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The Universitaire Wiskunde Competitie (UWC) is a ladder competition for students. Others
may participate ’hors concours’. The problems and results can also be found on the UWC
website www.nieuwarchief.nl/uwc.

This issue contains three problems A, B and C. A total of 12 points can be obtained for
each problem: 8 for a complete and correct answer, at most 2 points for elegance, and
at most 2 points for possible generalisations. To compute the overall score, the totals for
each problem are multiplied by a factor 3, 4 and 5, respectively.
The three best contributions will be honoured with a Sessions Prize of respectively 100,
50 and 25 Euro. The points of the winners will be added to their total after multiplication
by a factor of respectively 0, 1/2 and 3/4. The highest ranked participant will be given a
prize of 100 Euro, after which he starts over at the bottom of the ladder with 0 points.
Twice a year there is a Star Problem, of which the editors do not know any solution.
Whoever first sends in a correct solution within one year will also receive a prize of 100
Euro.
Group contributions are welcome. Submission by email (in LATEX ) is preferred; partici-
pants should repeat their name, address, university and year of study at the beginning
of each problem/solution. The submission deadline for this session is September 1, 2006.
The Universitaire Wiskunde Competitie is sponsored by Optiver Derivatives Trading, and
the Vereniging voor Studie- en Studentenbelangen in Delft.

Problem A (Proposed by Matthijs Coster)

Prove or disprove the following:
In a 9× 9 Sudoku–square one randomly places the numbers 1 . . . 8. There is at least one
field such that if any of the numbers 1 . . . 9 is placed there, the Sudoku–square can be
filled in to a (not necessarily unique) complete solution.

Problem B (Proposed by Jaap Spies)

Imagine a flea circus consisting of n boxes in a row, numbered 1, 2,. . ., n. In each of the
first m boxes there is one flea (m ≤ n). Each flea can jump forward to boxes at a distance
of at most d = n−m. For all fleas all d+1 jumps have the same probability.
The director of the circus has marked m boxes as special targets. On his sign all m fleas
jump simultaneously (no collisions).
1. Calculate the probability that after the jump exactly m boxes are occupied.
2. Calculate the probability that all m marked boxes are occupied.

Problem C (Proposed by Klaas Pieter Hart)

We are given two measurable spaces (X,A) and (Y,B) plus a sub-σ-algebra C of A. We
are also given a real-valued function f on X × Y that is measurable with respect to the
σ-algebra A⊗ B generated by the family {A × B : A ∈ A, B ∈ B}. Furthermore, each
horizontal section fy is measurable on X with respect to C. Prove or disprove: f is mea-
surable with respect to C⊗ B.

Problem * (Proposed by B. Sury)

Prove or disprove that if
(2n+1

n
)
≡ 1 mod n2 + n + 1 where n2 + n + 1 is a prime, then

n = 8.

Edition 2005/4
For Session 2005/4 we received submissions from Peter Vandendriessche, Vladislav
Frank, Arne Smeets, Jan van de Lune, en P.G. Kluit.
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k=1
1

k(k+1) = 1. Consequently partial sums must satisfy

∑
k ∈K

1
k(k + 1)

< 1.

Show that for every q ∈ Q satisfying 0 < q < 1, there exists a finite subset K ⊆ N so that

∑
k ∈K

1
k(k + 1)

= q.

Solution This problem was solved by Peter Vandendriessche, Vladislav Frank and Arne
Smeets. The solution below is based on that of Vladislav Frank.
First note that 1

k(k+1) = 1
k −

1
k+1 . Hence 1

k(k+1) + 1
(k+1)(k+2) + . . . + 1

(k+n−1)(k+n) = 1
k −

1
k+1 + 1

k+1 − . . . + 1
k+n−1 −

1
k+n = 1

k −
1

k+n . Consequently it suffices to represent every
rational number between 0 and 1 as 1

a1
− 1

a2
+ . . .− 1

a2k
, where a1 ≤ a2 ≤ a3 . . . ≤ a2k. If

two consecutive numbers are equal, they simply cancel out, so we allow equal numbers.
This will be useful in final step of proof.
Let a

b be our rational number. There is a natural number n such that 1
n+1 < a

b ≤ 1
n .

Consider x = 1
n −

a
b = b−an

bn . The numerator of this fraction is non-negative because
a
b ≤

1
n , but less than a, the numerator of a

b , because b− a(n + 1) < 0.
We have a

b = 1
n − x. We now apply the same algorithm to x. Let m be a natural number

such that 1
m+1 < x ≤ 1

m . The claim is that m ≥ n. Namely, x = b−an
bn < a

bn ≤ 1
n2 , hence

m ≥ n2 + 1 > n.
If we continue this algorithm, we obtain a

b = 1
a1
− ( 1

a2
− ( 1

a3
− (. . . − ( 1

ax
) . . .))). Notice

that the algorithm can only be repeated finitely many times, as the numerator decreases
at each step. We now have a

b = 1
a1
− 1

a2
+ 1

a3
− . . .± 1

ax
. If x is even we are done.

In other case we may assume that ax > ax−1 and change 1
ax

into 1
ax−1 −

1
ax(ax−1) . Here

a1 ≤ a2 ≤ . . . ≤ ax−1 ≤ ax − 1 ≤ ax(ax − 1) and we are done. Of course ax 6= 1, as
otherwise a

b = 1
1 = 1 which is impossible.

As a generalization, V. Frank shows that for any irrational number in the interval [0,1]
there exists an infinite sum.

Problem 2005/4-B We consider the progressive arithmetic and geometric means of the
function sequence fn(x) = xn−1 , n ∈ N, x > 0, x 6= 1. These are

An = An(x) =
1
n

(1 + x + x2 + · · · + xn−1) =
xn − 1

n(x − 1)

and Gn = Gn(x) = (x1+2+···+(n−1))
1
n = x

n−1
2 .

The Martins-property reads An+1/An ≥ Gn+1/Gn. In our case this gives

n
n + 1

xn+1 − 1
xn − 1

≥
√

x.

Prove, more generally, that

a
a + 1

xa+1 − 1
xa − 1

≥
√

x for a > − 1
2

, x > 0, x 6= 1.

Solution This problem was solved by Jan van de Lune, Peter Vandendriessche, Vladislav
Frank and Arne Smeets. The solution below is based on that of Peter Vandendriessche.
Let f (t) be a (smooth) non-negative function that is convex on [a, b] and let [x, y] ⊂ [a, b]
such that x + y = a + b. We then have∫ b

a f (t)dt
b − a

≥
∫ y

x f (t)dt
y − x

.
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g(t) = f (x) +
( f (y) − f (x))(t − x)

y − x
.

g(t) is the line through the points (x, f (x)) and (y, f (y)). Notice that the convexity of f
gives

∫ y
x g(t)dt ≥

∫ y
x f (t)dt. Let

h(t) = g(t) −
∫ y

x
g(t)dt +

∫ y

x
f (t)dt ,

then ∫ y

x
h(t)dt =

∫ y

x
f (t)dt .

By convexity we have f (t) ≥ g(t) ≥ h(t) for t ∈ [a, x] ∩ [y, b]. Since h(t) is the equation
of a line and x + y = a + b, we have∫ b

a h(t)dt
b − a

=
∫ y

x h(t)dt
y − x

.

Combining these results we find:∫ b
a f (t)dt
b − a

=

∫ x
a f (t)dt +

∫ b
y f (t)dt

b − a
+

∫ y
x f (t)dt
y − x

≥
∫ x

a h(t)dt +
∫ b

y h(t)dt

b − a
+

∫ y
x h(t)dt
y − x

=
∫ b

a h(t)dt
y − x

=
∫ b

a f (t)dt
y − x

.

Problem B is a special case of this result. For x ∈ R +
0 , x 6= 1, let f (t) = xt. Then

f ′′(t) = xt log2(x) ≥ 0. Therefore f (t) is convex. We have to distinguish two cases:
− a ∈ (− 1

2 , 0). Then 0 < a + 1
2 < a + 1. Apply the lemma to the interval [a + 1

2 , 1
2 ] ⊂

[0, a + 1].
− a ∈ (0, ∞). Then 0 < 1

2 < a + 1
2 < a + 1. Apply the lemma to the interval [ 1

2 , a + 1
2 ] ⊂

[0, a + 1].
Notice that in the first case the sign in both numerator and denominator changes on the
right side of the equation: ∫ a+1

0 xtdt
a + 1

≥

∫ a+ 1
2

1
2

xtdt

a
,

from which we can deduce

a
a + 1

· xa+1 − 1√
x · (xa − 1)

≥ 1 .

It is easy to prove the generalization

z − y
a − b

· xb−a − 1
xz−y − 1

≥ xy−a ,

where y + z = a + b and − 1
2 < a < y < z < b.

Problem 2005/4-C A finite geometry is a geometric system that has only a finite number
of points. For an affine plane geometry, the axioms are as follows:
1. Given any two distinct points, there is exactly one line that includes both points.
2. The parallel postulate: Given a line L and a point P not on L, there exists exactly one

line through P that is parallel to L.
3. There exists a set of four points, no three collinear.
We denote the set of points by P , and the set of lines by L . Let σ be an automorphism of
(P , L ) (meaning that three collinear points of P are mapped onto three collinear points
of P and three non-collinear points of P are mapped onto three non-collinear points of
P ). Prove that there exists a point P ∈ P with σ(P) = P or a line L ∈ L with σ(L) = L or
σ(L) ∩ L = ∅.
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The solution below is based on their solutions.
First we will prove the following lemma:

Lemma. Let M, L ∈ L , then |M| = |L|.

Proof. Suppose that |M∩ L| > 1 then M = L. Therefore we may assume that |M∩ L| = 1.
Let |M| = m and |L| = l. By Axiom 3 we know that there exists a P ∈ P such that P 6∈ L
and p 6∈ M. Through P we can construct 1 line parallel to L and l lines that intersect L
in its l points. In the same way we can construct, through P, 1 line parallel to M and m
lines that intersect M in its m points. Let us now determine the number of lines through
P; this equals l + 1 and m + 1. If |M ∩ L| = 0, pick points a ∈ L and b ∈ M. Let N be the
line through a and b. Then by the previous argument |L| = |N| and |M| = |N|. �

We conclude that all lines consist of an equal number of points, say s.

Lemma. |P | < |L |.

Proof. Let |P | = p and |L | = l. Every two points define a line, and there are 1
2 p(p − 1)

pairs of points. Each line has s points and is counted 1
2 s(s − 1) times. Therefore l =

p(p−1)
s(s−1) . In order to show that p < l we have to prove that s(s − 1) < p − 1 or p >

s2 − s + 1. The third axiom tells us that there exist three non-collinear points a, b, c ∈ P .
Let L be the line through a and b, M the line through a and c. By the parallel postulate,
through every point on L there is exactly one line parallel to M. Starting with s points on
L, we find s lines, all consisting of s points. Therefore p ≥ s2. �

Suppose that σ(p) 6= p, for all p ∈ P , and that σ(L) 6= L and σ(L) ∩ L 6= ∅ for all
L ∈ L . Consider the function µ : L → P given by µ(L) = σ(L) ∩ L. µ is well defined
since σ(L) ∩ L is always a unique point. Now suppose that µ(L) = µ(M) or σ(L) ∩ L =
σ(M) ∩ M = p, and σ(q) = p. Then q ∈ L and q ∈ M. We know that q 6= p. Therefore
L = M and µ is injective. However, if µ is injective, then |P | ≥ |L |, which contradicts
the previous lemma.

Problem 2005/4-* We have ∑∞
k=2 1/k2 = (π2/6)− 1. Consequently partial sums must

satisfy
∑

k ∈K

1
k2 <

π2

6
− 1.

Given any q ∈ Q satisfying 0 < q < (π2/6) − 1, does there exist a finite subset K ⊆
N \{1} so that

∑
k ∈K

1
k2 = q?

Solution This problem was solved by P.G. Kluit. The solution below is based on his
solution.
Let q = ∑ k−2

i , where ki are different integers. Let m be the least common multiple of all ki
in the sum. For each such ki a number k′i exists such that kik′i = m. Then q = 1

m2 · ∑(k′i)
2,

that is, q can be written as a fraction with denominator m2 and the numerator a sum of
squares of different divisors of m. This raises the question: given m, which numbers can
be written as sums of squares of different divisors of m? We will show that for highly
composite numbers m, more specifically m = n!, the answer will be that sufficiently
many integers can be written as sums of squares to prove the problem.

Lemma. Let n ≥ 5 be an integer and let 3 = d1 < d2 < . . . dm = n!/3 be all divisors of n!
between 3 and n!/3. Then 2d2

k > d2
k+1 for 1 ≤ k < m.

Proof. Let us prove this by induction. For n = 5 the divisors d1 , . . . , d12 are 3, 4, 5, 6, 8,
10, 12, 15, 20, 24, 30, and 40. It is easy to verify the lemma.
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divisors of (n + 1)!. The divisors of (n + 1)! that are less than n!/3 clearly satisfy the
lemma. Even though there may be more divisors, this cannot influence the inequality.
Suppose that dk and dk+1 are two successive divisors of (n + 1)!, with n!/3 ≤ dk <

dk+1 ≤ (n + 1)!/3. Let dkd′k = dk+1d′k+1 = (n + 1)!. Then d′k+1 and d′k are two successive
divisors of (n + 1)! with 3 ≤ d′k+1 < d′k ≤ 3(n + 1). As for n ≥ 5 we have 3(n + 1) <

n!/3, this suffices to conclude the proof. �

Lemma. Let n ∈ [129, 256] be an integer. Then n can be represented as a sum of different squares
d2

1 + . . . + d2
k , where 1 ≤ d1 < . . . < dk ≤ 10.

Proof. The proof can be found by the enumeration of 128 representations. There is a
slightly shorter proof which will be left to the reader. �

Lemma. Let n ∈ N , n ≥ 11. Then every integer x ∈ [129,σ2(n!)− n!2 − 129] can be repre-
sented as x = ∑ d2

k , where the dk are different divisors of n!.
Here σm(x) = ∑d|x dm.

Proof. Let Lkn = [129, t] be the longest interval in [129, ∞) whose integers can all be
represented as a sum of different squares of some of the first k divisors of n!. Let lkn =
|Lkn|, the length of the interval. In the proof the notation will be abbreviate to lk = |Lk| if
it is clear which n is meant.
In the second lemma we saw that l10 = 128. Notice that l11 = 249 (= 128 + 121). Any
x ≤ 256 is represented by the divisors lesser than or equal to 10, while the integers
257 ≤ x ≤ 377 are represented using 112.
We will show in general that lk+1 = lk + d2

k+1 by induction, as long as dk+1 < n!/2.
The proof will be given in two steps. In the first step we prove that 2d2

k+1 < lk+1 given
2d2

k < lk and lk+1 = lk + d2
k+1. In the second step we will prove that lk+1 = lk + d2

k+1
given 2d2

k < lk. Using these two steps and the basic assumption (k = 11) we can prove
for arbitrary k that lk+1 = lk + d2

k+1.

First step
Given 2d2

k < lk and lk+1 = lk + d2
k+1 we find that 2d2

k+1 < lk+1.

Proof. The first lemma tells us that d2
k+1 < 2d2

k . Therefore we have 2d2
k+1 < d2

k+1 + 2d2
k <

d2
k+1 + lk < lk+1. �

Second step
Given 2d2

k < lk we find that lk+1 = lk + d2
k+1.

Proof. The proof is comparable to the proof above. �

For x ∈ Lk, it is clear that x ∈ Lk+1 as well, while for the numbers x ∈ Lk+1\Lk notice
that lk + 128 < x ≤ lk + d2

k+1 + 128. If we use the number d2
k+1 to represent the sum, we

find for the rest y = x− d2
k+1 that lk − d2

k+1 + 128 < y ≤ lk + 128. Using Lemma 1 again
we have lk − d2

k+1 + 128 > lk − 2d2
k + 128 > 128. Therefore y ∈ Lk.

We can rewrite the results lk+1 = lk + d2
k+1 as

lk =
k

∑
i=1

d2
i − 128,

for k ≤ m, where dm = n!/3.
In order to complete the proof of Lemma 3 we need to prove that l(m+1)n = lmn + d2

n!/2,
where dm+1 = n!/2. Notice that 1

4 < 1
9 + 1

16 + 1
25 + 1

36 + 1
49 . Therefore for arbitrary

x ∈ L(m+1)n, we find either x ∈ Lmn or x− 1
4 n!2 ∈ Lmn. Now we find

lk =
k

∑
i=1

d2
i − 128,



152 NAW 5/7 nr. 2 juni 2006 Problemen/UWC

Op
lo

ss
in

ge
n for k ≤ m + 1, where dm+1 = n!/2. This concludes the proof of this lemma. �

Theorem. For every q ∈ Q such that 0 < q < π2

6 − 1, a finite subset K ∈ N exists, such that

∑
k ∈K

k−2 = q

.

Proof. Let q ∈ Q with 0 < q < π2

6 − 1. We can find an n ∈ N fulfilling each of the three
following properties by choosing n sufficiently large. Moreover each of these properties
is monotonic, meaning that if it is true for some n0, it will be true for all n > n0
− n ≥ 11,
− If q = a/b, where a and b have no common divisors, then b divides n!2,
− If q = x/(n!)2, then n is chosen such that 128 < x < σ2(n!)− (n!)2 − 128
To prove the existence of 3) notice that

lim
n →∞ σ2(n!) − (n!)2 − 128

n!2
=

π2

6
− 1.

Now Lemma 3 may be applied, showing that x can be represented as sum of squares of
different divisors of n!. This gives us the sought for representation of q. �

Remark
A solution of the Star Problem turns out to have been published in Ron Graham’s ’On
Finite Sums of Unit Fractions’, Proc. London Math. Soc.(14), 1964, pp. 193–207. The basic
ideas behind the two solutions are similar. Graham starts with a multiplicative set S,
which in the Star Problem is the set of squares. Graham then defines P(S), the set of
sums of elements of S. Using the notation S−1 for the set of inverses of the elements of
S, Graham shows that if P(S) contains all positive integers, up to a finite number, |S| is
finite, and sn+1/sn is bounded, then p

q ∈ P(S−1) whenever q|s for some s ∈ S. Moreover,

for every ε > 0 there is an s ∈ P(S−1) such that s− p
q < ε.

Results of Session 2005/4

Name A B C Total
1. Vandendriessche 8 10 8 104
2. Smeets 8 8 – 72
3. Frank 8 6 – 64

Final Table after Session 2005/4
We give the top 3, the complete table can be found on the UWC website.

Name Points
1. Smeets 48
2. Syb Botma 42
3. DESDA 38


