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Random networking: between

With the arrival of the Internet, a good understanding of networks has become important for
everyone. Network theory, which originated in the eighteenth century with Euler, and in the
nineteenth century with Markov, has until recently concentrated its attention mainly on regular
types of graphs. In his inaugural lecture, Remco van der Hofstad shows us a shift towards highly
irregular graphs having vertices with extremely high degrees. He argues that this irregularity
is a main characteristic of real life networks such as the Internet, social networks and networks
describing biophysical phenomena. On January 1, 2005, Remco van der Hofstad was appointed
full professor in Probability at the University of Eindhoven.

Who has not, at some point, exclaimed: isn’t it
a small-world? Others may have heard about
‘six degrees of separation’. These phrases are
all about the nature of social relations. The
notion of six degrees of separation originated
as the title of a John Guare play. In it, one of
the main characters says:

“Everybody on this planet is separated on-
ly by six other people. Six degrees of separa-
tion. Between us and everybody else on this
planet. The president of the United States. A
gondolier in Venice. . .It’s not just the big na-
mes. It’s anyone. A native in the rain forest.
[. . .] An Eskimo. I am bound to everyone on
this planet by a trail of six people. It is a pro-
found thought.”

Similarly, it is claimed that each Dutch ci-
tizen is at most five handshakes away from
the Dutch queen. To put these facts in a
more mathematical framework, we reformu-
late social relations in terms of graphs. Its
elements correspond to the people under

investigation, and two individuals are con-
nected when they share a certain social rela-
tion, such as knowing each other on a first na-
me basis or having shaken hands. The phrase
six degrees of separation then means that any
pair of individuals is connected by a chain of
at most six intermediaries. This was first em-
pirically observed by the sociologist Stanley
Milgram [13].

Real Networks
In the last decade, real networks have drawn
tremendous attention in scientific discipli-
nes ranging from biology, telecommunica-
tions, economics, linguistics, to sociology.
Examples are the World Wide Web (WWW),
the Internet, networks describing e-mails in
a population, but also protein interaction
networks, food webs, and collaboration net-
works. The elements of the WWW are web
pages, and there is a (directed) connection
between two web pages when the first links

to the second. In a collaboration network, the
elements are scientists, and two scientists are
connected when they have a joint publication.
In the Internet, the elements are computers
or routers, and two computers are connected
when there is a physical cable linking them.
Thus, while the WWW is virtual, the Internet is
physical. As you can see, these examples are
very different in nature!

The study of networks has boomed in the
period between 1995 and now, and this must
have a reason. Of course, computer speed has
dramatically increased in the past decade and
network data sets have become publicly avai-
lable on the Internet. This, however, cannot
be the whole explanation of the rapid growth
of interest. Large data sets are just huge col-
lections of numbers, which are only of interest
when one can uncover some of the structure
behind them!

Many networks turn out to share two pro-
perties: they are small worlds and scale-free,
as I will explain in more detail below. Both
properties tell us something about the struc-
ture of the networks under consideration. The
structure of networks is particularly important
for processes living on these networks. For
example, the spread of a virus is affected not
only by the characteristics of its elements, but
also by the structure of social networks, such
as the traveling habits of individuals, as the
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order and chaos

Figure 1 Yeast protein interaction network taken from
[10], and the Internet topology in 2001 taken from www.
fractalus.com/steve/stuff/ipmap, also reprinted on the
front cover of this issue of the Nieuw Archief voor Wiskunde

recent SARS epidemic has shown. The spread
of HIV depends sensitively upon properties
of the network of sexual contacts. The ‘suc-
cess’ of computer viruses and worms is influ-
enced by how well they can be transmitted
from one computer to the next, which, in turn,
depends sensitively on the structure of the
Internet and e-mail networks. We all know ex-
amples of successful computer viruses in the
recent past. Their economical damage partly
explains the interest in the study of the net-
work structure, but there is more to it. Inter-
estingly, networks turn out to be different from
network models that have been studied over
the past few decades, and the diverse net-
works above have many unexpected common
features. For artist’s impressions of some net-
works see Figure 1.

Power laws and degrees
While many real networks appear to be highly
chaotic, there is some hidden order in them:
they tend to be small worlds and are scale-
free. A network is a small world when dis-
tances in it are small. The phrase ‘scale-free
networks’ cannot be understood so easily,
and I will spend some time to explain it.

For an element of a network, its degree is
the number of other elements it is connect-
ed to. Most networks have large fluctuations
in the degrees of their elements. While most

elements have small degrees, there also ex-
ist elements with high, and even extremely
high, degrees. For example, one cannot be
surprised that in the sexual network of the
eighteenth century, Casanova would appear
as an element with an unprecedented degree!

The role of Casanova in the collaboration
network in mathematics is played by Paul
Erdős, who has the staggering amount of
over five hundred co-authors. When studying
graphs, one is bound to run into Erdős, and he
will feature more prominently later on. Erdős
was quite a special mathematician, and his
deep love of mathematics has been recorded
in popular books as well as a movie.

There are also other networks with such
special elements. The protein p53 is believed
to play a special role in protein interaction
networks, and is even related to the occur-
rence of cancer. In social networks, there are
these rare individuals who seem to know ev-
erybody. In the WWW, Google now attracts
zillions of links!

The common fact about these unusual ele-
ments is that they are highly interconnected,
that is, they have a high degree. These high-
ly connected elements are sometimes called
hubs. The hubs in networks are the Erdőses,
the Googles, the Casanovas, or the other spe-
cial elements that are present. While the hubs
play a special role in networks, the fact that
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networks have them turns out not to be spe-
cial at all. Most networks do!

One can imagine that these elements are
quite important in applications. If one wishes
to attack the Internet, the impact of attacking
a router with a gigantic degree is much larger
than that of attacking my laptop. To spread a
rumor quickly, one should tell it to a person
who happens to know everyone! It is well-
documented that the large number of AIDS
victims in the west is to a large extent due to
the high promiscuity of one of the first West-
erners that was infected (see e.g. [2]).

In summary, many networks have highly
connected elements or hubs playing a central
role in their functionality. This points us to the
study of degrees in networks. In many net-
works, the degrees are scale-free, meaning
that they have no typical size. Not all prop-
erties are such. For example, for Dutch men,
the average height is about 1.83, and while
differences in height exist, almost all Dutch
men are in between 1.40 and 2.10. Thus, we
can think of 1.83 as being the typical height.
Sometimes such a typical size does not ex-
ist. For example, when studying the wealth in
populations, already Pareto observed a huge
variability [12]. Most individuals do not earn
so much, but there are these rare individu-
als that earn a substantial part of the total
income. Pareto’s Law was best known under
the name ‘80/20 rule’, indicating, for exam-
ple, that 20 percent of the people earn 80
percent of the total income. This law appears
to be true much more generally. For example,
20 percent of the people own 80 percent of
the land, 20 percent of the employees earn
80 percent of the profit of large companies,
and maybe even 20 percent of the scientists
write 80 percent of the papers. In each of
these cases, no typical size exists due to the
high variability present, which explains why
these properties are called scale-free.

A network is called scale-free when its de-
grees have no typical size. While many el-
ements only have few connections, the hubs
have extremely many connections. The above
is a more informal description, but there is a
beautiful mathematical description as well:
scale-free networks have power-law degree
sequences. This needs further explanation!

The degree sequence of a network is the
vector consisting of the number of elements
in the graph with some specified degree, for
all of the possible degrees. Thus, the degree
sequence {f (k)}∞k=1 is such that f (k) is the
number of elements with degree equal to k.
This explains the meaning of one part of the
phrase power-law degree sequences. We now

turn to the other part, the power laws.
Mathematicians are always drawn to sim-

ple, yet fascinating, relations, as we believe
they explain the rules that gave rise to them.
A power-law relation between two variables
means that one is proportional to a power of
the other. In a formula, the variable k and the
characteristic f (k) are in a power-law relation
when f (k) is proportional to a power ofk, that
is, for some τ and C,

f (k) = Ck−τ . (1)

Intuitively, when an 80/20 rule holds, a power
law is hidden in the background! Power-law
relations are one-step extensions of linear re-
lations. Conveniently, even when one does
not understand the mathematical definition
of a power law too well, one can still observe
them in a simple way: in a log-log plot, power
laws are turned into straight lines! Indeed,
taking the log yields

log f (k) = logC − τ logk,

so that log f (k) is in a linear relationship with
logk, with slope equal to −τ.

Power laws play a crucial role in mathemat-
ics as well as in many applications, and have
a long history. Zipf [14] was one of the first to
find one in the study of the frequencies of oc-
currence of words in large pieces of text. He
observed that the number of occurrences of
words is roughly inversely proportional to its
rank in the frequency table of all words. This
is called Zipf’s Law.

Already in the twenties, several other ex-
amples of power laws were found. Lotka [11]
investigated references in the Chemical Ab-
stracts in the period 1901-1916, and found
that with f (k) denoting the number of scien-
tists appearing in k entries, (1) holds, where
τ now is close to 2. This is Lotka’s Law.

In both examples, no typical size exists.
For Zipf’s Law, in most texts, there exist words
(often ‘the’) that occur very often, while most
of the words are only used a couple of times.
Similarly, most scientists were only referred to
once in Lotka’s Law, but there exist scientists
of whom many papers were cited.

Scale-free networks
A scale-free network is such that its degrees
are scale-free. As a result, a large variability
in degrees exists: there exist hubs with very
high degrees.

More formally, with f (k) equal to the num-
ber of elements with degree equal to k, we
have that (1) holds, and the graph has a
power-law degree sequence. For example,

Figure 2 The degree sequence of the graph of Autonomous
Systems in Internet in 1997 taken from [7] and of the col-
laboration graph among mathematicians taken from www.
oakland.edu/enp

the degree sequences of the graph of au-
tonomous systems in the Internet in 1997
and the collaboration graph of mathemati-
cians are given in Figure 2, in log-log scale.
While the log-log plots are not precisely equal
to straight lines, they are quite close. For the
collaboration graph, this means that the num-
ber of mathematicians with a given number of
collaboratorsk is proportional tok to a certain
power: we again find a power law in scientific
productivity as Lotka did 80 years ago!

The first to realize that many networks are
scale-free were Reká Albert and Albert-László
Barabási, who dubbed such networks scale-
free networks, igniting research in various dis-
ciplines, and, admittedly, causing a bit of a
hype. For example, read the following quote
about Barabási [5]: “What do the proteins in
your body, the Internet, a cool collection of
atoms and sexual networks have in common?
One man thinks he has the answer, and it’s
going to transform the way we view the world
. . .” This may be a bit too much, but the real-
ization that similar network phenomena occur
in social sciences, telecommunications and
biology raises many modeling questions. The
proposed models, in turn, lead to interesting
mathematics. This is an appealing combina-
tion!

Applications do sometimes make a mathe-
matician’s life easier. Indeed, when asked for
what I do professionally, the response “I am a
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mathematician” does not work so well. “Ah,
I was always terrible at math in high school!”
is the most frequent answer, and I keep on
being surprised by the pride with which such
a reply is uttered! Applications are a good
way of explaining why we mathematicians do
what we do. In truth, many mathematicians
are guided by curiosity, by puzzles, yes, even
by passion! Personally, I derive the most joy
from a beautiful mathematical proof, an un-
expected similarity between seemingly unre-
lated problems, or on finding a satisfactory
explanation for a certain phenomenon. Such
occasions are the icing on the cake!

Returning to the title of my speech, ‘Ran-
dom networking: between order and chaos’,
we have now seen many networks that are
quite chaotic, yet share an intriguing order in
being small worlds and scale-free. We now
turn to randomness, which, as you may imag-
ine, is inescapable for a probabilist such as
me!

Modeling complexity by randomness
One cannot explicitly describe the structure of
the network of all social relations on this plan-
et with its size of about six billion people, or
of the WWW, which has an estimated size of
several billion web pages. Foremost, this is
due to the fact that the data are not available,
but also because the data are just too much
to comprehend. This situation is well known
in several disciplines, and most profoundly in
particle systems. Most particle systems con-
sist of around 1023 particles, and it is infeasi-
ble to describe the motions and locations of
these particles explicitly. This fact has been
realized a long time ago, and was resolved by
introducing randomness, leading, in the case
of interacting particles, to the theory of statis-
tical mechanics. Boltzmann and Gibbs were
the first to use this concept, which, at the time
of Boltzmann, lead to serious opposition.

The main advantage of statistical mechan-
ics is that one only needs to describe the local
interactions between molecules, and these
local rules enforce global behavior. Perhaps
surprisingly, randomness does not seem to
play any role when observing a glass of wa-
ter. Indeed, in huge systems, random fluc-
tuations are washed out, and only averages
remain. Yet, a statistical mechanical model
can predict global behavior, such as the ex-
istence of a phase transition separating the
phases between water and ice. Thus, sta-
tistical mechanics is all about relating micro-
scopic properties of molecules to the macro-
scopic properties of the material in question.
In summary, we model complexity using ran-

domness. Since the world around is getting
ever more complex, probability is bound to
play an increasingly important role.

A similar approach can be taken for com-
plex networks. Their size makes their com-
plete description utterly impossible. There-
fore, one could suffice by describing how
many elements the network has, and by which
probabilistic rules elements are connected to
one another. This leads us to consider ran-
dom graphs as models for real networks, and
introduces randomness in network theory.

Erdős-Rényi random graphs
The field of random graphs was established in
the late fifties and early sixties of the last cen-
tury. While there were a few papers appearing
around (and even before) that time, one paper
is generally considered to have founded the
field [6]. The authors Erdős and Rényi stud-
ied the simplest imaginable random graph,
which is now named after them. Their graph
has n elements, and each pair of elements is
independently connected with a fixed prob-
ability. When we think of this graph as de-
scribing a social network, then the elements
denote the individuals, while two individuals
are connected when they know one another.
The probability for elements to be connected
is sometimes called the edge probability. In
their seminal paper [6], Erdős and Rényi clear-
ly showed their predictive powers: “It seems
to us further that it would be worth while to
consider besides graphs also more complex
structures from the same point of view, i.e.
to investigate the laws governing their evolu-
tion in a similar spirit. [. . .] In fact, the evo-
lution of graphs can be seen as a rather sim-
plified model of the evolution of certain com-
munication nets . . .” In [6], Erdős and Rényi
investigate basic properties of their random
graph when their size is large, for various
values of the edge probability. It turns out
that the Erdős-Rényi random graph exhibits
a phase transition, similarly to the water-ice
transition. Indeed, when the average number
of neighbors per element is less than one,
the connected components are tiny and scat-
tered, even for large graphs. When it is larger
than one, on the other hand, a giant com-
ponent emerges containing a number of ele-
ments proportional to the size of the graph.

The phase transition for the random graph
is clearly demonstrated in Figure 3. It shows
realizations of an Erdős-Rényi random graph
of size 100, with an average number of neigh-
bors of 1/2 and 3/2, respectively below and
above the critical value 1. The components
are drawn in blue, ordered in size from dark

to light. While there is little difference in
the relative sizes of the small components,
the largest components are quite different in-
deed! In many systems, at the value of the
phase transition peculiar behavior can be ob-
served that is quite different from the be-
havior in either the sub- or the supercritical
regimes. For example, in the water-ice tran-
sition, precisely at 0◦C, water and ice can
co-exist. On the critical Erdős-Rényi random
graph, the largest component has approxi-
mate size n2/3, i.e., the number of elements
to the power 2/3.

While the Erdős-Rényi random graph is a
beautiful model displaying fascinating scal-
ing behavior for large graphs and varying edge
probabilities, its degrees are not scale-free,
rendering it unrealistic as a network model.
Indeed, its typical degree size is the average
degree, and there is little variability in its de-
grees. In particular, no hubs exist. Therefore,
to model networks more appropriately, we are
on the hunt for scale-free random graph mod-
els! Remarkably, the fact that the Erdős-Rényi
random graph is not a suitable network model

Figure 3 Two realizations of Erdős-Rényi random graphs
with 100 elements and edge probabilities 1/200 , respec-
tively 3/200
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Figure 4 Preferential attachment random graphs of sizes 10, 30 and 100

was already foreseen by the masters them-
selves [16]: “Of course, if one aims at describ-
ing such a real situation, one should replace
the hypothesis of equiprobability of all con-
nections by some more realistic hypothesis.”

How do power laws arise then in networks,
and what can we learn from that?

Preferential attachment
When it was realized that the Erdős-Rényi
random graph is not an appropriate network
model, several models were invented that
adapt it in such a way that power-law degree
sequences do arise. These models describe
networks, in some sense, quite satisfactorily.
However, they do not explain how the net-
works came to be as they are. A possible
explanation for the occurrence of scale-free
behavior was given by Albert-Barabási [3].

Most real networks grow. For example, the
WWW has increased from a few web pages
in 1990 to an estimated size of a few billion
now. Growth is an aspect that is not taken in-
to account in Erdős-Rényi random graphs, but
it would not be hard to reformulate them as
a growth process where elements are succes-
sively added, and connections are added and
removed. Thus, growth by itself is not enough
to explain the occurrence of power laws. How-
ever, viewing real networks as evolving in time
does give us the possibility to investigate just
how they grow.

So, how do real networks grow? Think of
a social network describing a certain popula-
tion in which a newcomer arrives, increasing
it by one element. He or she will start to so-
cialize with people in the population, and this
process is responsible for the connections to
the newly arrived person. In an Erdős-Rényi
random graph, the connections to the new-
comer will be spread uniformly over the pop-
ulation. Is this realistic? Is the newcomer not
more likely to get to know people who are so-
cially active, and, therefore, already have a
larger degree? Probably so! We do not live in
a perfectly egalitarian world.

Rather, we live in a self-reinforcing world,
where people who are successful are more
likely to become even more successful! There-
fore, rather than equal probabilities for our
newcomer to acquaint him- or herself to other
individuals in the population, there is a bias
towards individuals who already know many
people. When we think of the degree of el-
ements as describing the wealth of the indi-
viduals in the population, we live in a world
where the rich get richer!

This phenomenon is now mostly called
preferential attachment, and was first de-
scribed informally by Albert and Barabási [3].
While the above explanation is for social net-
works, also in other examples some form of
preferential attachment is likely to be present.
For example, in the WWW, when a new web
page is created, it is more likely to link to an
already popular site, such as Google, than to
my personal web page. For the Internet, it may
be profitable for new routers to be connected
to highly connected routers, since these give
rise to short distances.

Phrased in a more mathematical way, pref-
erential attachment models are such that new
elements are more likely to attach to elements
with high degree compared to elements with
small degree.

For example, we can successively add new
elements with a fixed amount of connections
to the older elements equal to m, each con-
nection to an older element with a probabili-
ty which is proportional to the degree of the
older element plus a constant δ. Interesting-
ly, preferential attachment gives rise to scale-
free random graphs, where the power-law de-
gree exponent equals τ = 3 + δ

m (see e.g., [4]
for the case where δ = 0).

Preferential attachment offers a convinc-
ing explanation as to why power-law degree
sequences occur. As Barabási puts it [2]

“. . .the scale-free topology is evidence of
organizing principles acting at each stage of
the network formation. [. . .] No matter how
large and complex a network becomes, as

long as preferential attachment and growth
are present it will maintain its hub-dominated
scale-free topology.”

On the other hand, preferential attach-
ment cannot be the only mechanism describ-
ing network growth. For example, two peo-
ple living in the same city are more likely to
know each other than people living in a dif-
ferent continent. Thus, there is bound to be
some dependence of real networks on geom-
etry, which is not taken into account so far.
A random network in which geometry plays a
crucial role is percolation.

Percolation
Percolation can best be described as a ran-
dom maze or labyrinth. Imagine a square in
which an ant is trying to go from the left part
where his nest is, to the right part where its
food supply is. The labyrinth is made out of a
collection of walls or obstacles, which the ant
cannot pass through. Thus, its task is to walk
past the walls from its nest to the food (and
then back, naturally).

Depending on the locations of the walls,
the nest and the food, the ant may be able
to reach the food or not. Of course, there are
instances where there are walls all around the
nest or the food, and then the poor ants will
die of starvation. This will particularly hap-
pen when there are many walls. On the other
hand, it is possible that there is a passage
way, and then the clever ant will always find
it, see Figure 6.

We randomly position the walls, each pos-
sible location having a wall with some fixed
probability p, and no walls with probabili-
ty 1 − p. Then, intuitively, when there are
few walls, i.e., when p is small, the ant will
be able to go to the food, while, when there
are many walls, i.e., when p is large, the ant
will likely not be able to. Now we make the
task for the ant even more daunting by mak-
ing the labyrinth very large. Then it turns out
that there again is a phase transition. Indeed,
when p < 1/2, with high probability, the ant
will get to its food, while for p > 1/2, it will

Figure 5 The degree sequences of a preferential attach-
ment random graph of size 300,000 in log-log scale
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not be able to. For p > 1/2, percola-
tion occurs, in the sense that the collec-
tion of walls contains one dominant connect-
ed piece, which basically covers the entire
square. For p < 1/2, on the other hand, the
connected components of walls remain small,
and do not obstruct the ant too much.

The most interesting phenomena occur
close to this critical value. For example, for p
slightly smaller than 1/2 and a huge labyrinth,
we can make the walls very small in such a way
that the extent of the labyrinth remains fixed.
In this case, the poor ant is having a harder
and harder time to arrive at the food, even
though we know that, with very high proba-
bility, it should be able to get there.

The above random labyrinth is an instance
of percolation, a subject in probability theory
and theoretical physics that has drawn enor-
mous attention in the past decades due to the
fact that the model is simple to state, while it
is mathematically extremely rich. It is a model
for porous media, where the materials consist
of holes and substance. Think of a porous
stone. When we pour water on it, will its cen-
ter become wet?

While the above example of the ant in
the labyrinth is intrinsically two-dimensional,
the problem of wetting the core of a porous
stone is clearly three-dimensional. There is
no problem of posing the percolation prob-
lem in three dimensions. In this case, the
walls are small square pieces of material, and
ants cannot pass through these walls, while
they can pass when a wall is absent (luckily,
ants can climb walls). Again, we can think
about an ant trying to work its way through
this three-dimensional porous structure, such
as a termite in a trunk. Many of the above
properties, such as the existence of a critical
percolation value for p, remain valid, even
though, interestingly, it is not known exactly
what this critical value is.

Realistic porous media are clearly restrict-
ed to two or three dimensions, but it is al-
so possible to envision percolation in high-
er dimensions. Mathematically, considering
higher dimensions does not cause any com-
plications, and percolation can be, and has
been, introduced and studied in general di-
mensions. It is believed that the qualitative
behavior of percolation, particularly close to
criticality, is quite different in different dimen-
sions. For example, in high dimensions, the
critical behavior of percolation on finite tori is
similar to the one on the Erdős-Rényi random
graph (see [9] and the references therein).

While percolation is a thoroughly investi-
gated subject, many aspects of it are still ill

understood, and it is likely to remain a source
of inspiration for years to come. An excellent
mathematical source is the book by Grimmett
[8], who quite successfully conveys his fas-
cination for percolation, for example in his
quote: “Percolation is sexy!”

The road ahead
While percolation is a beautiful example of
a random network that naturally incorporates
geometry, it is not a good network model. In-
deed, percolation violates the two key phe-
nomena that networks display, the small-
world and the scale-free properties. Indeed,
distances between far away elements are
large, and the degrees are bounded by 4 in
dimension 2 and 6 in dimension 3. How to
deal with geometry in truthful scale-free net-
work models remains a mystery to this day!

There are more riddles to be resolved
though . . .For example, networks tend to be
clustered, which is just a difficult way of ex-
pressing that my friends tend to know one
another. Clustering creates triangles in net-
works, and, even stronger, communities of
individuals all connected to each other. How
can we model these appropriately, and what
is their relation to the scale-free nature of net-
works?

The preferential attachment models that
are currently used predict that the elements
with the largest degrees are the first ones
present. While this may be true for some net-
works, in reality this is not always the case.
Google is a late arrival on the WWW, but has
become one of the most successful web site.
How can we take the fitness of elements into
account in the growth of networks?

The above research questions can be mod-
eled in various ways. In fact, already for
scale-free graphs there are numerous differ-
ent models available, all of which are natu-
rally caricatures of reality. How can we be
sure that the conclusions drawn from these
models have any predictive power for real net-
works? That is, if we change the model slight-
ly, will the conclusions not change dramatical-
ly? It is here that the philosophy of statistical
physics proves useful again. In this philos-
ophy, universality plays a fundamental role.
Universality states that independently of how
we model a phenomenon locally, the glob-
al picture agrees, and is a well-established
notion in theoretical physics, even though
its mathematical foundations are often less
clear. Models for real networks should be
universal, being caricatures of reality in the
first place! For example, for different network
models having identical degrees, are the dis-

Figure 6 Two random labyrinths where an ant is trying to
cross from the left to the right. It succeeds at the top, but
not at the bottom.

tances between elements similarly behaved?
The above are just a few examples of chal-
lenges that are currently being taken up, or
will be so in the near future. One of the truly
beautiful aspects of networking is its interdis-
ciplinary nature. Duncan Watts, with Barabási
one of the pioneers of networking, says about
this [15]: “But in the world of networks, soci-
ologists, economists, mathematicians, com-
puter scientists, engineers and physicists all
have something to offer each other, and much
to learn.” Different scientific disciplines often
have a hard time talking to one another, so
this clearly poses a challenge!

Foremost, I hope and expect that the study
of networks will lead to interesting mathemat-
ics. Mathematics is a beautiful discipline
leading to extremely challenging riddles or
puzzles, to be resolved using logic only. Solv-
ing these puzzles requires considerable cre-
ativity. While mathematics has established
itself as a useful science, many mathemati-
cians also have a very clear idea of beauty.
Some proofs, which Erdős used to call ‘The
proofs from the Book’, are astonishingly pret-
ty, and the prettiest have been collected in
[1]. In this sense, math is all about creativ-
ity and beauty, and is thus not so different
from the arts. Many mathematicians are tru-
ly passionate about their work, and strive for
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the prettiest proof imaginable. Unfortunate-
ly, sometimes these are hard to find. In the
past, the trend in science has to a large extent
been towards applications, and recently even
strongly towards valorization. While the eco-
nomics of science are clearly important, I feel
that we should not lose track of the more fun-
damental aspect of research, bearing in mind
that what may seem to be fundamental now,

may have important applications in the
(near?) future.

From the recent success of Sudoku, I think
that many among us share a passion for puz-
zles and logic! I fear that the image of math-
ematics of the general audience is rather dif-
ferent from the one described in this article,
which at least partly explains the lack of in-
terest of students in this beautiful field. I

hope that, with a combined effort, the image
of math can be improved and the interest in it
revived! k
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