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Abel prize winner 2006: Lennart Carleson

Achievements until now

What conjecture will Lennart Carleson attack next? Lennart A.E. Car-
leson, 2006 Abel Prize winner is known for at least three cornerstone
achievements in mathematical analysis. The proofs of these long-
standing conjectures are all very complicated. At the Dutch Mathe-
matical Conference 2007 in Leiden, Hans Duistermaat, professor in
mathematics at the Utrecht University and one of the great special-
ists in the field of Fourier theory, explains Carleson’s results.

Lennart Axel Edvard Carleson was born in 1928. He obtained
his PhD in 1950 in Uppsala with Arne Beurling with the thesis,
On a class of meromorphic functions and its exceptional sets. He has
been professor at the University of Uppsala (1955–1993) and the
University of California at Los Angeles, and has had 26 PhD stu-
dents. He was director of the Mittag-Leffler Institute in Djursholm
from 1968–1984, where he placed special emphasis on stimulat-
ing young mathematicians, and was president of the International
Mathematical Union 1978–1982.

He has been awarded the Leroy Steel Prize (AMS) in 1984, the
Wolf Prize in Mathematics in 1992, the Lomonosov Gold Medal in
2002, the Sylvester Medal in 2003, and the Abel Prize in 2006. The
latter “for his profound and seminal contributions to harmonic
analysis and the theory of smooth dynamical systems.”

MathSciNet has 68 matches. His most famous ones are:

• ‘Interpolations by bounded analytic functions and the corona
problem’, Annals of Math 76 (1962), pp. 547–559.

• ‘On the convergence and growth of partial sums of Fourier se-
ries’, Acta Math 116 (1966), pp. 135-157.

• (with M. Benedicks) ‘The dynamics of the Hénon map’, Annals
of Math 133 (1991), pp. 73–169.

The corona theorem
According to the uniformization theorem, every simply connect-
ed complex one-dimensional complex analytic manifold which
admits a non-constant bounded holomorphic function is conformal
to the open unit disc D = {z ∈ C : |z| < 1} in the complex plane.
The set B of all bounded holomorphic functions on D forms a Ba-
nach algebra, when provided with the supremum norm.

Let f1 , . . . , fn ∈ B and let I denote the ideal in B generated by
f1 , . . . , fn, so I is the set of all ∑n

i=1 gi fi where gi ∈ B. We have
I = B if and only if there exist gi ∈ B such that ∑n

i=1 gi fi = 1. If
there exists z ∈ D such that fi(z) = 0 for 1 ≤ i ≤ n, then h(z) = 0
for every h ∈ I, and I is a proper ideal in B.

If the fi do not have a common zero in D, but if there exists
a sequence z j ∈ D such that fi(z j) → 0 for j → ∞, for every
1 ≤ i ≤ n, then ∀h ∈ I h(z j) → 0 for j → ∞, and again I is a
proper ideal in B. Note that in this case |z j| → 1, and by passing
to a subsequence we can arrange that the z j converge to a point
on the boundary ∂D = {z ∈ C : |z| = 1} of D. The case which
remains is that there exists a δ > 0 such that

(*)
n

∑
i=1

| fi(z)| ≥ δ

for every z ∈ D, when h belonging to I does not correspond to h
having a zero in D or, in the above sense, in ∂D, so h ∈ I would
be a ‘corona property’ when the disk of the sun is eclipsed by the
moon.

Carleson proved that condition (*) implies that I = B, which
settles the matter.
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Fourier series
Limits of sums

sn(x) =
n

∑
k=−n

ckeikx ,

where the coefficients ck ∈ C, k ∈ Z, are given, and n → ∞ ap-
peared in the 18-th century. In the beginning of the 19-th century
Fourier very convincingly demonstrated their usefulness in anal-
ysis and, among others, proved that if sn(x) → f (x) as n → ∞ in
a weak sense, then

ck =
1

2π

∫
R/2πZ

f (x)e−ikxdx, k ∈ Z.

The right hand side is called the k-th Fourier coefficient ck( f ) of
an arbitrary integrable function f (or even 2π-periodic distribu-
tion f ). In this way each integrable 2π-periodic function has its
Fourier series, and around 1800 one had the camp of people who
believed that ‘every’ function f was equal to its own Fourier se-
ries, and the skeptics who couldn’t believe this.

In 1829 Dirichlet gave a convergence proof which worked for
every continuous function f which is piecewise monotonic. He
suggested that every continuous function is piecewise monotom-
ic, which is a bit strange, because it is easy to construct a conver-
gent Fourier series which is not monotomic on any subinterval.

Then in 1876 Du Bois-Reymond constructed a continuous 2π-
periodic function f such that for every x in a countable dense
subset E of R/2πZ the partial sums sn(x) are not even bound-
ed. This shows that, for a given integrable function f on R/2πZ,
the problem for which x ∈ R/2πZ the sn(x) converge to f (x) is
quite subtle. Carleson’s proof that, when f ∈ L2(R/2πZ), the set
of x ∈ R/2πZ such that the sn(x) do not converge to f (x) has zero
Lebesgue measure, was a breakthrough in harmonic analysis.

The Hénon map
The Hénon map is defined by the transformation

T : (x, y) 7→ (1 + y − ax2 , bx)
from the plane to itself, with a, b ∈ R as parameters. It had been
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Lennart Carleson receives the Abel prize from Queen Sonja of Norway

introduced in 1978 by Hénon, with a = 1.4 and b = 0.3, as a sim-
ple example where computer simulations indicate the existence
of a strange attractor for iterations of T, similar to those obtained
by Lorenz in 1963 in his higher dimensional weather models. The
simulations with such models indicate not only parameter val-
ues for which the dynamical system has chaotic behaviour, but
also open regions in the parameter space with finite periodic or-
bits as attractors, and these open regions even could be dense in
the parameter space. Sheldon and Newhouse proved that (long-
)periodic attractors are topologically (not in measure) generic, and
actually it turned out to be very hard to prove that the set of pa-
rameter values, for which the iterates of the transformation show
chaotic behaviour, has positive Lebesgue measure.

Benedicks and Carleson studied the dynamics of the Hénon
map for small positive values of b and for a close to 2. In this case
the Hénon map is a small perturbation of the one-dimensional
quadratic map

(**)x 7→ 1 − ax2

for which Jakobson in 1981 had proved chaotic behavior for a
set of parameter values a with positive Lebesgue measure. Us-
ing Lyapunov exponential estimates for (**) with a close to 2,
Benedicks and Carleson proved the following theorem.

Theorem. Let Wu be the unstable manifold of T at its fixed point in
x > 0, y > 0. Then for every c < log 2 there exists a number b0 > 0
such that for all 0 < b < b0 there exists a set E(b) ⊂ R of positive
Lebesgue measure such that for all a ∈ E(b) the following statements
hold.
i. There is a nonempty open U such that for all z ∈ U :

dist(Tv(z), Wu) → 0 as v → ∞. Moreover, the domain of at-
traction of Wu has non empty interior.

ii. There exists an element z0 ∈ Wu such that {Tv(z0)}∞
v=0 is dense in

Wu, and ||DTv(z0)(0, 1)t|| ≥ e cv .

The above theorem implies strange attractors for each pair of
numbers a and b satisfying 0 < b < b0, a ∈ E(b).

Later developments
For each of the three problems, the subject had already intensive-
ly been studied when Carleson entered, and the statements had
been conjectured, with the recognition that it looked very difficult
to prove these. Therefore one cannot say that Carleson invented
the subject or the theorems, but that in each case his contribution
consisted of the introduction of techniques which were power-
ful enough to prove these basic theorems in the subject. Because
these techniques are the main contributions of Carleson, I would
have loved to be able to explain these to you in sufficient detail
here, so that you would really understand what is going on. How-
ever, I have to admit that trying to understand Carleson’s proofs,
I soon realized that it would probably take months of concentrat-
ed work for me to do so, and because I did not have that time, I
had to admit defeat. It was only a slight consolation that in later
articles on the subject many of the specialists in the subject al-
so found Carleson’s proofs to be technically very difficult, but at
the same time his techniques to be very powerful, notably for the
proof of the one particular theorem. Therefore other proofs were
also of great interest to the specialists. I mention, regarding later
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developments, the following articles.

• T.W. Gamelin, ‘Wolff’s proof of the corona theorem’, Israel J.
Math. 37 (1980), pp. 113-119, which unlike Carleson’s proof,
is based on the use, suggested by Hörmander in 1967, of es-
timates for the Cauchy-Riemann operator ∂/∂z̄. E. L. Stout:
“This proof is a gem of classical analysis”.

• R. A. Hunt, ‘On the convergence of Fourier series’, pp. 235-255
in the Proc. Conf. on Orthogonal Expansions and their Contiu-
ous Analogues, Edwardsville, 1967, Southern Illinois Univ. Press,
Carbondale (1968) shows that almost everywhere convergence
of Fourier series is true for any f ∈ LP, p > 1.

• C. Fefferman, ‘Pointwise convergence of Fourier series’, Annals
of Math. 98 (1973) pp. 551-571 contains a new proof of Hunt’s
theorem which has been very influential.

• C. Thiele, ‘Wave Packet Analysis’, CBMS Reg. Conf. Series 105,
AMS, Providence (2006), Chapter 7, contains a very nice expo-
sition in terms of wave packets.

There are quite many more recent papers in dynamical systems
which build on the methods of Benedicks and Carleson, for ex-
ample [3]. However, I have not seen an essentially new proof
the theorem of Benedicks and Carleson, where also by the spe-
cialists B and C’s proof is characterized as ‘a true tour de force’.
Instead I found an article by Dobrynskii in the Doklady 2004 [2],
in which it is claimed that the Benedicks-Carleson set is empty, in
flat contradiction with the B-C theorem. The Math. Reviews re-
viewer M.L. Blank drily remarks that “unfortunately D’s paper is
written in a way that makes it very difficult, if not impossible, to
check the claim”. As the Abel prize was awarded in 2006 to Car-
leson for, among others, “his profound and seminal contributions
to the theory of smooth dynamical systems”, I surmise that the
Abel prize committee had sufficient support from the specialists
to be convinced that the Benedicks-Carleson theorem is correct.

Carleson’s proof of the corona theorem
I would like at least to convey some of the techniques in which Car-
leson excels. For the proof of the corona theorem, let f1 , . . . , fn ∈
B and ∑n

i=1 | fi(z)|| ≥ δ > 0 ∀z ∈ D. His proof is by induction on
n. First assume that fn has only finitely many simple zeros av in
D and is bounded away from zero near ∂D. For z in a sufficiently
small open neighborhood E of the zero set of fn we have | fn(z)| ≤
1
2δ, hence ∑n−1

i=1 | fi(z)| ≥ 1
2δ. Therefore if E is the union of disjoint

simply connected domains, then in each of these the corona theo-
rem holds for f1 , . . . , fn−1, which leads to bounded holomorphic
functions γ1 , . . . , γn−1 on E such that ∑n−1

i=1 γi fi = 1 on E. Let
g1 , . . . , gn−1 be bounded holomorphic functions on D such that
gi(av) = γi(av) for all v. We can take the gi as polynomials, but
later in the proof it becomes essential to take gi ∈ B with minimal
supremum norm. Now gn = (1 − ∑n−1

i=1 gi fi)/ fn is analytic in D

because 1 − ∑n−1
i=1 gi(av) fi(av) = 1 − ∑n−1

i=1 γi(av) f (av) = 0 for
every v. The function gn is bounded because fn was assumed to
be bounded away from zero. For any finite set of distinct point av

in D the Blaschke product

A(z) =
s

∏
v=1

av − z
1 − zav

av

|av|

is the prototype of a bounded analytic function on D with simple
zeros in the av. Actually |A(z)| = 1 when |z| = 1 and therefore
|A(z)| ≤ 1 when |z| < 1. For general fn ∈ B, using suitable
approximations of suitable B-multiples of fn by means of Blaschke
products, it is sufficient, in the above proof with fn replaced by A,
that the above interpolation problem g(av) = γ(av), has solutions
g ∈ B with ||g|| < δ−C, when the γ is holomorphic and |γ| < 1 in
a neighborhood of the av where |A(z)| is of order δ.

In a previous paper [4]Carleson had showed that the minimal
norm for G is equal to

sup {
∣∣∣∣∣ s

∑
v=1

G(av)γ(av)
A′(av)

∣∣∣∣∣ , G analytic on D, ||G||1 = 1, }

where

||G||1 = lim
r↑1

1
2π

∫ 2π

0
|G(reiθ)|dθ.

On the other hand, Cauchy’s integral formula yields

s

∑
v =1

G(av)γ(av)
A′(av)

=
1

2π i

∫
Γ

G(z)γ(z)
A(z)

dz,

where Γ is a one-dimensional cycle which runs once around each
zero av of A. We therefore have the desired estimate if we can
arrange that

(†)δN < |A(z)| < δ on Γ ,

with N > 1 suitably chosen, and there is a constant M such that

(††)
∫

Γ
|G(z)||dz| ≤ M,

for all G analytic on D such that ||G||1 = 1. Because the level
curves of |A(z)| can become too long for the arbitrary Blaschke
products, these level curves in general cannot be taken as Γ . The
heart of Carleson’s proof is a very ingenious construction of Γ

such that (†) and (††) holds. This shows Carleson’s mastery in
making geometric constructions which satisfy the needed analy-
tic estimates, in situations where no simple constructions yield the
desired estimate. k
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