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Air parcels and air particles:
Hamiltonian dynamics

Dust particles travel a long way through the atmosphere. The mod-
elling of such movement is traditionally done by setting up a sys-
tem of coupled partial differential equations. In this article Onno
Bokhove, researcher in numerical analysis and computational me-
chanics, and Peter Lynch, researcher at the Meteorology and Climate
Centre at the School of Mathematical Sciences in Dublin, advocate a
more direct approach, involving only ordinary differential equations
coupled by integral equations.

A parcel of air is a coherent piece of air carried along by the wind.
It is large enough to contain many molecules, but small enough
that we may assume bulk fluid properties uniform throughout it.
The concept of an air parcel was introduced by Richardson (1922)
in his discussion of radiation in the atmosphere, and has become
part of the everyday language of meteorologists, especially in the
context of the stability of vertical motions. We can visualize air
parcel flow by following the motion of a tracer. For example, on
a sunny day, air parcel movement becomes visible through the
swirling motion of dust particles in the air. Similarly, smoke par-
ticles from a cigarette or smoke stack depict the approximate air
parcel motion.

Neither the dust nor the smoke particles are infinitesimal and
thus do not correspond precisely to an air parcel, but they serve as
good approximations for flow scales much larger than the particle
size. Note that a particle is a discrete entity, whereas a parcel is a
continuum entity. We will later discuss a numerical discretization
of air parcels in which parcels are discretized by particles.

We could also visualize air parcel flow by marking a parcel
with a coloured dye. Were each parcel to have a unique colour,
the parcels would be individually tagged or labelled. We denote
the continuum labels of air parcels by a. For flow in three dimen-
sions, a = (a1 , a2 , a3)T is a three-dimensional (3D) column vector
in Cartesian label coordinates, where (·)T denotes the transpose.

There are two fundamentally different frameworks for the
study of fluid flow. In the Lagrangian framework, we focus on in-
dividual parcels of fluid, identified by labels as described above.
To study the dynamics, we follow the evolution of the individual
parcels as they are carried along by the flow.

The position of a particular parcel is denoted by χ(a, t), a time-
varying vector in three-dimensional space. Fluid properties are
then functions of a and time t. In the Eulerian framework, we
use a reference frame fixed in space and watch the evolution of
the flow as it passes a fixed location. We denote this position by
x = (x, y, z)T , a vector fixed in three-dimensional space. Fluid
properties are then functions of x and of time t. The map a 7→
χ(a, t) relates the label coordinates a to the position coordinates
x expressing that the parcel with label coordinate a resides at the
location x = χ(a, t) at time t.

The local thermodynamic state at parcel location x = χ(a, t) is
determined by two of the following four variables: density ρ(x, t),
potential temperature θ(x, t) (a standard quantity in meteorology
and a monotonic and invertible function of the entropy), pressure
p(x, t) and temperature T(x, t). The remaining two variables fol-
low from the relationships valid for an ideal gas (see frame Ideal
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gas law).
Classically, air motion is governed by the compressible Navier-

Stokes equations including a continuity equation (expressing
mass conservation) and an equation of state such as the ideal gas
law. The full Navier-Stokes equations include the effect of fluid
viscosity or friction, and forcing. For large scale applications in
meteorology, it is common to consider inviscid (frictionless) dy-
namics of air motion, but to retain all the complicated and essen-
tial nonlinearities. Furthermore, in numerical weather and cli-
mate prediction, a closure problem arises due to the discretiza-
tion: unresolved gravity-wave motion, quasi-2D turbulence, and
3D turbulence (in decreasing order of importance) require an ac-
curate representation of their effect on the larger, resolved scales
of motion. Scales associated with these physical processes are still
much larger than the viscous, molecular scales. We therefore con-
sider below the unforced, inviscid Navier-Stokes equations, that
is, the compressible Euler equations for an ideal gas.

The position of an air parcel in 3D space is a vector χ(a, t)
depending on the label a and the time t as the air parcel moves
through space over time. An air parcel with position χ(a, t) has a
(Lagrangian) velocity

χ̇(a, t) =
∂χ(a, t)

∂t
= u (χ(a, t), t) . (1)

The partial derivative ∂/∂t here implies a variation of t while
keeping the parcel label a fixed, and u(x, t) is the (Eulerian) ve-
locity at a fixed location x in space. The term Lagrangian implies
that we are moving with the flow and the independent coordi-
nates are time t and label coordinates a when we consider air as
a continuum of air parcels. Similarly, the term Eulerian implies
that the independent coordinates are the fixed spatial coordinates
x and the time t.

The compressible Euler equations are usually expressed as par-
tial differential equations (PDE’s) and an algebraic equation of
state. In the Eulerian framework, the partial derivatives are taken
with respect to x and t, and the observer remains at a fixed point
in space. In the Lagrangian framework, the partial derivatives are
taken with respect to labels a and time t, and the observer moves
with the fluid flow.

The PDE’s can be derived succinctly from Hamiltonian formu-
lations involving (generalized) Poisson brackets for an arbitrary
functional and a Hamiltonian or energy functional. These func-
tionals are either integrals over the Lagrangian 3D label space a,
or over the fixed Eulerian space x. They depend on either the
fields χ(a, t) and χ̇(a, t) (Lagrangian viewpoint), or the velocity
u(x, t), density ρ(x, t) and potential temperature θ(x, t) (Eulerian
viewpoint). This Hamiltonian structure of the Euler equations is
of interest because it relates immediately to various constants of
motion and associated flux conservation laws. Unfortunately, this
structure involves PDE’s and functionals, and is much more com-
plicated than the standard Hamiltonian theory, which involves
ordinary differential equations (ODE’s).

The novel Hamiltonian treatment of the parcel dynamics of the
Euler equations that we will present below involves only ODE’s
and integral equations. It turns out to be much simpler than the
usual treatment, and can be transformed to the usual Hamiltonian
description of the dynamics in terms of PDE’s in the most straight-
forward way we know. For simplicity of presentation, we con-
fine attention to one spatial dimension. However, the approach is

easily generalized. A key notion in what follows is the realization
that the dynamics of a distinguished fluid parcel, singled out, is
governed by a single ODE, a non-autonomous Hamiltonian finite-
dimensional system. Consider now a specific or distinguished air
parcel, labelled with (vector) label A, amongst the continuum of
air parcels a. Thus, we write the position of the distinguished air
parcel A in particular by X = X(t) = χ(A, t). It is a function
of time, not a function of A, although we could indicate its para-
metric dependence on A by writing X = X(t; A). The velocity
of the distinguished air parcel A is denoted by U = U(t; A) =
u (χ(A, t), t); cf. (1).

Hamiltonian parcel dynamics
Recently, developments in Hamiltonian numerical particle meth-
ods for atmospheric dynamics have led to a novel Hamiltonian
description of the compressible Euler equations for air (Bokhove
and Oliver 2006). This consists of Hamiltonian ODE’s, one for
each distinguished air parcel with Hamiltonian H = H(t) in iso-
lation, and an integral equation binding the continuum of air
parcels together. As stated above, we consider the case of one
space dimension, z the vertical coordinate, normal to the Earth’s
surface at a certain latitude and longitude. Let Z(t) be the vertical
position of a distinguished parcel A, and W(t) its velocity in the
vertical direction. The dynamics of the parcel will be described in
a canonical Hamiltonian formalism as if it were an isolated parti-
cle.

We start therefore with the Hamiltonian dynamics of a particle,
or of one specific air parcel, in a potential V(z, t); it is given by

dZ
dt

=
∂Hv

∂W
= W (2a)

dW
dt

= − ∂Hv

∂Z
= − ∂V

∂Z
(2b)

Ideal gas law
The ideal gas law states that the pressure p is proportional to
the product of density ρ and temperature T, i.e.

p = R ρ T (A)

with gas constant R. Using the first law of thermodynamics

Tds = cpdT − 1
ρ

dp, (B)

with entropy s and cp (cv) the constant specific heat at con-
stant pressure (volume), in combination with the ideal gas
law allows us to rewrite temperature in terms of potential
temperature θ and pressure as follows

T = θ (p/pr)κ . (C)

Here we have introduced a constant reference pressure pr,
κ = R/cp and potential temperature

θ = Tr e(s−sr)/cp , (D)

with Tr and sr integration constants arising in solving (B).
From (D) we note that potential temperature θ, commonly
used in meteorology, and entropy s are closely related. For
air R = cp − cv = 287 Jkg−1K−1, cp = 1004 Jkg−1K−1, κ =
2/7 and pr = 1000mb. We refer to Stanley (1971) for more
thermodynamics.
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Eulerian equations arising from Hamiltonian dynamics
Functional derivatives are defined by

δH[w, ρ,θ] =

lim
ε →0

H[w + εδw, ρ + εδρ,θ + εδθ] −H[w, ρ,θ]
ε

. (E)

Together with the definition of the first deviation of the
Hamiltonian

δH ≡
∫ h

0

δH
δw

δw +
δH
δρ

δρ +
δH
δθ

δθ dz (F)

we can find the functional derivatives δH/δw and so forth.
Here we use the expressions in frame Ideal gas law to ex-
press the (derivatives of the) internal energy Ui = cvT in the
Hamiltonian (24) in terms of θ and ρ. In addition, the follow-
ing trick

w(z, t) =
∫ h

0
w(z′ , t) δ(z − z′) dz′ (G)

is used again to write the function w(z, t) as a functional, thus
we can take F = w(z, t), and likewise for the other variables.
It is a rewarding exercise to derive the Euler equations of mo-
tion (20) from (22)–(24).

(see, e.g., Arrowsmith and Place 1992). The Hamiltonian Hv com-
prises the sum of the kinetic and potential energy

Hv = Hv(Z, W, t) = 1
2 W2 + V(Z, t), (3)

where the potential must have the same physical dimensions as
W2/2. For a time-independent potential V = V(Z) the Hamilto-
nian is a constant of motion:

dHv

dt
=

∂Hv

∂Z
dZ
dt

+
∂Hv

∂W
dW
dt

= 0. (4)

If V(Z, t) depends explicitly on time, then the energy is no longer
constant: dHv/dt = ∂V/∂t 6= 0.

For what choice of the potential V(Z, t) do we obtain the com-
pressible Euler equations of motion for the atmosphere? It turns
out (by inspection, see Bokhove and Oliver 2006) that the appro-
priate choice is to take V equal to the Montgomery potential

M = M (p(Z, t), Z) = Θ Πe + g Z

= cp Θ (p(Z, t)/pr)κ + g Z, (5)

where Θ = Θ(t) is the potential temperature and Πe = Πe(Z, t)
is Exner’s function defined by Πe = cp (p(Z, t)/pr)κ with the
Eulerian pressure p = p(z, t) evaluated at the parcel’s position
z = Z(t). The reference pressure pr ≈ 1000mb, specific heat
cp ≈ 1004J/(kg K) at fixed pressure, κ = R/cp and acceleration of
gravity g are all constant (see frame Ideal gas law). Potential tem-
perature Θ = Θ(t) is a thermodynamic variable and a constant
of motion, independent of Z, following the air parcel A, such that
dΘ/dt = 0, under the assumed adiabatic and inviscid conditions.
We note from the units given that Montgomery potential M has
the same physical dimension as W2/2.

Catch-22: where is the continuum?
Substitution of the Montgomery potential M in (5) for the poten-
tial V in (2), made explicit by denoting Hv by Hc, yields the La-

a particular air parcel:

dZ
dt

=
∂Hc

∂W
= W , (6a)

dW
dt

= − ∂Hc

∂Z
= −Θ

∂Πe

∂Z
− g , (6b)

dΘ

dt
= 0 (6c)

grangian form of the compressible Euler equations of motion for
with Hamiltonian

Hc(Z, W, Θ, t) = 1
2 W2 + Θ Πe

(
p(Z, t)

)
+ g Z

= 1
2 W2 + cp Θ

(
p(Z, t)/pr

)κ + g Z. (7)

(It’s useful to verify the expressions in the dynamics (6) by using
the Hamiltonian (7).)

However, there seems to be a Catch-22 in the dynamics (6)–
(7) for the continuum of labels! First, when initial conditions
Z(0) = Z(0; A) and W(0) = W(0; A) are provided for all la-
bels A, the continuum motion of all air parcels can be calculated
from the ordinary differential equations (6)–(7). A natural choice
is Z(0; A) = A. Additionally, in the momentum equation (6b), the
Eulerian pressure p(z, t) must be evaluated at the parcel position
z = Z(t), yet the pressure in turn depends on the continuum of
air parcels as well. In other words, the system is not closed unless
we specify or calculate the pressure p(z, t). We write the pressure
p(z, t) as an Eulerian function of fixed vertical coordinate z and
time t yet we will evaluate it at the position Z(t) = Z(t; A) of the
distinguished parcel A.

The pressure can be specified or calculated in several ways;
we will consider three different possibilities. First, we can take
an exact (steady state) solution of the Euler equations, written as
a system of PDE’s, to investigate the associated parcel motion.
The problem then merely shifts to the question: how do we find
an exact solution of the equations? Nevertheless, when we have
an exact expression for p(z, t) we can explore the associated par-
cel motion. Second, observations of pressure at discrete points in
space-time can be used to reconstruct p(z, t). Third, we can close
the Hamiltonian system (6)–(7) by calculating the pressure explic-
itly.

The first two options are akin to kinematic studies of fluid mo-
tion, in which the motion of particles is studied given a wind
field u(z, t) in 3D, to be evaluated for a finite number of parcel
positions X i with i = 1, . . . , N and N the number of particles
used. Such kinematic studies are important in forecasts of pol-
lutant spreading. They lead to the spaghetti diagrams in Fig-
ure 1, where passive pollutant particles or tracers are released
over Europe and their trajectories traced backwards in time us-
ing the wind field. Their spread is subsequently monitored. In-
stead of a (vector) wind field, our Hamiltonian formalism needs
only a (scalar) pressure field to compute the movement of a dis-
crete number of particles in a numerical study. In more than one
dimension, less information is thus required and the strategy is
more dynamic, although the pressure requires specification, and
frictional and forcing effects have been excluded. In Figure 2 we
show a collection of Lagrangian trajectories for air parcels orig-
inating at different times and levels. The convoluted nature of
the trajectories illustrates the complexity of nonlinear atmospher-
ic flow. It would be interesting to compare these two strategies
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to calculate particle motion in this meteorological context, to as-
sess the relevance of the extra dynamic structure provided in the
parcel Hamiltonian approach. (We proposed this as a bachelor
project in Twente.) Spurious agglomeration of particles can then
be avoided since the flow is symplectic, and thus volume preserv-
ing. Furthermore, these properties can be preserved with sym-
plectic numerical techniques.

For the third option, closure of the Hamiltonian system (6)–
(7) by calculation of the pressure, we require Eulerian expressions
for the density ρ(z, t) and Eulerian potential temperature θ(z, t),
because

p(z, t) = p (ρ(z, t),θ(z, t)) =
(

pκ
r

R ρ(z, t)θ(z, t)

) 1
(κ−1)

(8)

with constants pr ,κ and R; see frame Ideal gas law.
The map a 7→ χ(a, t) relates the label coordinates a to the ver-

tical coordinate z such that z = χ(a, t). The density ρ(z, t) and
the mass-weighted potential temperature ρ(z, t)θ(z, t) required
in (8) are determined by linking them to the Jacobian between
label space a and Eulerian space z. In addition, the potential tem-
perature satisfies

Θ(t) = Θ(t; A) = θ (Z(t; A), t) , (9)

and on a distinguished parcel A it is constant Θ(t; A) = Θ0(A)
as we saw earlier that dΘ/dt = 0. An element of mass dm is by
definition density times volume, and we therefore find

dm = ρ(z, t) ∆x ∆y dz = ρ0(a) ∆b ∆c da, (10)

where ∆x, ∆y, ∆b and ∆c are unity, so that the density ρ retains
its usual interpretation as mass/volume in this one-dimensional
case. Here b and c are the labels in the x and y directions. Fur-
thermore, the mass dm is conserved for labels between a and
a + da with a label-weighted density ρ0(a). With the ‘natural’
choice, where the labels initially coincide with the coordinate val-
ues, such that z = χ(a, 0) = a, we thus find ρ(z, 0) = ρ0(a) ini-
tially. The consequence of (10) is that

ρ0
ρ (χ(a, t), t)

=
∂χ(a, t)

∂a
(11)

is the Jacobian between the label space with label a and Eulerian
space with coordinate z = χ(a, t). The trick now is to rewrite the
density-weighted potential temperature ρ(z, t)θ(z, t) as an inte-
gral over label space by using the delta function δ(z − z′) with
dummy coordinate z′ and the Jacobian (11). By using (9) and (11)
with z′ = χ(a, t), we obtain the following

ρ(z, t)θ(z, t) =
∫ h

0
ρ(z′ , t)θ(z′ , t)δ(z − z′)dz′

=
∫ Ah

0
ρ (χ(a, t), t) Θ0(a)δ (z − χ(a, t))

∂χ(a, t)
∂a

da

=
∫ Ah

0
ρ0(A)Θ0(A)δ (z − Z(t; A)) dA, (12)

where Θ(t; A) = Θ(0; A) = Θ0(A) is conserved following an air
parcel and h = z(Ah , t) in a domain z = [0, h] in which Ah is the
air parcel label at the top of our one-dimensional atmosphere. The
label coordinates a and A in the last two integrals of (12) are dum-
mies in the integration. We have therefore passed without prob-
lems from the general label coordinates a to the distinguished la-

bels A, with the corresponding change χ(A, t) = Z(t; A) = Z(t).
We assume there is a solid boundary at z = 0 such that the parcel
initially at the boundary never leaves z = 0 as its vertical velocity
remains zero. Likewise, the density satisfies

ρ(z, t) =
∫ h

0
ρ(z′ , t)δ(z − z′)dz′

=
∫ Ah

0
ρ0(A)δ (z − Z(t; A)) dA. (13)

The usual equation expressing conservation of mass

∂tρ + ∂z(ρw) = 0, (14)

with ρ(z, t) and w(z, t), is obtained by taking the time deriva-
tive of (13) while using (6a). Likewise, conservation of density-
weighted potential temperature

∂t(ρθ) + ∂z(ρθw) = 0, (15)

with also θ(z, t), is obtained with the use of (6a) and (6c). Par-
tial derivatives ∂t = ∂/∂t and ∂z = ∂/∂z are used here with
z and t constant, respectively, and with dependent variables
w(z, t), ρ(z, t) and θ(z, t). Note that the Eulerian velocity w(z, t)
is used, and recall that its relation with the Lagrangian velocity
W(t) for the special parcel A at position z = Z(t) is W(t; A) =
w (Z(t; A), t).

In summary, the compressible Euler equations of motion for
air modelled as an ideal gas are governed by the parcel Hamilto-
nian system (6)–(7) with a continuum infinity of initial conditions,
one for each distinguished air parcel, the pressure p(z, t) defined
by (8) in terms of the product of density and potential tempera-
ture, which is, in turn, provided by the integral (12) over all labels.
Density can be recovered separately via (13).

Bound together the dynamics of air is then governed by the
following closed system of equations: ∀A in Z = Z(t; A), W =
W(t; A) and Θ = Θ(t; A) the dynamics is

dZ
dt

=
∂Hc

∂W
= W , (16a)

dW
dt

= − ∂Hc

∂Z
= −cp Θ

∂ (p(Z, t)/pr)κ

∂Z
− g , (16b)

dΘ

dt
= 0, (16c)

Hc(Z, W, Θ, t) = 1
2 W2 + cp Θ

(
p(Z, t)/pr

)κ + g Z (16d)

with initial conditions Θ(0; A) = Θ0(A), Z(0; A) = A, W(0; A) =
W0(A) and ρ0(A) = ρ(Z(0; A) = A, 0); and, furthermore

p(Z, t) =
(

pκ
r

R ρ(Z, t)θ(Z, t)

)1/(κ−1)
(17a)

ρ(Z, t)θ(Z, t) =
∫ Ah

0
ρ0(Ã)Θ0(Ã)δ

(
Z − Z′(t; Ã)

)
dÃ.(17b)

Note the dummy integration label Ã in (17b) as opposed to the
distinguished label A in Z = Z(t; A).

Generalized Poisson brackets
We summarize the Hamiltonian parcel formulation (16)–(17) suc-
cinctly as

dF
dt

= {F, Hc} with {F, G} ≡ ∂F
∂Z

∂G
∂W

− ∂F
∂W

∂G
∂Z

(18)

for Hamiltonian (16d) and arbitrary functions F = F(Z, W,θ, t)
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and G = G(Z, W,θ, t), valid for all fluid labels by specifying the
(distinct) initial conditions for each label.

Remark: If we take F ∈ {Z, W, Θ} in (18), together with (16d),
then we obtain the parcel equations of motion in (16).

To close the system, we additionally determine the pressure
p(z, t) in Hamiltonian (16d) through (17). The formulation is
Hamiltonian because it satisfies the following properties: the
(generalized) Poisson bracket {F, G} in (18) is anti-symmetric:
{F, G} = −{G, F}, and it satisfies the Jacobi identity

{F, {G, K}} + {G, {K, F}} + {K, {F, G}} = 0 (19)

for arbitrary functions F, G and K. These properties are readily
proven by inspection and direct manipulation. In three dimen-
sions and for air in our Earthly rotating frame of reference, the
generalized Poisson bracket is not canonical as in (18), but it is
still Hamiltonian, because the bracket is anti-symmetric and sat-
isfies the Jacobi identity.

The Euler equations in Eulerian form

∂tρ + ∂z(ρw) = 0, (20a)

∂tw + w∂zw = − 1
ρ

∂p
∂z

− g = −θ
∂Πe

∂z
− g, (20b)

∂tθ + w ∂zθ = 0, (20c)

are partial differential equations. These equations and their
Hamiltonian formulation are readily derived from the parcel
Hamiltonian formulation (18) and (16d), with (12) and (13), fol-
lowing the appendix in Bokhove and Oliver (2007), and Bokhove
and Oliver (2006) for the 3D case. A cursory comparison between
(16) and (20) indicates that W(t) → w(z, t) and Θ(t) → θ(z, t),
and that d(·)/dt = ∂(·)/∂t + w(z, t)∂(·)/∂z is the total or materi-
al time derivative following an air parcel. Also note that

1
ρ

∂p
∂z

=
θκ cp pκ−1

pκ
r

∂p
∂z

= θ
∂Πe

∂z
(21)

with Πe = cp (p/pr)κ and κ = R/cp, by using expressions (A)
and (D) (in frame Ideal gas law).

Attractions of the Hamiltonian framework
The reasons for our fascination with the parcel Hamiltonian for-
mulation are manifold. The formulation is simpler than the clas-
sical formulation, as it is comprised of ODE’s and (two) integral
relations instead of a system of PDE’s. We consider four aspects
of this formulation now.

First, the derivation of the Hamiltonian formulation of the
PDE’s involves the transformation of standard function deriva-
tives (involving functions F = F(Z, W, Θ, t)) in the parcel frame-
work into functional derivatives (involving functionals F =
F(w, ρ,θ), that is, integrals including the fields w(z, t), ρ(z, t) and
θ(z, t)) in the Eulerian framework.

The Hamiltonian expression of (20) is formally similar to (18),

dF
dt

= {F,H}, (22)

but with functionals F and H instead of functions F and H. The
generalized Poisson bracket is given by

{F, G} =
∫ h

0

[(
δG
δw

∂
∂z

δF
δρ

− δF
δw

∂
∂z

δG
δρ

)
+
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Figure 1 Particles are released in Europe and the backwards trajectories are calculated using
the wind velocity backwards in time (Intercontinental Transport of Ozone and Precursors
(ITOP) project).

1
ρ

(
δF
δw

δG
δθ

− δG
δw

δF
δθ

)
∂θ
∂z

]
dz, (23)

and the Hamiltonian energy functional is

H =
∫ h

0

(
1
2 ρ w2 + ρ Ui(ρ,θ) + ρ g z

)
dz, (24)

with internal energy Ui(ρ,θ) = cv T for an ideal gas; see Bokhove
and Oliver (2006). To derive the equations of motion from (22)–
(24) see frame Eulerian equations arising from Hamiltonian dy-
namics.

By inspection, {F,H} is seen to be anti-symmetric, but the Ja-
cobi identity

{F, {G,K}} + {G, {K,F}} + {K, {F, G}} = 0, (25)
for arbitrary functionals F, G and K, is (in 3D) much more com-
plicated to prove. However, by using the same transformation
relations between the parcel functions and functionals that were
used in finding (23), we can deduce that

{F, {G,K}} =
∫
{F, {G, K}}dz, (26)

where the functions F, G, K are associated with the functionals
F, G,K respectively. Since by (19) the Jacobi identity holds for the
functions F, G, K, the Jacobi identity (25) for functionals follows
immediately from (26). The above is the most straightforward
derivation of the Hamiltonian formulation for the PDE system
(corresponding to the parcel ODE system) known to us.

Second, a discretization preserving the Hamiltonian parcel for-
mulation is available (Frank, Gottwald and Reich 2002). Conse-
quently, the conservation laws in the continuum framework have
discrete analogs, an important achievement. In fact, this dis-
cretization was discovered before the continuum parcel formula-
tion (Bokhove and Oliver 2006) was recognized and linked to oth-
er Hamiltonian formulations. A discretization is obtained simply
by putting indices k on (6) and approximating Πe, thus following
N particles each with a fixed mass, to obtain

dZk
dt

=
∂Hc

∂Wk
= Wk , (27a)
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Figure 2 Trajectories of air parcels released at several levels over a period of hours. The evolution of two sets of trajectories is shown in latitude-longitude and pressure-longitude plots.
The points of release are shown with crosses. The goal of the ITOP programme is to study intercontinental transport of pollutants (see http://badc.nerc.ac.uk/data/itop/). The motivation is
that Eulerian, point measurements of photochemical processes are less accurate than measurements along Lagrangian (5-day) trajectories. Thanks to John Methven (University of Reading) for
images [8].

dWk
dt

= − ∂Hc

∂Z

∣∣∣∣∣
Z=Zk

= −Θk
∂Πh
∂Z

∣∣∣∣∣
Z=Zk

− g , (27b)

dΘk
dt

= 0 (27c)

with Hamiltonian

Hc(Z, Wk , Θk , t) = 1
2 W2

k + Θk Πh
(
Z

)
+ g Z. (28)

A particle-mesh or particle-finite-element method is obtained be-
cause an approximate Exner’s function Πh(z, t) is reconstructed
throughout space either by approximating the density-weighted
potential temperature integral (12) on a finite difference grid fol-
lowed by an interpolation step (cf. Frank, Gottwald and Reich
2002), or by using a finite element method, yielding the value of
density-weighted potential temperature everywhere in space (see
[5]). Density can be approximated likewise by discretization of
(13).

Third, certain asymptotic approximations remain entirely with-
in the framework of the ODE’s for an individual parcel, which is
often more straightforward than performing asymptotics on the
PDE’s.

Fourth, certain (classical) fluid parcel instabilities in meteorolo-
gy and fluid dynamics are more readily obtained from the ODE’s
for a distinguished fluid parcel than from the associated partial
differential equations. We consider the static stability of an air
parcel next. It is a classical example of a parcel stability in meteo-
rology (see, e.g., Salmon 1998).

Static (in)stability of the atmosphere
When there is no flow then W = 0 and the momentum equation
(6b) is in hydrostatic balance

θg(Z)
∂Πe(Z)

∂Z
+ g = 0. (29)

Parcel oscillations are analyzed in a static atmosphere for a giv-
en parcel energy of the form Hc = 1

2 W2 +θ Πe(Z) + g Z. The Ex-

ner function Πe(Z) = cp (p(Z)/pr)κ is now chosen with a po-
tential temperature Θ(0; A) = θg(Z) such that it satisfies (29).
We choose an initial condition such that Z(0) = Zr and Θ(0) =
θg(Zr). We linearize the vertical momentum equation (6b) with
respect to Z around a reference vertical level Zr such that Z =
Zr + Z′. To obtain an expression linear in Z′, we use (29) and

d2Πe

dZ2 =
g
θ2

g

dθg

dZ

as function of Zr, in a Taylor expansion of the right-hand-side of
the vertical moment equation (6b)

Θ
∂Πe

∂Z
+ g = θg(Zr)

(
dΠe

dZ
(Zr) +

d2Πe

dZ2 (Zr) Z′
)

+

g + O(Z′2) = N2 Z′ + O(Z′2),

in which the symbol O(Z′2) denotes terms of second or higher or-
der. Hence, the linearized vertical momentum equation becomes

d2Z′

dt2 = −N2 Z′ , (30)

where

N2 = N2(Zr) = (g/θg) (dθg/dZ)|Z=Zr (31)

is the square of the Brunt-Väisälä frequency. Note that N has the
dimension of frequency, since g has dimension length over time
squared and Z has length as dimension. From (30), we see that
the linear stability of the flow depends on the sign of N2, for

N2


> 0 the atmosphere is statically stable,

= 0 statically neutral, and

< 0 statically unstable.

(32)

Hence, (30) results in stable harmonic oscillations of an air par-
cel around the reference level Zr when N2 > 0, a neutrally stable
situation for N2 = 0, and an unstable (exponentially growing)
solution when N2 < 0.
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Figure 3 Stable and unstable fluid particle trajectories are shown for statically stable oscilla-
tory flow (solid thick line), unstable flow (dashed thick line), and neutral flow (dashed-dotted
thick line). These are numerical solutions of (6) using static Hamiltonian (33). Particle tra-
jectories are shown (a) in a vertical cross section, and (b) as function of vertical position
and time.

This linear behaviour explains the three idealized nonlinear nu-
merical simulations depicted in Figure 3 for a given (hydrostatic)
Hamiltonian

Hc = U2/2 + W2/2 + Θ Πe(Z) + g Z. (33)

This Hamiltonian is called hydrostatic because we specify its po-
tentials to satisfy (29) rather than determine the pressure from the
(discrete collection of) air parcels. Also, the x–direction has been
included for display purposes but the potential is X–independent
such that dX/dt = U and dU/dt = 0. The X–Z-plane is divid-
ed in four parts (thin dashed lines in Figure 3a). We choose Z(0)
and calculate Θ(0) = θg(Z(0)). In the stratosphere, above 10km,
the basic atmosphere is stably stratified, N2 > 0. In the tropo-
sphere, below 10km, we assume that the potential temperature of
the basic atmosphere varies linearly with height. For X < −10km
(and Z < 10km), it is stably stratified, with θg = θ0 +α Z, since
then N2 = gα/(θ0 + α Z) > 0 using (31). For −10km< X <

10km, it is unstably stratified with θg = θ0 − α Z, since then
N2 = −gα/(θ0 −α Z) < 0. And for X > 10km, it is neutral,
θg = θ0 and N2 = 0.

When W(0) = 0, no vertical movement occurs as hydrostatic
balance holds in the vertical momentum equation. Instead, we
specify W(0) 6= 0, and also U(0) > 0. In our set-up the parcel’s
horizontal velocity remains constant. The initial position of a par-
ticle is denoted on the left of each trajectory with a ‘×’-symbol, at

Z = 5km and X = −20,−10, 10 km, respectively. Hence, we see
in Figure 3 that a (weakly nonlinear) particle trajectory (thick solid
lines) in the stable troposphere displays approximately harmon-
ic oscillations with a period of 2 π/N = 10.6min (see Figure 3b).
The potential temperature remains constant: Θ(t) = θg(Z(0)).

Once a particle is displaced to a vertical level, the particle
would only remain in hydrostatic balance when it has a potential
temperatureθg(Z) in accordance with the Exner function Πe(Z) at
that level. Since Θ(t) is conserved and thus constant, the particle
motion adjusts itself in the stable case to oscillatory motion. In the
unstable case, the trajectory departs to the stably-stratified strato-
sphere where its velocity diminishes and the trajectory reverses
smoothly (thick dashed lines). At the Earth’s surface, the parti-
cle is reflected. In the neutral case, a particle maintains its initial
upward velocity until it reaches the stratosphere (thick dashed-
dotted lines).

Final remarks
The Hamiltonian particle-mesh or particle-finite-element method
outlined will be tested further in idealized climate simulations
with weak forcing and dissipation. The equations of motion
used in atmospheric climate simulations are Hamiltonian in the
absence of forcing and dissipation. In that limit, the essential
and complicated nonlinearities are maintained. The question
under investigation is whether the discrete preservation of the
Hamiltonian formulation with its associated conservation prop-
erties remains important when (weak) forcing and dissipation are
added. This investigation is motivated by preliminary results in
low-dimensional models suggesting that this preservation of the
Hamiltonian structure on the discrete level is important even in
the presence of forcing and dissipation (Hairer et al. 2006). k
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