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The Universitaire Wiskunde Competitie (UWC) is a ladder competition for students.
Others may participate ’hors concours’. The results can also be found on internet at:
http://www.nieuwarchief.nl/uwc

This issue contains four problems A, B, C, and D. A total of 12 points can be obtained
for each problem: 8 for a complete and correct answer, at most 2 points for elegance, and
at most 2 points for possible generalisations. To compute the overall score, the totals for
each problem are multiplied by a factor 3, 4, 5, and 5, respectively.
The three best contributions will be honoured with a Sessions Prize of respectively 100,
50 and 25 Euro. The points of the winners will be added to their total after multiplication
by a factor of respectively 0, 1/2 and 3/4. The highest ranked participant will be given
a prize of 100 Euro, after which he/she starts over at the bottom of the ladder with 0
points.
Twice a year there is a Star Problem, of which the editors do not know any solution.
Whoever first sends in a correct solution within one year will also receive a prize of 100
Euro.
Group contributions are welcome. Submission by email (in LATEX ) is preferred; partici-
pants should repeat their name, address, university and year of study at the beginning
of each problem/solution. The submission deadline for this session is June 1, 2006.
The Universitaire Wiskunde Competitie is sponsored by Optiver Derivatives Trading,
and the Vereniging voor Studie- en Studentenbelangen in Delft.

Rectification
In Session 2005/4 of the UWC, the names of the proposers of the resolved problems and
those of the new problems were inverted.
The problems of Session 2005/2 placed with solutions were proposed by: Unknown
(2005/2-A), Matthijs Coster (2005/2-B,D), and Roger Hendrickx and Rob van der Waall
(2005/2-C). The new problems were proposed by: Matthijs Coster (2005/4-A,D), Jan van
de Lune (2005/4-B), and Leen Bleijenga (2005/4-C).
In addition to the 5 solutions mentioned for problem 2005/2-C, we also received a very
detailed solution by the two proposers, with a reference to the Ph.D. thesis of E. Barbette
(Paris, 1910); p. 23 of this thesis contains a theorem equivalent to parts 1 and 2 of the
proposed problem.

Problem A (Proposed by Jurjen Bos)

We are given a lamp and a sufficiently large number of synchronised time switches that
can be turned on or off by the quarter of an hour and have a revolution time of 24 hours.
We are going to mount a finite number of switches on top of each other, and put the lamp
on top of the result. At the beginning, all time switches are synchronised at 24:00 hours.
We define a period to be a time span in which the lamp is on for at least one quarter of
an hour, and is off for at least one quarter of an hour, and which repeats itself. Which
periods, shorter than 4 days, can be constructed?

Problem B (Proposed by Matthijs Coster)

Let P = (0, 0), Q = (3, 4). Find all points T = (x, y) such that
• x and y are integers,
• the lengths of line segments PT and QT are integers.

Problem C (Proposed by Johan Bosman)

Let n ≥ 1 be an integer and f (x) = anxn + · · ·+ a0 be a polynomial with real coefficients.
Suppose that f satisfies the following condition:

| f (ξ)| ≤ 1 for each ξ ∈ [−1, 1].
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the reciprocal polynomial of f . Show that g satisfies

|g(ξ)| ≤ 2n−1 for each ξ ∈ [−1, 1].

Problem D (Proposed by Michiel Vermeulen)

This problem was proposed as Problem 2005/3-B(2). Since no solutions were submitted,
the editors of the problem section have decided to reformulate this part.
Let G be a group such that the maps fm , fn : G → G given by fm(x) = xm and fn(x) = xn

are both homomorphisms.
• Show that G is Abelian if (m, n) is one of the pairs (4,11), (6,17).
• Show that there are infinitely many pairs (m, n) such that G is Abelian.
• Show that for every m there are infinitely many n such that G is Abelian.
• Given a pair (m, n), how are we able to predict whether G is Abelian?

Edition 2005/3
For Session 2005/3 of the Universitaire Wiskunde Competitie we received submissions
from DESDA (Nijmegen), Ruud Jeurissen, the team A.P.M. Kupers en J.W.T. Konter, and
Jaap Spies.

Problem 2005/3-A In what follows f , g are two continuous functions.
1) Determine f : R → R and g : R → R such that f ◦ g(x) = x + 1 and g ◦ f (x) = x− 1.
2) Determine f : R+ → R and g : R → R such that f ◦ g(x) = x + 1 and g ◦ f (x) = 2x.
As usual, the symbol ‘◦’ denotes the composition of functions and R+ the set of all strict
positive real numbers.

Solution This problem was solved by DESDA (Nijmegen), Ruud Jeurissen and the team
A.P.M. Kupers en J.W.T. Konter. The solution below is based on that of Ruud Jeurissen.
1) f (x) + 1 = f ◦ g ◦ f (x) = f (x − 1), so there is an a such that f (x) = −x + a. g(x)−
1 = g ◦ f ◦ g(x) = g(x + 1), so there is a b such that g(x) = −x + b. Then f ◦ g(x) =
f (−x + b) = x− b + a, so we must have a− b = 1, in which case g ◦ f (x) = g(−x + a) =
x− a + b = x− 1, as desired.
2) Since f ◦ g is defined, g can only take positive values. For x > 0 we have f (x) +
1 = f ◦ g ◦ f (x) = f (2x), so there is a b such that f (x) = 2log x + b. For all x we
have 2g(x) = g ◦ f ◦ g(x) = g(x + 1), so there is an a such that g(x) = 2x+a. Then
f ◦ g(x) = f (2x+a) = x + a + b, so we must have a + b = 1, in which case g ◦ f (x) =
g(2log x + b) = x · 2b+a = 2x, as desired.

Problem Generalisation The team A.P.M. Kupers en J.W.T. Konter considered the follow-
ing generalisation of part 2):
Determine f and g such that f ◦ g(x) = x + 1 and g ◦ f (x) = ax + b. They found that f
and g must satisfy

f (x) =
Log

(
(ax+b)(a−1)+b

b+ca−c

)
Log(a)

, g(k) =
(ak − 1)b

a − 1
+ c · ak

Problem 2005/3-B
1. Let G be a group and suppose that the maps f , g : G → G with f (x) = x3 and

g(x) = x5 are both homomorphisms. Show that G is Abelian.
2. In the previous exercise, by which pairs (m, n) can (3, 5) be replaced if we still want

to be able to prove that G is Abelian.
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Konter. The solution below is based on that of Jaap Spies.
By assumption we have (ab)5 = a5b5 for all a, b ∈ G. We easily see that (ba)4 = a4b4.
Likewise, (ab)3 = a3b3 for all a, b ∈ G and hence (ba)2 = a2b2. So (a2b2)2 = a4b4

and b2a2 = a2b2. Hence squares commute in G. Now a4b4 = b4a4 = (ba)4 and so
b3a3 = (ab)3 = a3b3. Hence cubes also commute in G. In the solution of Problem
2003/4-B of the UWC, it was proved that in this case G is Abelian.

Problem 2005/3-C For s > 1 define

ψ1(s) = ∏
p

(1 − 1
ps )−1 with p over all primes ≡ 1 mod 4

and
ψ3(s) = ∏

q
(1 − 1

qs )−1 with q over all primes ≡ 3 mod 4.

Describe how lims↓1
ψ3(s)
ψ1(s) can be computed to ‘any’ degree of (high) accuracy (precision).

(The use of an algebra-package is permitted.)

Solution This problem has been solved by the team A.P.M. Kupers en J.W.T. Konter.
The solution below is based on their solution. It has been shortened for publication; the
complete text, with references and calculations, can be found on the UWC website.

The relation between ψ1, ψ3 and the ζ-function
The Riemann-Zeta function is given by

ζ(s) =
∞
∑

n=1

1
ns .

It can also be written as a product over the prime numbers:

ζ(s) =
∞
∏
n=1

(
1 − 1

ps
n

)−1

where pn is the n-th prime number. As all odd prime numbers are either 1 or 3 modulo
4, we can rewrite this as:

ζ(s) =
1(

1 − 1
2s

)ψ1(s)ψ3(s).

Is the ratio ψ3(1)/ψ1(1) a real number?
Both ψ3(1) and ψ1(1) are infinite. Is the ratio ψ3(1)/ψ1(1) a real number? Using the
number theoretic character χ4, we can prove that this ratio is equal to (4/π)ψ3(2), which
is indeed a real number.

The ratio ψ1(1)/ψ3(1)
Likewise, we can show that ψ1(1)/ψ3(1) is equal to (2/π)ψ1(2).

The idea behind the approximation
If we divide the expression that we found for ψ3(1)/ψ1(1) by the one we found for
ψ1(1)/ψ3(1), we obtain

(
ψ3(1)
ψ1(1)

)2
= 2

ψ3(2)
ψ1(2)

,
ψ3(1)
ψ1(1)

=

√
2
ψ3(2)
ψ1(2)

.

The idea behind the approximation is that ψ3(2)/ψ1(2) can again be written as the
square root of a constant times ψ3(4)/ψ1(4), etc. This turns out to be correct.
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The Dirichlet L-series is defined as

Lk (s, χk) =
∞
∑

n=1

χk(n)
ns .

We can show that
L4 (s, χ4) = ∏

n

(
1 − χ4(pn)

ps
n

)−1

Now L4 is equal to the Dirichlet β-function, that is,

L4 (s, χ4) = β(s) =
∞
∑

n=0

(−1)n

(2n + 1)s

In particular, the sum in the β-function is over all integers, and not just the primes.

The ratios ψ3(2n)
ψ1(2n) and ψ1(2n)

ψ3(2n)
If we divide the ratioψ3(2n)/ψ1(2n) for n∈ N∪ {0} byψ3(2n+1), then through calcula-
tions as above, we obtain

ψ3(2n)
ψ3(2n+1)ψ1(2n)

= ∏
p

(
1 − 1

p2n

)
∏

q

(
1 +

1
q2n

)
.

The result is equal to [L4(2n , χ)]−1, which in turn is equal toβ(2n)−1. Forψ3(2n)/ψ1(2n)
we therefore find the expression ψ3(2n+1)/β

(
2n)

. Let us now consider ψ1(2n)/ψ3(2n):

ψ1 (2n)
ψ1 (2n+1)ψ3 (2n)

= ∏
q

(
1 − 1

q2n

)
∏

p

(
1 +

1
p2n

)
.

We can again recognise the Dirichlet L-series in here, and after some calculation, we find

ψ1(2n)
ψ3(2n)

=
β (2n)(

1 − 1
22n+1

)
ζ (2n+1)

ψ1

(
2n+1

)

A recursive formula
If we now divide the expression we found for ψ3(2n)/ψ1(2n) by the one we found for
ψ1(2n)/ψ3(2n), we find

(
ψ3 (2n)
ψ1 (2n)

)2
=

(
1 − 1

22n+1

)
ζ

(
2n+1)

β (2n)2
ψ3

(
2n+1)

ψ1 (2n+1)

ψ3 (2n)
ψ1 (2n)

=

√√√√(
1 − 1

22n+1

)
ζ (2n+1)

β (2n)2
ψ3 (2n+1)
ψ1 (2n+1)

.

This is recursive formula that allows us to deduce the ratioψ3(2n)/ψ1(2n) from the ratio
ψ3(2n+1)/ψ1(2n+1). Each time this recursive formula is applied to a ratio ψ3(s)/ψ1(s),
s is divided by 2. This way we can approximate the ratio ψ3(1)/ψ1(1). We do not need
to use sums or products over primes because both ζ and β can be approximated without
these, for example using an algebra-package such as Mathematica or Matlab. Consider the
following limits:

lim
s →∞ψ1(s) = lim

s→∞ ∏
p

1(
1 − 1

ps

) = 1, lim
s →∞ψ3(s) = lim

s→∞ ∏
q

1(
1 − 1

qs

) = 1

Consequently the following limit also tends to 1:

lim
s →∞ ψ3(s)

ψ1(s)
= 1

We can therefore approximate ψ3(1)/ψ1(1) as follows:
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• Approximate ψ3(2n)
ψ1(2n) by supposing that ψ3(2n)

ψ1(2n) = 1.

• Use the recursive formula a number of times to obtain ψ3(1)
ψ1(1) .

The ratio ψ3(1)/ψ3(1) can thus be approximated by the following limit:

lim
n →∞

√√√√√√√
(

1 − 1
22

)
ζ(2)

β(1)2

√√√√√√
(

1 − 1
24

)
ζ(4)

β(2)2

√√√√√(
1 − 1

28

)
ζ(8)

β(4)2 ...

√√√√(
1 − 1

22∗2n

)
ζ (2n+1)

β (2n)2 ∗ 1

The precision of the approximation depends on three factors:
• The number n: the larger n is, the better the approximation.
• The precision used in the approximation of the ζ and β-functions: the more precise

these are, the better the approximation of the ratio. Nowadays, with algebra-packages
such as Mathematica and Maple, this is no problem.

• The precision used in calculation the square root: don’t forget that the square root is
also an approximation. Mathematica and Maple have no problem with this.

A trial approximation with Mathematica
The following functions approximate ψ3(s) and ψ1(s) by only considering the first n
primes.

p1[s\_, n\_] :=
Module[{x = 1}, {pmo1 =
DeleteCases[
Table[If[Mod[Prime[i], 4] == 1, Prime[i], 0],

{i, 1, n}], 0];
Product[(1 - pmo1[[i]]$\hat{}$(-s))$\hat{}$-1,

{i, 1, Length[pmo1]}]}][[1]]

p3[s\_, n\_] :=
Module[{x = 1}, {pmo3 =
DeleteCases[
Table[If[Mod[Prime[i], 4] == 3, Prime[i], 0],

{i, 1, n}], 0];
Product[(1 - pmo3[[i]]$\hat{}$(-s))$\hat{}$-1,

{i, 1, Length[pmo3]}]}][[1]]

Let us consider the ratio for the first 10000 primes. Timing[] determines the time it takes
Mathematica to compute this.

p3p1 = Timing[N[p3[1, 100000]/p1[1, 100000], 20]]
37.594 Second, 1.4871655814206811459

Mathematica takes about 37,5 seconds to do this.
The β-function is a sum, as is the ζ-function, but it is not standard in Mathematica. We
must first define it:

DB[x\_, k\_] := Sum[(-1)$\hat{}$n/(2n + 1)$\hat{}$(x), {n, 0, k}]

BLIM[n\_] :=
Module[{x = n, expr = 1},
While[x != -1,
expr = Sqrt[(1 - 2$\hat{}$(-2$\hat{}$(x + 1)))*
Zeta[2$\hat{}$(x + 1)]/(DB[2$\hat{}$x,

$\setminus$[Infinity]])$\hat{}$2*expr]; x = x - 1]; expr]

Let us first make a table with the approximations for n = {1, 2, 3, 4, 5}, then with the dif-
ferences between the approximations and the value computed above with 10000 primes.

approximation = Table[Timing[N[BLIM[i], 20]], {i, 1, 5}]

{{0.032 Second, 1.4830557664224863250}, {0.046 Second,
1.4872121328716638225}, {0.094 Second,
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1.4872400265843418256}, {0.188 Second, 1.4872400265843418507}}

Even the best approximation only takes 0,2 seconds. But how large is the deviation?

Table[approximation[[i]][[2]] - p3p1, {i, 1, 5}]

-0.0041098149981948210, 0.0000465514509826766,
0.0000744430049271689, \ 0.0000744451636606797,
0.0000744451636607048

This approximation is so much better than the brute-force method with the prime num-
bers that even for n = 2 it is already very close. And it is almost 150 times faster.

Possible generalisations
For this case we worked with the number theoretic character χ4 and the corresponding
L-series. It is possible to generalise the solution to other number theoretic characters.
For example, for the functions ψ5 and ψ1, for which we would use the character χ6, the
following holds:

ψ1(s) = ∏
p

1(
1 − 1

ps

)
where p runs over all primes that are 1 modulo 6.

ψ5(s) = ∏
q

1(
1 − 1

qs

)
where q runs over all primes that are 5 modulo 6.
We can therefore approximate the ratio ψ5(1)/ψ1(1) as follows:
• Choose a positive integer n.

• Approximate
ψ5

(
2n

)
ψ1

(
2n

) by supposing that
ψ5

(
2n

)
ψ1

(
2n

) = 1

• Use the following recursive formula a number of times to obtain ψ5(1)
ψ1(1) :

ψ5
(
2n−1)

ψ1 (2n−1)
=

√√√√√
(

1 − 1
22n

) (
1 − 1

32n

)
ζ (2n)

L6 (2n−1 , χ6)
2

ψ5 (2n)
ψ1 (2n)

The extra term with 3 is due to the fact that the character χ6 excludes 2 and 3, which are
not coprime with 6, while χ4 only excludes 2.

Results of Session 2005/3

Name A B C Total
1. A.P.M. Kupers en J.W.T. Konter 10 6 8 94
2. DESDA 6 - - 18

Final Table after Session 2005/3
We give the top 3, the complete table can be found on the UWC website.

Name Points
1. Hendrik Hubrechts 90
2. Syb Botma 42
3. DESDA 38


