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Galois Theory and Arithmetic

At the age of twenty, in the night before the duel that would end his
life, Evariste Galois (1811–1832) wrote an account of his thoughts of
the previous years. These concerned a theory of algebraic equations
that now bears his name: Galois theory. Now more than ever, it is
central to arithmetic, where it brings together algebra, geometry,
topology, and harmonic analysis. In this article, Laurent Lafforgue,
professor at the Institut des Hautes Etudes Scientifiques (IHES) and
Field Medalist in the year 2002, connects the classical theory with
the contemporary state of the research area. His text is supplement-
ed with frames by Mathieu Florence, post-doc at the Ecole Polytech-
nique Fédérale de Lausanne (EPFL). The French version appeared in
the collection ‘Images des Mathématiques 2004’ published by the
Centre National de la Recherche Scientifique. Translation: Reinie
Erné.

An algebraic equation in an unknown X can be written as adXd +
ad−1Xd−1 + · · · + a1X + a0 = 0. When the degree d is 1, this
equation has the solution −a0/a1 whenever the coefficients a0 , a1
are elements of a set F in which the four operations +,−,×, and /
are defined; such an F is called a field. When d = 2, the solutions
are (

−a1 ±
√

a2
1 − 4a0a2

)
/2a2 .

Likewise, for d = 3 or 4, the solutions can be expressed in terms
of the four operations and the taking of the roots

√
a, 3
√

a, 4
√

a of
the equations X2 = a, X3 = a, and X4 = a. Abel showed that
this is impossible from d = 5 on. Galois theory answers the most

general question of determining all relations between algebraic
equations with coefficients in a field F. To each we associate the
finite set of its solutions endowed with the action of a group GF,
the Galois group of F. The relations between equations then cor-
respond to maps between the associated finite sets that respect the
action of GF.

Between 1958 and 1970, the French mathematician Alexander
Grothendieck brought a new vision and two important general-
izations to Galois theory, in the setting of his recasting of algebraic
geometry into theory of schemes. He first defines the coverings of a
scheme S: these are the schemes S′ fibered over S that locally, in
the sense of his ‘étale topology’, can be written as stacks of copies
of S, like the floors in an apartment building. Then he shows that
the category of coverings of S is equivalent to that of the finite sets
endowed with the action of a group πS, the ‘fundamental group of
S’. To each field F corresponds a scheme of dimension 0, its ‘spec-
trum’, S = Spec (F), and the algebraic equations in one variable
with coefficients in F correspond to the coverings of S. The funda-
mental group πS is none other than the group GF. Thus we have
a common generalization of Galois theory and of the theory of the
topological fundamental group of Henri Poincaré (1854–1912).

In the same way as there are schemes of all dimensions, there
are fibrations of all relative dimensions above a scheme S, and
not only the relative dimension 0 of the coverings. When S =
Spec (F), these are ‘varieties’ defined by algebraic equations in
more than one variable. In this vertical direction, Grothendieck
also gave a partial generalization of Galois theory, the ‘`-adic co-
homology’ of fibrations. The cohomology, or rather the homo-
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Polynomial Equations and Galois Theory
Classically, the general degree three equation with, say, real co-
efficients is resolved in two steps. First you reduce the equation
to the form

P(X) = X3 − pX + q = 0 p, q real

by eliminating the X2 term. Then you look for a root x of P of
the form x = u + v where 3uv = p .

By expanding P(u + v), we obtain the system{
u3 + v3 = −q

u3v3 = p3/27,

which we know how to solve: u3 and v3 are the roots of the
polynomial X2 + qX + p3/27. Finally, we arrive at Cardano’s
Formula:
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3
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q2
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−
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4
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which gives all three roots of P. The choice of the first cube root
of unity fixes the choice of the second because of the relation
3uv = p. The degree four equation can be reduced by a similar
method to that of degree three.

Galois theory allows us to show the absence of a formula
similar to the one above for the equations of degree five or
more, that is, of the form P(X) = Xn + an−1Xn−1 + · · ·+ a0 =
0, where n ≥ 5 and the ai are in a field K. For simplicity, we will

assume here that the characteristic of K is zero. The equation
P(X) = 0 is then said to be solvable by radicals if there is a for-
mula using the elements of K and the operations +,−,×, /,
and k

√ that gives the roots of P. Let us give two essential defi-
nitions. A splitting field for P is a field L containing K, in which
P has all its roots:

P(X) =
n

∏
i=1

(X −αi)

with αi ∈ L, and such that L = K(α1 , . . . ,αn). Such a field L
is unique up to isomorphism. For example, the splitting field
of X3 − 2 for K = Q is Q( 3

√
2, e2π i/3). The Galois group of

this extension L/K, denoted GalL/K , is the group AutK L of
automorphisms of L that leave the elements of K invariant.
In the example above, this group is the symmetric group with
three elements. An essential result due to Galois states that the
equation P = 0 is solvable by radicals if and only if GalL/K is
solvable. (A group G is called solvable if there exist subgroups
G = H0 ⊃ H1 ⊃ . . . ⊃ Hn = {e} such that Hi+1 is a normal
subgroup of Hi and Hi/Hi+1 is Abelian.)

In particular, if we consider the coefficients ai of P as vari-
ables, we can apply this result to the field K = C(a0 , . . . , an−1).
The group GalL/K can then be identified with the group of per-
mutations of the roots αi. Now, this group is not solvable for
n ≥ 5, whence the impossibility of solving the general equa-
tion of degree n ≥ 5 by radicals, as was shown by the Norwe-
gian mathematician Niels Hendrik Abel (1802–1829).

logy, of a topological space had been invented by Poincaré, and
as soon as the 1940’s, André Weil was interested in adapting it to
algebraic geometry. After pioneering work by Jean-Pierre Serre,
Grothendieck realized this adaptation, associating to every fibra-
tion of a scheme S the `-adic cohomology spaces that are contin-
uous linear representations of the fundamental group πS; we call
these Galois representations of S. We would have a complete gen-
eralization of Galois theory if we could have moved back up from
these to algebraic varieties; this is the object of Grothendieck’s
theory of ‘motives’, which, even today, remains conjectural. Out-
side of relative dimension 0, we know only the case of the va-
rieties called ‘Abelian’ conjectured by John Tate and proved by
Gerd Faltings in 1983: when two Abelian varieties have the same
`-adic cohomology, each parametrizes the other. But if it is true
that the category of fibrations, or rather of ‘motives’, over a base
scheme S is equivalent to that of the Galois representations of S,
determining these representations and their mutual relations is
crucial.

Arithmetic is the study of algebraic varieties, and therefore
of Galois representations, over the field Q of rational numbers.
Grothendieck associates the point Spec Q to this field, but also a
scheme of dimension 1, Spec Z, whose points are the prime num-
bers and whose regular functions are the elements of Q. This
makes Q similar to the fields of algebraic functions on curves. Just
as we can associate to a function f on a curve the order vp( f ) of

the zero or pole at every point p, likewise for every prime num-
ber p a rational number f has a unique integer vp( f ) such that
f /pvp( f ) has no factor p. The field Q and the function fields F(C)
of algebraic curves C over a field whose number of elements is fi-
nite are called global fields. To every Galois representation of such
a field we can associate an analytic function L that is an infinite
product of factors indexed by the points of Spec Z or C. These are
generalizations of the Riemann ζ-function ζ(s) = ∏p(1− p−s)−1

and we expect that, as is the case for the Riemann ζ-function,
they admit analytic continuations and functional equations link-
ing their values in s and 1 − s. Grothendieck proved this for the
function fields as a consequence of a result coming from topology,
the ‘Poincaré duality’. But we still have no duality on Spec Z . . .

According to the predictions of the Canadian mathematician
Robert Langlands, it is through the L functions that Galois theory
meets harmonic analysis. This is a branch of mathematics creat-
ed in the 19th century by Joseph Fourier to analyze waves, that
studies periodic functions, for example cos() and sin() on R with
period group 2πZ. To a global field F = Q or F(C) we associate
its ‘ring of adèles’ AF that is an infinite product of fields Fp, ‘local-
izations of F’, in all points p of Spec (F) or C. The functions on the
group GLr(AF) of invertible r× r matrices with coefficients in AF
with period group GLr(F) are called automorphic. In a different
form, these were first studied by Poincaré. To every automor-
phic representation of GLr(AF), Langlands associated an analytic
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Algebraic Varieties and Schemes
The simplest object studied in algebraic geometry is the affine
space An

K , where K is an algebraically closed field. As set, An
K

is equal to Kn. It is endowed with a topology called the Zariski
topology, whose closed subsets are the sets V(I) of zeros in Kn

of an ideal I of K[X1 , . . . , Xn].
However, this topology is too coarse to distinguish suffi-

ciently many algebraic varieties. We must therefore add some
structure. For every open subset U ⊂ An

K , we define the regu-
lar functions on U as the maps from U to K that can be written
as P/Q for polynomials P and Q, where Q has no zeros on U.
These functions have a remarkable property. Indeed, giving a
regular function f on U is equivalent to giving a covering {Ui}
of U by open subsets, and regular functions fi on Ui such that
fi = f j on Ui ∩U j.

We call the map U 7→ {regular functions on U} a sheaf on
An

K (note the analogy with the sheaf of C∞ functions on a C∞
variety).

More generally, to every commutative ring A, Grothendieck’s
theory of schemes associates a topological space whose points
are the prime ideals of A, and whose closed subsets are the sets
V(I) of prime ideals containing an ideal I ⊂ A. This space is
endowed with a sheaf of rings constructed in such a way that,
loosely speaking, A corresponds to the regular functions on
this space. The resulting object is called the spectrum of A, and
is denoted Spec (A). This is an affine scheme. General schemes
are obtained by gluing such affine schemes together.

Let us consider Spec (Z) and Spec (K[X]) more closely. We
can draw them as follows:

Figure 1 Spec (Z) and Spec (K[X])

In both cases, the topological space in question resembles a
straight line with the cofinite topology, plus a dense point η

corresponding to the zero ideal. If K is countable, these two
spaces are homeomorphic. Nevertheless, the schemes are not
isomorphic: their sheaves of regular functions are completely
different.

Consider the scheme S = Spec (K[X1 , . . . , Xn]/(P)), where
P is an irreducible polynomial. The closed points of S cor-
respond to the maximal ideals of K[X1 , . . . , Xn] containing P,
which according to Hilbert’s Nullstellensatz are in bijection
with the solutions of the equation P = 0 in Kn. It follows that
S is an algebraic hypersurface.

This example together with that of Spec (Z[i]), studied in
the frame Etale Coverings and Fundamental Group, shows how
the theory of schemes is a common generalization of arithmetic
and algebraic geometry.

Figure 2 Algebraic hypersurface

function L, also defined by an infinite product of factors indexed
by p, that admits an analytic continuation and a functional equa-
tion. He conjectured the following fantastic statement: for every
r ≥ 1, there exists a unique correspondence preserving the L func-
tions, σ 7→ πσ , π 7→ σπ between the set of Galois representations
σ of dimension r of F and the set of automorphic representations
π of GLr(AF).

The case r = 1 is a reformulation, already known to Emil Artin
(1898–1962), of the theory of class fields, which kept all arithmeti-
cians busy in the 19th century, up tot the 1930’s. The case r ≥ 2 is
more subtle, as the groups GLr(AF) are no longer commutative.

For F = F(C), and thanks to the functional equations of
Grothendieck, we have been able to show that if there are maps
π 7→ σπ in ranks < r, there are maps in the other directionσ 7→ πσ

for ranks ≤ r. For F = Q and r 6= 1, the most important construc-
tion σ 7→ πσ to date is due to Andrew Wiles: it is when σ comes
from an elliptic curve, an Abelian variety of dimension 1. By the
theorem of Faltings mentioned before, this means that every ellip-
tic curve over Q can be parametrized by what we call a modular
curve. This result, as everyone knows, implies Fermat’s theorem.

In the other direction, π 7→ σπ , we are looking for the σπ in the
`-adic cohomology of suitable varieties over F. For F = F(C),
the Ukrainian mathematician Vladimir Drinfeld proposed a con-
jectural answer to the question at the beginning of the 1970’s,
the ‘chtoucas’ varieties; he later proved the case r = 2. Recent-
ly, the author of this article generalized the proof of Drinfeld to
arbitrary dimension, so that at this moment, the Langlands cor-
respondence on functions fields has been proved. On F = Q, a
partial answer is given conjecturally by the varieties that gener-
alize modular curves, introduced by the Japanese mathematician
Shimura even before Langlands stated his program. However,
the cohomology of these varieties can only contain part of the Ga-
lois representations, and in general, we do not know yet how to
determine it explicitly.

The theories of Galois and Grothendieck and the Langlands
program that completes them are a great and beautiful product of
the human mind. No one doubts that the yet to be resolved prob-
lems that they pose — the motives, the cohomology of Shimu-
ra varieties, and other more general varieties that must still be
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Etale Coverings and Fundamental Group
We will now explain how the notion of covering, well-known
for ‘nice’ topological spaces, generalizes to schemes. For sim-
plification, all schemes we consider here are supposed connect-
ed. We must translate the notion of local isomorphism to alge-
braic geometry; if we do this naïvely, we obtain nothing. A
surjective morphism of schemes that is a local isomorphism
is in fact an isomorphism, because the Zariski open subsets
are dense for a large class of schemes. We must therefore re-
fine this topology to obtain a new one, called étale topology.
This is not a topology in the usual sense: for every scheme
we have a family of morphisms of schemes { fi : Ui → X}
satisfying certain properties that axiomatize the notion of ‘cov-
ering of X by open Ui ↪→ X’. The maps { fi : Ui → X} con-
sidered here are étale morphisms. A good definition of these
morphisms is that of the Jacobian criterion: { f : U → X} is
called étale if locally, f represents U by polynomial equations
P1(X1 , . . . , Xn) = . . . = Pn(X1 , . . . , Xn) = 0 with det(δPi/δPj)
invertible. You might think of U as a horizontal strip stretched
over X without folds.

However, this does not reflect the richness of this notion.
For example, if X = Spec (K), U will be of the type Spec (L),
where L is a field that is a finite separable extension of K.

A covering between schemes is, up to details, a surjective
étale morphism U → X. For example, C∗ → C∗, x 7→ xn is

an étale covering of the scheme C∗ = Spec (C[X, 1/X]). As in
topology, we have the notion of Galois covering. Moreover, if
X = Spec (K), the Galois coverings correspond to Galois field
extensions.

Even though in general there is no universal covering of a
given scheme S, there does exist a fundamental group πS whose
finite quotients are the automorphism groups of the Galois
coverings. A non-trivial result is that πSpec (Z) = {e}, that is,
that every number field K is ramified at at least one prime num-
ber p. For example, the canonical map Spec (Z[i]) → Spec (Z)
is ramified at the point (1 + i): if we remove this point, the
resulting morphism is étale. This morphism can be drawn as
follows:

Class Field Theory
A major problem of modern mathematics is the description of
the Galois group of Q/Q. This question is extremely delicate.
Nevertheless, class field theory gives a partial answer. It has
two facets.

The first is local: we consider local fields, for example the p-
adic numbers or the formal series over a finite field. The prin-
cipal result is the following: the correspondence

{finite Abelian extensions of K} →
{subgroups of K∗ with finite index},

L 7→NL/K(L∗)

is bijective, where NL/K denotes the norm of the extension
L/K. Moreover, for every Galois extension L/K we have an
isomorphism

(α, L/K) : K∗/NL/K(L∗) ∼−→ Galab
L/K

with a good number of functorial properties. This gives us a
description of Galab

L/K , the largest Abelian quotient of GalL/K .
These results can be obtained in various ways, in particular
thanks to the Nakayama-Tate duality between certain Galois

cohomology groups.
The other facet of class field theory deals with global fields.

To fix some ideas, K now denotes a number field. The role
that K∗ plays in the local case is now held by the group CK =
IK/K∗, the idèle class group of K. We denote by IK the group
of idèles, which for K = Q is defined as IQ = R∗ × ∏′

p∈P Q∗
p,

where P denotes the set of prime numbers, Qp is the field of p-
adic numbers, and ∏′ is the restricted product, that is, the set
of elements of the usual product that are almost everywhere
units. In general, the factors of the product defining IK are the
completions of K for all absolute values of K. These fields are R
or C for the Archimedian absolute values, and finite extensions
of p-adic fields for the others. We then have two theorems anal-
ogous to the ones above, obtained by replacing K∗ respectively
L∗ by CK respectively CL. The ingredients of the proof are still
of cohomologic nature, but also analytic: the Chebotarev den-
sity theorem, a vast generalization of the theorem of Dirichlet
on arithmetic progressions, comes in at a crucial point in the
proof. In fact, class field theory even gives a description of the
abelianization of Gal(K/K) for every global field K. This comes
down to describing all continuous representations of dimen-
sion 1 of Gal(K/K); this is where this theory coincides with
the Langlands program for r = 1.
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Automorphic Representations
We will now describe in detail the notion of automorphic repre-
sentation of the group GLr(A). To simplify this discussion, we
consider a function field F over an algebraic curve C defined
over a finite field, for example F = Fp(t). The ring of adèles of
F is A = ∏′

x∈C Fx, where Fx denotes the local field obtained by
completing F at the point x ∈ C, and ∏′ is the set of elements
of the usual product that are almost everywhere integers, that
is, elements of the ring of integers Ox ⊂ Fx.

The ring A is endowed with a topology whose basis of open
neighborhoods of 0 is given by the sets ∏x∈S Hx × ∏x 6∈S Ox,
where S ⊂ C is finite and Hx ⊂ Fx is open for x ∈ S. We have
a natural injection F ↪→ A. We call a function f : GLr(A) → C
with the following properties an automorphic form on GLr(A):
• f is left-invariant for GLr(F): f (γx) = f (x) for γ ∈ GLr(F),

x ∈ GLr(A),
• f is right-invariant for an open subgroup H ⊂ GLr(A) :

f (x) = f (xh) for h ∈ H, x ∈ GLr(A).

Strictly speaking, we should add a third condition that we
leave out here.

The group GLr(A) acts on the space A of automorphic
forms by (g. f )(x) = f (xg) for f ∈ A and x, g ∈ GLr(A).

An automorphic representation is an irreducible representa-
tion of GLr(A) that occurs in the space A. Let us recall that
a representation ρ : G → GL(V) is called irreducible if the only
subspaces of V that are stable under ρ are {0} and V. An au-
tomorphic representation can always be written as an infinite
tensor product of local factors that are irreducible representa-
tions of the groups GLr(Fx). This is the local aspect of this the-
ory. The global aspect is contained in the left-invariance of the
automorphic forms for the subgroup GLr(F).

defined, the properties of L functions of Galois representations
— will for a long time remain on the horizon of algebraic and
arithmetic geometry. k

Some Definitions

• A group is a set endowed with a law of composition (g1 , g2) 7→
g1g2, a unit element, and an inverse map g 7→ g−1. It is com-
mutative or Abelian if we always have g1g2 = g2g1. An action
of a group on a finite set consists of associating to every ele-
ment of the group a permutation of the elements of the set, in

a way that is compatible with the laws of composition.
• A category is a collection of objects and relations between the

objects.
• A linear representation of a group is a vector space endowed

with linear transformations indexed by the elements of the
group, in a way that is compatible with the laws of compo-
sition.

• A ring is a set in which the three operations +, −, and × are
defined, but not necessarily the division /.


