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Noncommutative geometry, the study of spaces with a not necessarily commutative algebra of
coordinates, is a field that has emerged from theoretical physics. In recent years, it has also
directed its efforts to arithmetical problems, including the study of the Riemann zeta function.
In this article, Matilde Marcolli provides us with some impressions of this emerging field.

Noncommutative geometry is a modern field
of mathematics begun by Alain Connes in the
early 1980s. It provides powerful tools to treat
spaces that are essentially of a quantum na-
ture. Unlike the case of ordinary spaces, their
algebra of coordinates is noncommutative, re-
flecting phenomena like the Heisenberg un-
certainty principle in quantum mechanics.

What is especially interesting is the fact
that such quantum spaces are abundant in
mathematics. One obtains them easily when
one considers equivalence relations that are
so drastic that they tend to collapse most
points together, yet one wishes to retain
enough information in the process to be able
to do interesting geometry on the resulting
space.

In such cases, noncommutative geometry
shows that there is a quantum cloud sur-
rounding the classical space, which retains
all the essential geometric information, even
when the underlying classical space becomes
extremely degenerate. It is to this quantum
aura that all sophisticated tools of geometry
and mathematical analysis, properly reinter-
preted, can still be applied.

It has become increasingly evident in re

cent years that the tools of noncommutative
geometry may find new and important ap-
plications in number theory, a very different
branch of pure mathematics with an ancient
and illustrious history. This has happened
mostly through a new approach of Connes to
the Riemann hypothesis (at present the most
famous unsolved problem in mathematics).

Quantum computers
The first instance of such connections be-
tween noncommutative geometry and num-
ber theory emerged earlier, when Bost and
Connes discovered a very interesting noncom-
mutative space with remarkable arithmetic
properties. The system it describes consists
of quantized optical phases, discretized at
different scales. These are essentially the
phasors used in modelling quantum comput-
ers (see Figure 1). A mechanism that accounts
for consistency over scale changes organizes
the phasors via a kind of renormalization pro-
cedure. This consistency condition imposes
the equivalence relation that makes the re-
sulting space noncommutative.

The system obtained in this way has intrin-
sic dynamics, which makes it evolve in time,

and one can consider corresponding thermo-
dynamic equilibrium states at various temper-
atures. Above a certain critical temperature
the distribution of phases is essentially chaot-
ic and there is a unique equilibrium state. At
the critical temperature the system undergoes
a phase transition with spontaneous symme-
try breaking and below critical temperature
the system exhibits many different equilibri-
um states parameterized by arithmetic data.

Especially interesting is what happens at
zero temperature. There the arithmetic struc-
ture that governs the action of the sym-
metry group of the system on the extremal
ground states is the same one that answers
the famous mathematical problem (solved by
Gauss) of which regular polygons can be con-

Figure 1 Phase operators: Z/6Z discretization
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Figure 2 Construction of polygons by ruler and compass

structed using only ruler and compass (see
Figure 2).

The crucial feature that allows a solution
of this geometric problem is the fact that, in
addition to the obvious rotational symmetries
of regular polygons, there exists another hid-
den and much more subtle symmetry coming
from the Galois group Gal(Q̄/Q), a very beau-
tiful and still mysterious object, which in this
case manifests itself not through the multi-
plicative action of roots of unity (rotations of
the vertices of the polygons) but through the
operation of raising them to powers.

Modular curves and non-commutative spaces
Thus, from the example of the Bost Connes
noncommutative space, a dictionary emerges
that relates the phenomena of spontaneous
symmetry breaking in quantum statistical me-
chanics to the mathematics of Galois theory.
Moreover, the partition function of this quan-
tum statistical mechanical system is an object

Figure 3 An example of codimension one foliations

of central interest in number theory, name-
ly the Riemann zeta function (see figure 6).
More recently, other results that point to
deep connections between noncommutative
geometry and number theory appeared in
the work of Connes and Moscovici on mod-
ular Hecke algebras, which showed that the
Rankin–Cohen brackets, an important alge-
braic structure on modular forms extensive-
ly studied years ago by Don Zagier, have a
natural interpretation in the language of non-
commutative geometry. Modular forms are a
class of functions of fundamental importance
in many fields of mathematics, especially in
number theory and arithmetic geometry. They
exhibit elaborate symmetry patterns associ-
ated to certain tessellations of the hyperbolic
plane (see figure 5).

When viewed with the eyes of noncommu-
tative geometry the algebraic structures stud-
ied by Zagier appear as a manifestation of a
type of symmetry of noncommutative spaces,
related to the transverse geometry of codi-
mension one foliations (figure 3), which was
investigated extensively in the work of Connes
and Moscovici.

The special tessellations of the hyperbol-
ic plane mentioned in relation to modular
forms give rise to a family of 2-dimensional
surfaces known as the modular curves. Re-
cent work of Manin and Marcolli showed that
much of the rich arithmetic structure of the
modular curves is captured by a noncommu-
tative space that arises from the tessellation
restricted to the infinitely distant horizon of
the hyperbolic plane (the bottom horizontal
line in figure 5). The fact that the infinite hori-
zon of modular curves hides a noncommuta-
tive space was also observed in the work of
Connes, Douglas and Schwarz in the context
of string theory.

Ongoing work of Connes and Marcolli un-
covered the remarkable fact that all the in-
stances listed above of interactions between
number theory and noncommutative geome-
try (Connes’ work on the Riemann zeta func-
tion, the Bost–Connes system, the modu-
lar Hecke algebra and the noncommutative
boundary of modular curves) are, in fact, man-
ifestations of the same underlying noncom-
mutative space, namely the space of com-
mensurability classes of Q-lattices.

Q-lattices
A lattice consists of arrays of points in a vec-
tor space, arranged like atoms in a crystal. For
example, the set of points with integer coordi-
nates in the plane is a 2-dimensional lattice.
A Q-lattice is one such object where one has
a way of labelling the points of rational co-
ordinates inside the fundamental cell of the
lattice. If each rational point is labelled in
a unique way the Q-lattice is said to be in-
vertible, while in general one also allows for
labellings that miss certain arrays of points
while assigning multiple labels to others (see
figure 4).

When studying the geometric properties of
Q-lattices, it is natural to treat as the same
object all Q-lattices that have the same ratio-
nal points and where the respective labellings
agree whenever both are defined. This deter-
mines an equivalence relation on the set of Q-
lattices. One observes that the identifications
produced by this seemingly harmless equiv-
alence relation are in fact drastic enough to
give rise to a noncommutative space. On the
other hand, if one restricts attention to just
invertible Q-lattices, these are organized in a
classical space. In the case of 2-dimensional
lattices, the parameterizing space is the fam-
ily of all modular curves.

Since Q-lattices exist in any dimension,
there is in any dimension a corresponding
noncommutative space. The Bost–Connes
space is just the space of commensurability

Figure 4 Q-lattices
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classes of 1-dimensional Q-lattices consid-
ered up to a scaling factor. The noncommuta-
tive space introduced by Connes in the spec-
tral realization of the zeros of the Riemann
zeta function (whose position in the plane
is the content of the Riemann hypothesis) is
the space of commensurability classes of 1-
dimensional Q-lattices with the scale factor
taken into account. The modular Hecke al-
gebra of Connes and Moscovici is a piece of
the algebra of coordinates on the space of
commensurability classes of 2-dimensional
Q-lattices and the noncommutative boundary
of modular curves is a stratum in this space
that accounts for possible degenerations of
the 2-dimensional lattice.

The noncommutative space of commensu-
rability classes of 2-dimensional Q-lattices up
to scale also has a natural time evolution and
one can investigate the structure of the corre-
sponding thermodynamic equilibria. At zero
temperature this quantum space freezes on
the underlying classical space (the family of
modular curves) and all quantum fluctuations
cease. The extremal states at zero tempera-
ture correspond to points on a modular curve.
When the temperature rises quantum effects
become predominant and the system under-
goes a first phase transition where all the
different equilibrium states merge, leaving a
unique chaotic state. There is then a second
critical temperature where the system expe-
riences another phase transition after which
no equilibrium state survives.

What acts as a group of symmetries of this
quantum mechanical system is the group of
all arithmetic symmetries of the modular func-
tions. As in the 1-dimensional case, the in-
duced action on the extremal states at zero
temperature is via Galois theory. In this 2-
dimensional system, however, not all symme-
tries act directly on the classical space at zero
temperature as they need the more refined
structure of the quantum system. Hence one
obtains the Galois action at zero temperature
by warming up below critical temperature,
looking at the full symmetries of the quantum
system, and then cooling down again to ze-
ro temperature where arithmeticity becomes
apparent.

Zeros of the Riemann zeta function
The noncommutative space of commensura-
bility classes of Q-lattices with its rich arith-
metic structure provides a valuable tool for
investigating many related number theoretic
questions. For instance, in the spectral real-
ization of zeros of the Riemann zeta function
an important question is how to pass con-

Figure 5 The modular curve

sistently to extensions of the field of rational
numbers. In the case of imaginary quadrat-
ic fields (extensions Q(

√
−d) of the rational

numbers by an imaginary number that is the
square root of a negative integer) an analogue
of the Bost–Connes quantum statistical me-
chanical system that has the same proper-
ties and the same relation to the Galois the-
ory of abelian extensions was constructed in
more recent work of Connes, Marcolli and Ra-
machandran. The Galois theory of abelian ex-
tensions of imaginary quadratic fields is re-
lated to the beautiful theory of elliptic curves
with complex multiplication and in fact the
corresponding quantum statistical mechani-
cal system has a natural formulation in terms
of the Tate modules of elliptic curves and the
isogeny relation. It can be seen as a special-
ization of the dynamical system of Connes–
Marcolli for Q-lattices of rank two, when re-
stricted to those Q-lattices that are also 1-
dimensional lattices over the field Q(

√
−d).

The construction of Connes–Marcolli was fur-
ther generalized by Eugene Ha and Frédéric
Paugam to a large class of interesting moduli
spaces in arithmetic geometry: Shimura vari-
eties, with the Bost–Connes and the Connes–
Marcolli systems representing the simplest
zero-dimensional and 1-dimensional cases.
Benoit Jacob and, using different methods,
Consani and Marcolli extended the Bost–
Connes construction further to the positive
characteristic case of function fields of curves
over finite fields. Instead of Q-lattices and
commensurability, one works in this case,
similarly, with Tate modules of rank one Drin-
feld modules and isogeny.

An especially interesting and challenging
case is that of real quadratic fields Q(

√
d).

Understanding the Galois theory of abelian
extensions of such fields is a very important
open problem in number theory. A main ob-
stacle comes from the fact that one is miss-
ing geometric objects playing in this case
the same role that elliptic curves with com-
plex multiplication play in the case of imag-
inary quadratic fields. In an inspiring and
groundbreaking paper, Yuri Manin outlined
a striking parallel between the theory of el-
liptic curves with complex multiplication and
the theory of noncommutative tori with re-
al multiplication. This suggests that non-
commutative geometry may well provide the
missing structure that is needed in this case.
There are many challenges implicit in imple-
menting this ‘Real Multiplication Program’,
most importantly the fact that one needs to
identify suitable ‘coordinate functions for tor-
sion points’ on the real multiplication non-
commutative tori, analogous to the role that
the Weierstrass ℘-function plays for elliptic
curves. Re-phrased in terms of the quan-
tum statistical mechanical systems of Bost–
Connes type, this problem consists of iden-
tifying the ‘arithmetic elements’ in the al-
gebra of the quantum statistical mechani-
cal system associated to the real quadrat-
ic field by the general Ha–Paugam construc-
tion. Working directly with the noncommu-

Figure 6 Absolute value of the Riemann zeta function



4 4

4 4

112 NAW 5/9 nr. 2 June 2008 Noncommutative geometry and number theory Matilde Marcolli

tative tori, several important advances have
been made in the past couple of years, start-
ing with a very important contribution by Pol-
ishchuk, who showed that the noncommuta-
tive tori with real multiplication have an al-
gebraic model as an algebro-geometric non-
commutative space, in addition to their usual
analytic model. This algebraic version was
related to Manin’s quantized theta functions
by Marya Vlasenko, while an explicit presen-
tation in terms of modular forms was given
by Jorge Plazas. The same algebraic mod-
el of noncommutative tori developed by Pol-
ishchuk and Polishchuk–Schwarz also provid-
ed the basis for a Riemann–Hilbert correspon-
dence for noncommutative tori of Mahanta–
van Suijlekom. The analytic model of non-
commutative tori can also be used to ob-
tain arithmetic information: Marcolli recent-
ly showed that the Shimizu L-function of a
lattice in a real quadratic field is naturally
obtained from a Lorentzian metric (spectral
triple) on the noncommutative torus. The ‘Re-
al Multiplication Program’ remains a rapidly
developing and exciting part of the interac-
tion between noncommutative geometry and
number theory.

The Weil proof of the Riemann hypothesis for

function fields
Connes’ approach to the Riemann hypothesis
featured prominently in recent developments
in the field, through the work of Connes–

Consani–Marcolli on endomotives and spec-
tral realizations of L-functions. Abstracting
from the class of examples of Bost–Connes–
like quantum statistical mechanical systems
mentioned above, one can identify a pseudo-
abelian category of noncommutative spaces
that combines the simplest category of mo-
tives, the Artin motives of zero dimension-
al algebraic varieties, with actions by endo-
morphisms of abelian semigroups. The alge-
bra of the Bost–Connes system can be seen
as an example of a semigroup action on a
projective limit of Artin motives, and one ob-
tains a large class of similar examples from
self maps of algebraic varieties. These non-
commutative spaces have a natural time evo-
lution, induced from a counting measure on
the algebraic points of the zero-dimensional
varieties, and one can study the associated
thermodynamic equilibrium states at varying
temperatures. The low temperature equilibri-
um states provide a good notion of classical
points of a noncommutative space and the
restriction map at the level of algebras that
corresponds to the inclusion of the classical
points is defined as a morphism in an abelian
category of ‘noncommutative motives’. The
cokernel of this map and its cyclic homolo-
gy carry a scaling action of the positive real
numbers, which is related to the ambiguity
in choosing a Hamiltonian for the time evo-
lution. The scaling action on the cyclic ho-
mology provide an analogue of the Frobenius

action in the characteristic zero case. In the
work of Consani–Marcolli on function fields it
is shown that this same scaling action in the
function field case is indeed obtained from
the action of Frobenius (up to a Wick rotation
to ‘imaginary time’). The work of Connes–
Consani–Marcolli shows that the scaling ac-
tion on the cyclic homology of the cokernel
of the restriction map gives a spectral realiza-
tion of the zeros of the Riemann zeta function
(or of L-functions with Grössencharakter) and
that a cohomological version of Connes’ re-
sult on the Weil explicit formula as a trace
formula holds on this same cyclic homology.
In this formulation the Riemann Hypothesis
becomes equivalent to a positivity problem
for the trace of certain correspondences on
the underlying noncommutative space. This
leads to a very suggestive dictionary of analo-
gies between the Weil proof of the Riemann
Hypothesis for function fields, which is based
on the algebraic geometry of the underlying
curve over a finite field, and the noncommuta-
tive geometry notions involved in the Connes
trace formula. Expanding and developing this
dictionary of analogies is another current fo-
cus of research in the field. k
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