subject that at first
sight seems not to offer the kind of possibili-
ties for exact algebraic computation that exist
for instance for finite groups. Yet the struc-
ture and representation theory of (reductive)
Lie groups mainly employs derived combina-
torial structures such as root systems rather
than elements of the groups themselves and
this in fact makes the subject very suited to
a computational approach. Thus when suffi-
ciently powerful computers became generally
available around the 1980s, programs were
developed for performing the essentially com-

binatorial computations occurring in this the-
ory; a notable example is the program LıE,
developed around 1990 in a project head-
ed by Arjeh Cohen at the CWI in Amsterdam,
which computes with representations of com-
plex reductive Lie groups and which is still
in use today. Kazhdan-Lusztig polynomials
for Coxeter groups, which were first defined
around 1980, are also of great importance in
this theory, but although they are given by el-
ementary recursion relations, their computa-
tion poses unique computational challenges
that are best handled by a dedicated program.
The most powerful such program Coxeter was
written, and continually improved, during the
1990s by Fokko du Cloux, a Dutch mathemati-
cian living in Lyon.

In 2002, at a workshop on computation-
al Lie theory held in Montreal, the first plans
for a project that was to be named Atlas of
Lie groups and representations were made by
Jeff Adams, Dan Barbasch, Fokko du Cloux,
John Stembridge, Peter Trapa and David Vo-
gan. Their purpose was to apply computa-
tional methods also to the more complicat-
ed theory of real Lie groups. In particular
the notion of Kazhdan-Lusztig polynomials
can be generalised to this setting, although
the ‘parameter set’ on which it depends is
a considerably more complicated combina-
torial structure than the Weyl group that is
used in the case of complex groups. I be-
came involved with this project when it was

2 2

2 2

114 NAW 5/9 nr. 2 June 2008 Computing Kazhdan-Lusztig-Vogan polynomials for split E8 Marc van Leeuwen

already under way in 2003 through an invi-
tation by Fokko (based on my experience in
the LıE project) to participate in the consider-
able programming effort that this new project
would require. After finishing his Coxeter pro-
gram in early 2004, Fokko started working on
this new program atlas. By the end of 2005
he had implemented all the necessary con-
cepts from the structure theory of real reduc-
tive Lie groups and adapted the Kazhdan-
Lusztig algorithms to this setting (while I was
only starting to get to grips with the C++ pro-
gramming language and some of the code
he had written). At that point the tables
of Kazhdan-Lusztig-Vogan (KLV) polynomials
could be computed for all cases of interest,
except for the big block of the split real form
of E8.

Classical and exceptional groups
To understand the special place of E8 in
computational Lie theory, let me say a few
words about the classification of reductive Lie
groups, simplifying somewhat to focus on the
essential points. The first classification is that
of complex reductive groups. These have a
‘semisimple part’ and a ‘central torus’; the
possible presence of the latter serves most-
ly to allow important examples like GL(n,C)

(and to complicate certain algorithms) but is
otherwise of minor importance. The semisim-
ple part is essentially determined by its ‘root
system’, which is a finite set of vectors in a
finite (and relatively low) dimensional vector
space, and it satisfies a number of symme-

try conditions. These conditions are so re-
strictive that root systems can be completely
classified, which was done by Killing and Car-
tan at the end of the 19th century. They are
a product of ‘simple’ factors, each of which is
either a member of one of four infinite fami-
lies (An)n≥1, (Bn)n≥2, (Cn)n≥3 and (Dn)n≥4,
or one of the five types labelled G2, F4, E6,
E7 and E8. The members of the infinite fam-
ilies occur as root systems of certain ‘classi-
cal’ Lie groups such as the special linear and
symplectic groups; the remaining ones corre-
spond to ‘exceptional’ simple Lie groups.

The classical root systems have a very reg-
ular description valid in all possible dimen-
sions; for instance, the root system of typeDn
can be realized as the set of all vectors of
length

√
2 in the sublattice Zn of Rn equipped

with the standard scalar product (the cases
D2 and D3 are omitted from the classifica-
tion only because they coincide with certain
other root systems). The exceptional root sys-
tems, however, depend on particular circum-
stances arising only in specific dimensions.
For instance, the given description realizes
the 24-element root system of type D4 by
vectors like (1,0,−1,0), but a similar copy
of this system scaled by a factor

√
2 can be

found by taking all vectors of length 2 in Z4,
like (0,2,0,0) or (−1,1,−1,−1); the union of
these two systems forms the 48-element root
system of type F4. The systems of type G2

and E8 can be similarly formed due to sin-
gular circumstances, while those of type E6

and E7 are most easily described as root sub-

systems of the type E8 system. The latter
system has the following description. Start-
ing with the usual 112-element root system
of type D8 contained in Z8, one adds all
vectors in the lattice (1

2 Z)8 that (also) have
length

√
2 and an even sum of coordinates,

like (1
2 ,

1
2 ,−

1
2 ,

1
2 ,

1
2 ,

1
2 ,−

1
2 ,

1
2); this adds 128

vectors to make a total of 240 vectors for the
type E8 root system. This collection of vectors
has an exceptionally high degree of symme-
try (in which the members of the original D8

subsystem are in no way distinguished from
the others), as witnessed by the fact that for
each of the 240 roots, the reflection in the
hyperplane orthogonal to it stabilises the set
of all roots; these reflections generate a finite
group of order 696729600, the Weyl group.

In computational Lie theory many ques-
tions can be broken down according to the
simple factors, so most attention is on han-
dling those cases. Among them, the excep-
tional types have a special place for sev-
eral reasons. First, as their number is fi-
nite, one may hope to completely solve cer-
tain questions for exceptional types by com-
putational means. On the other hand the
regularity of classical types makes it possi-
ble that answers to some questions can be
given by an abstract (combinatorial) descrip-
tion, like the Littlewood–Richardson rule that
describes tensor product decompositions in
all types An. Also, exceptional groups,
and in particular E8, appear to have a more
dense and complicated structure than clas-
sical ones, making computational problems

Members of the Atlas project; the fourth person from the left is Fokko du Cloux.

3 3

3 3

Marc van Leeuwen Computing Kazhdan-Lusztig-Vogan polynomials for split E8 NAW 5/9 nr. 2 June 2008 115

more challenging for them; this was in partic-
ular the case for the Kazhdan-Lusztig calcu-
lation. Thus E8 serves as a ‘gold standard’:
to judge the effectiveness of the implementa-
tion of a general algorithm, one looks to how
it performs for E8.

In the Atlas project the interest is in real
Lie groups, which means that a ‘real form’
needs to be specified in a complex group.
In type E8 there are three inequivalent real
forms. The mentioned parameter set for KLV
polynomials, a combinatorial structure called
a ‘block’, depends in a complicated way on
the real form and on a real form in the dual
complex group. Much of the code of the at-
las program serves to construct blocks. The
complex groupE8 happens to be its own dual,
so there are 9 possible combinations of real
form and dual real form; the blocksizes com-
mand of atlas tells how big the corresponding
blocks are (some are empty):

0 0 1

0 3150 73410

1 73410 453060


So the first real form has just one block, with
one element (this happens for the compact
real form in every type), the second has two
substantially larger blocks and the last block
of the third (split) real form is referred to as
the ‘big block’. Since KLV polynomials de-
pend on two parameters ranging over a block,
the particular interest in the size of the big
block can be imagined, a size that was not
known before the atlas program was written.
It turns out to be quite small compared to
the Weyl group; but still, 4530602 is approxi-
mately 2.05× 1011.

The challenge of the big block of E8

Block elements correspond to classes of irre-
ducible representations of the real Lie group
considered, and KLV polynomials provide in-
tricate structural information that applies to
this class. For instance, the irreducible rep-
resentations of a compact group, all finite di-
mensional, form a single class. The existence
of a single KLV polynomial for them (in fact the
constant polynomial 1) means that they are all
governed by a single formula: Weyl’s charac-
ter formula (on which much of LıE’s computa-
tions are based).

A KLV polynomial is an element of Z[q]

whose coefficients are known to be non-
negative. The theory provides as the only
means of computing them a collection of rela-
tions, expressed in terms of the combinatorial

So
ur

ce
:

ht
tp

:/
/u

pl
oa

d.
w

ik
im

ed
ia

.o
rg

/w
ik

ip
ed

ia
/e

n/
2/

2b
/E

8
ro

ot
s

zo
m

e.
jp

g

Figure 1 David A. Richter’s Zome three dimensional model of the rootsystem of the E8. See his website for building instruc-
tions and many other interesting models.

structure of the block, which can be used as
recursion relations to successively compute
these polynomials for all pairs of parameters
ranging over a given block. This collection
of polynomials is naturally thought of as a
matrix, which is lower triangular, and recur-
sion relations then refer to entries both in
rows above and in columns to the right of
the current entry. The nature of these rela-
tions makes it pointless to try to compute in-
dividual KLV polynomials or to compute them
without storing the computed values for lat-
er retrieval. Thus atlas basically just fills this
matrix of polynomials according to the recur-
sion relations and then writes all results to a
file.

As long as available memory suffices to
store all the results, this computation is quite
fast; this explains why all interesting cases
other than the big block for E8 could be han-
dled fairly easily once the program was writ-
ten. Even computing the KLV polynomials for
the block of size 73410 for the middle real
form of E8 takes less than 10 minutes on a
modern PC, provided it is equipped with at
least 2 gigabytes (GB) of memory. This par-

ticular case can be handled because not all
entries in the triangular part of the matrix are
stored; that would amount to some 2.7×109

entries, certainly requiring much more than
10 GB. Any entry that some recursion relation
simply equates to a previously computed one
is not stored (it will be computed on the fly
should its value be needed), nor is any entry
that turns out to be zero. In the mentioned
case this means that only 63 million entries,
which amounts to 2.5% of the triangular re-
gion, are actually stored.

However, when memory runs out the sit-
uation deteriorates rapidly. By using virtu-
al memory, one can avoid simply having to
abandon the computation: part of the stor-
age may be written to disk (to so-called swap
space) to create space for new values. But
although the operating system attempts to
keep in memory the most recently used val-
ues, it turns out that this set shifts constant-
ly so that quite soon the computation starts
spending nearly all of its time swapping (ex-
changing values between memory and disk).
This is what happened for the big block of
E8: even with several gigabytes of memory

4 4

4 4

116 NAW 5/9 nr. 2 June 2008 Computing Kazhdan-Lusztig-Vogan polynomials for split E8 Marc van Leeuwen

and practically unlimited swap space, atlas
was spending weeks just exercising the disk,
while not even coming near to complete com-
putation of the matrix of polynomials.

Meanwhile, we were shocked to learn that
Fokko had been diagnosed with the neurode-
generative disease ALS, just around the time
he finished programming the KLV algorithm;
within months he lost the use of his hands
and he died within a year. Though unable
to program himself, he continued working on
the Atlas project throughout that year, help-
ing David Vogan, Jeff Adams and myself to get
to grips with his program and to improve it fur-
ther. Actually being able to do the big block of
E8 was not the primary concern for Fokko, as
he told us that in a few year’s time we would
all have computers with enough memory to do
it. He might very well turn out to have been
right but in the end we did not have as much
patience as he did.

Cracking E8

We had contacted William Stein of Washing-
ton State University, who gave us permission
to run atlas on a machine sage that had 64 GB
of memory. However, it seemed that we would
need a machine with at least 150 GB of memo-
ry to do theE8 computation. While we consid-
ered buying an even larger computer, an idea
occurred that triggered an attempt to adapt at-
las so that it could complete the E8 computa-
tion on sage. Two characteristics distinguish-
ing the big block of E8 from simpler cases are
that the number of distinct polynomials in the
matrix grows relatively fast (many polynomi-
als occur extremely often so atlas stores only
one copy of each) and that some polynomials
require rather large coefficients (larger than
216 = 65536), which meant we needed to re-
serve 4 bytes for each coefficient. Combined,
this means that a lot of storage is needed
just to record all the polynomials occurring:
it involves more than 13 billion 4-byte coef-

ficients. The idea was that the form of the
recursion relations allowed the computation
to be performed multiple times with modular
coefficients, each of which can be stored in a
single byte, and that the Chinese remainder
theorem could be used afterwards to recon-
struct the actual integer coefficients.

As the atlas program is well-structured, it
was quite easy to modify it so that storage for
polynomial coefficients was reduced to one
byte and that all arithmetic on them was re-
placed by modular arithmetic. This modified
program was ready in early December 2007,
just a few days after the idea of using mod-
ular arithmetic had been adopted (and less
than a month after Fokko’s death). Howev-
er, this modification, even though it divid-
ed the storage requirements for coefficients
by 4, did not suffice to be able to do the big
block even on sage, as other important fac-
tors of storage requirement were unaffected,
i.e. the matrix telling which polynomial oc-
curs where, the data structure used to allow
each polynomial to be represented just once
and the general overhead of data structures.
Normally one trusts the libraries used to pro-
vide convenient data structures and does not
bother to fiddle with details of bits and bytes;
however, with data types that occur billions
of times and memory at a premium, it pays
to push for improvement in these areas. In
fact it turned out that much could be gained
with fairly straightforward techniques like re-
placing 8-byte pointers with 4-byte identifica-
tion numbers, using a hash table rather than a
search tree and gathering all polynomial coef-
ficients in a single array rather than in a billion
different ones. I had been familiar with such
methods since a long time, having studied
programs (like TEX) written by Donald Knuth at
a time when computer memory was less abun-
dant than it is today. In the end, the memo-
ry requirement for the big block was brought
down to about 55 GB, making it feasible to try

it on sage.
Everything, including some small utility

programs to perform lifting of modular coef-
ficients, was more or less ready to run at the
start of the Christmas holidays. The compu-
tations were actually run in Seattle via remote
control by David Vogan, from MIT or whatev-
er other place with Internet connection (like
an airport lounge) he happened to be at, and
with other Atlas members ‘looking over his
shoulder’ through VNC windows. I will not
repeat the beautiful description in David’s ar-
ticle of our varying fortunes as the computa-
tions progressed. Suffice it to say that ev-
ery first attempt at a part of the computation
failed, either because of a programming er-
ror that previous testing had failed to unveil
or due to one of many system crashes (which
turned out to be caused by independent pro-
cesses on sage). Nevertheless, with obstina-
cy we managed to push on to the finish line
on 8 January 2008.

My personal recollection of this adventure
is one of some short interruptions of the holi-
days spent at my home in Poitiers with my two
teenage children, in which I discussed soft-
ware problems with David by email (he actual-
ly found and repaired most of them himself),
and of a final weekend back in the Nether-
lands where, after having returned the chil-
dren to their home, I spent an evening at my
parents’ pondering over a last bug that David
had signalled. Early the next morning, having
found that an overnight trial run had failed to
reproduce any error, I wrote an email back to
give David the go-ahead for another try (be-
cause the bug had accidentally been fixed
already!), while my father was worrying that
I was going to miss my train back to France
(which I didn’t). For once, computers needed
more time than trains: I was already back to
work the next day before the final run of the
Chinese remainder program completed. k

References
1 David Vogan, “The character table for E8” No-

tices Amer. Math. Soc. 54 (2007), no. 9, 1122–
1134.

2 http://www.aimath.org/E8, beschrijving door
het American Institute of Mathematics

3 http://www.liegroups.org, de website van het
Atlas project

