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How to Solve Them
The Sudoku, a Latin square completion puzzle, has already conquered The Netherlands some
time ago, surpassing in popularity the so-called griddlers (‘Japanse puzzels’ in Dutch). The
puzzle was invented in Indianapolis in 1979 by Howard Garns. Garns contributed his puzzles to
Dell Magazines, under the name of ‘Number Place’. Interest in Sudoku surged due to a revival
in Japan in 1986, when puzzle publisher Nikoli rediscovered the game. The name ‘Sudoku’
is the Japanese abbreviation of a longer phrase, “Suuji wa dokushin ni kagiru”, meaning ‘the
digits must remain single’ (source: Wikipedia). Although solving the puzzle is a trivial task for
a computer, the puzzle has many interesting mathematical properties. There are even some
open problems attached to it, as Andries Brouwer, professor in graph theory at the Technische
Universiteit Eindhoven, shows in this article.

A Sudoku puzzle (of ‘classical type’) consists
of a 9-by-9 matrix partitioned into nine 3-by-3
sub-matrices (‘boxes’). Some of the entries
are given, and the goal of the puzzle is to
find the remaining entries, under the condi-
tion that the nine rows, the nine columns, and
the nine boxes all contain a permutation of
the symbols of some given alphabet of size 9,
usually the digits 1–9, or the letters A–I.

Some mathematicians will claim that since
this is a finite problem, it is trivial. The time
needed to solve a Sudoku puzzle is O(1) -
indeed, one can always try the 981 possible
ways of filling the grid. But one can still ask
for efficient ways of finding a solution. Or, if
one already knows the solution, one can ask
for a sequence of logical arguments one can
use to convince someone else of the fact that
this really is the unique solution.

Backtrack and elegance
It is very easy to write an efficient computer
solver. Straightforward backtrack search suf-
fices, and Knuth’s ‘dancing links’ formulation
of the backtrack search for an exact covering
problem takes a few microseconds per puzzle
on common hardware today.

For a human solver, backtracking is the last
resort. If all attempts at further progress fail,
one can always select an open square, prefer-
ably with only a few possibilities, and try
these possibilities one by one—maybe using
pencil and eraser, or maybe copying the par-
tially filled diagram to several auxiliary sheets
of paper and trying each possibility on a sep-
arate sheet of paper.

For very difficult Sudoku puzzles, this is
the fastest way to solve them, both for com-
puters and for humans.

However, one solves puzzles not because the
answer is needed, but for fun, in order to ex-
ercise one’s capabilities in logical reasoning.
And solving by backtracking is dull, boring,
mindless; it requires no thinking, is no fun at
all, and should be left to computers.

So, Backtrack, or Trial & Error, is taboo.
And if it cannot be avoided one prefers some
limited form. Maybe whatever can be done
entirely in one’s head.

Grading
Most Sudoku puzzles one meets are computer-
produced, and it is necessary to have a rea-
sonable estimate of the difficulty of these puz-
zles. To this end one needs computer solvers
that mimic human solvers. Thus, one would
also implement the solving steps described
below in a Sudoku solving program, not in or-
der to find the solution as quickly as possible,
but in order to judge the difficulty of the puz-
zle, or in order to be able to give hints to a
human player. Such AI-type Sudoku solving
programs tend to be a thousand to a million
times slower than straightforward backtrack.

Generating
Given the backtrack solver, generating Su-
doku puzzles is easy: start with an empty
grid, and each time the backtrack solver says
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that the solution is not unique throw in one
more digit. (If at that point there is no so-
lution anymore, try a different digit in the
same place.) To generate a puzzle in this way
requires maybe thirty calls to the backtrack
solver, less than a millisecond. One can pol-
ish the puzzle a little by checking that none of
the givens is superfluous.

Afterwards one feeds the puzzles that were
generated to a grader. Maybe half will turn
out to be very easy, and most will be rather
easy (‘humanly solvable’). It is very difficult
to generate very difficult puzzles, puzzles that
are too difficult even for very experienced hu-
mans.

Solving
Below we sketch a possible approach for a
human solver. The goal is to be efficient. In
particular, the boring and time-consuming ac-
tion of writing all possibilities in every empty
square is postponed as much as possible. On
the other hand, some form of markup helps.

Baby steps
When eight digits in some row or column or
box are known, one can find the last missing
digit.

Singles
When there is only one place for a given digit
in a given row or column or box, write it there.
If there is only one digit that can go in a given
square, write it there.

Exercise (i) Solve this puzzle using baby steps only. (ii)
Show that if a puzzle can be solved using baby steps only,
it has at most 21 open squares.

Baby steps are particularly easy cases of sin-
gles. Checking for singles requires 324 steps.
Knuth’s ‘dancing links’ backtracker will take
324 steps if and only if the puzzle can be
solved by singles only. It is unknown how

Singles: the 1 in the center right box must be placed in the
yellow square.

Singles: the 6 in the top row must be put be in the yellow
square.

many open squares a puzzle can have and be
solvable by singles only. There are examples
with 17 givens. It is unknown whether any
Sudoku puzzles exist with 16 givens and a
unique solution. (There exists an example
with 16 givens and exactly two solutions.)

Exercise Solve the above diagram, using singles only. Il
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An example of a diagram with 16 clues and exactly 2 solu-
tions

Pair markup
If one checks where a given digit can go in
some row, column or box and finds that there
are precisely two possibilities, then it helps
to write this down. That is efficient, one does
not need to do the same argument over and
over again, and helps in further reasoning.

The 7 in the top left square can only be placed in two po-
sitions, to the right of the 2 and to the right of the 4. By
writing this down one finds out where the 7 in the lower
right square must be put.

Given two pairs for the same digit straddling the same two
rows or columns, the digit involved cannot occur elsewhere
in those rows or columns.

Given two pairs between the same two squares, one con-
cludes that these two squares only contain the two digits
involved and no other digit.

Matchings
A Sudoku defines 36 matchings (1-1 corre-
spondences) of size 9: between positions
and digits given a single row or column or box,
and between rows and columns given a single
digit. For each of these 1–1 correspondences
between sets X and Y of size 9, if we have
identified subsets A ⊂ X and B ⊂ Y of the
same size n, 1 ≤ n ≤ 9, such that we know
that the partners of every element of B must
be inA, thenA and B are matched, and noth-
ing else has a partner in A. More explicitly:
1. If for some set of n positions in a single

row, column, or box there are n digits that
can be only at these positions, then these
positions do contain these digits (and no
other digits).

2. If for some set ofn digits there aren posi-
tions in a single row, column, or box, that
cannot contain any digits other than these,
then these digits must be at those posi-
tions (and not elsewhere in the same row,
column, or box).

Matchings (1): the three digits 3, 4, 9 in the second row must be in columns 4, 6, 9, so the digit 5 cannot be put in the
sixth column.

Matchings (2): Here we give all possibilities for the fields
in column 4. Note the four yellow fields: together, they
only have the four possibilities 6, 7, 8, 9. So, these yellow
fields contain 6, 7, 8, 9 in some order, and we can remove
6, 7, 8, 9 from the possibilities of the other fields in that
column.

3. Pick a digit d. If for some set of n rows
R there is a set of n columns C such that
all occurrences of d in these rows must
be in one of the columns in C, then the
digit d does not occur in a column in C in
a row not in R, and the same with rows
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Matchings (3): For digit 7, the only possibilities in columns
2, 5, 6 occur in rows 1, 6, 7. Therefore, digit 7 cannot occur
outside columns 2, 5, 6 in these rows.
Exercise Complete this Sudoku.

and columns interchanged. This argument
is called X-wing for n = 2, Swordfish for
n = 3, Jellyfish for n = 4.

The subset principle
Let S be a subset of the set of cells of a par-
tially filled Sudoku diagram, and let for each
digitd the number of occurrences ofd in S be

The subset principle: In the five colored squares, the five digits 2,3,4,5,9 each occur at most once (since all occurrences of
3,4,5 are in a single box and all occurrences of 2,5,9 in a single column). Since the situation is tight, digits 3,4,5 do not
occur elsewhere in this box, and digits 2,5,9 do not occur elsewhere in this column.

The subset principle: one may remove a candidate for a cell outside S if its presence would force
∑
nd < |S|.

at most nd. If
∑
nd = |S|, then the situation

is tight: each digit d must occur precisely nd
times in S. In this case we can eliminate a
digit d from the candidates of any cell C such
that the presence of a d in C would force the
number of d’s in S to be less than nd.

More generally, one may remove a candi-
date for a cell outside S if its presence would
force

∑
nd < |S|.

Hinge
The previous subsection used that each cell
contains at least one digit. Conversely, each
digit is in at least one cell in any given row,
column or box.

Forcing Chains
Consider proposition (i, j)d: ‘cell (i, j) has
value d’ and proposition (i, j)!d: ‘cell (i, j)

has a value different from d’. By observing
the grid one finds implications among such
propositions.

There are at least three obvious types of
such implications. Let us say that two cells
are ‘adjacent’ (or, ‘see each other’) when they

lie in the same row, column or box, so that
they must contain different digits. This gives
the first type (denoted by I): If (i, j) is adja-
cent to (k, l) then (i, j)d > (k, l)!d, where >
denotes implication.

Hinge: if cell a has a 1, then cell b does not have a 1, and
then the 1 in row 2 must be in cell c. But then the yellow
area cannot contain a 1, which is impossible. (So, cell a
has a 5.)

In case (i, j) is adjacent to (k, l) and (k, l) on-
ly has the two possibilities d and e, then
(i, j)d > (k, l)e. This is the second type of
implication (denoted by II).

Finally, if some row, column or box has only
two possible positions (i, j) and (k, l) for some
digit d, then (i, j)!d > (k, l)d. This is the third
type (denoted by III).

Let us now consider chains of implica-
tions. If (i, j)d > . . . > (i, j)!d then (i, j)!d.
For chains that only involve a single digit,
and where the implication types alternate be-
tween I and III, one often uses a simplified
notation like

1 : (8,2)− (6,2) = (6,9)− (4,7) = (8,7)− (8,2).

Here ‘−’ denotes that at most one is true and
‘ =’ that at least one is true.
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A chain of implications. If (i, j)d > . . . > (i, j)!d then
(i, j)!d. For example, the sequence (8,2)6 > (8,6)8 >
(5,6)6 > (5,1)5 > (6,2)6 > (8,2)2 is used to conclude
that (8,2)2.

Finding useful chains may be nontrivial, and
there are various techniques such as ‘colour-
ing’ that help.

Uniqueness
A properly formulated Sudoku puzzle has a
unique solution. One can assume that a giv-
en puzzle actually is properly formulated and
use that in the reasoning, to exclude branches
that would not lead to a unique solution.

For example, the above can be completed in at
least two ways, violating the uniqueness as-
sumption. This can be avoided: for instance
in the diagram above at least one of the cor-
ners of the rectangle is 2.

Uniqueness: at least one of the corners of the rectangle
must be 2.

Another chain of implications. (Check the given possibilities in red!) Here (8,2)1 > (6,2)!1 > (6,9)1 > (4,7)!1 > (8,7)1 > (8,2)!1 is used to conclude (8,2)!1.
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Uniqueness: if (7,7)3 , then (7,5)8 and (8,7)8 so that (8,5)3 and we have a forbidden rectangle with pattern 83–38. So,
(7,7)!3 , which means that we have an X-wing: digit 3 in columns 2,7 can only be in rows 8,9 and does not occur elsewhere
in these rows. In particular (9,4)!3 so that (6,4)3 , and (8,5)!3 so that (8,5)8.

More generally the following theorem holds.

Theorem Suppose one writes some (more
than 0) candidate numbers in some of the ini-
tially open cells of a given Sudoku diagram, 0
or 2 in each cell, such that each value occurs
0 or 2 times in any row, column, or box. Then

this Sudoku diagram has an even number of
completions that agree with at least one of the
candidates in each cell where candidates were
given. In particular, if the Sudoku diagram
has a unique solution, then that unique so-
lution differs from both candidates in at least
one cell.

Digit patterns and jigsaw puzzles
A more global approach was described by
Myth Jellies (a pseudonym of a user of the
Sudoku forum www.sudocue.net), the inven-
tor of the Pattern Overlay Method (PDM), that
is, jigsaw technique. Solve a puzzle until no
further progress is made. Then, for each of
the nine digits, write down all possible so-
lution patterns for that digit. One hopes to
find no more than a few dozen patterns in all.
Now the actual solution has one pattern for
each digit, where these 9 patterns partition
the grid.
Regard each digit pattern (‘jigsaw piece’) as
a boolean formula (‘this pattern occurs in the
solution’). Write down the formulas that ex-
press that for each of the nine digits exact-
ly one pattern occurs, and that overlapping
pieces cannot both be true. Solve the result-
ing system of propositional formulas.

This approach allows one to solve some
otherwise unapproachable puzzles. k

Remark This note is a condensed version of http:

//homepages.cwi.nl/˜aeb/games/sudoku
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