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Onderwijs

Card games with ideals

Een kaartspel als illustratie voor een identiteit over tweezijdige ide-

alen? Het bestaat, en het laat zien hoe met inventiviteit en fantasie

een abstracte variant van de Chinese reststelling tot leven komt.

Birgit van Dalen, student wiskunde aan de Universiteit Leiden, legt

uit.

Lenstra’s Wondrous Card Game is a mathematical card game for two

players. It was invented by Hendrik Lenstra in order to solve

a problem in ring theory. To play the game you need a math-

ematical stack of cards, consisting of infinitely many cards that

are coloured at both sides. There is a finite number n ≥ 2 of

colours, and the two sides of each card have different colours. As

many cards as needed are available of each of the different types

of cards, corresponding with the different pairs of colours. In ad-

dition to that, there is exactly one joker, which has only one side

and can assume any of the n colours.

All else you need for this game is a pencil and a piece of pa-

per. Before the start of the game, the two players agree on a cer-

tain number of colour sequences, and they write these sequences

down. Each sequence should contain every colour exactly once,

and the order of the colours in each sequence is determined by

the players. These sequences, as well as their number, can change

with every game that is played and can be used to vary the diffi-

culty of the game. The first player’s objective is to create one of

these sequences with the cards, so the more sequences, the easier

the game is for the first player.

When the sequences have been written down, the game starts.

The first player, whom we will call player A, takes any finite num-

ber of cards and lays them in a long row. When he is finished, the

second player, player B, for every card decides on a side to turn

up. Only the colour on the side turned up will matter for the cre-

ation of the sequences.

After player B has finished, the winner is determined. If the

row of cards, when read from left to right, contains one of the

colour sequences agreed on in advance, player A wins the game.

In matching these sequences, cards in the row may be skipped, as

long as the relative order of the colours is preserved. The joker

may be part of a sequence and will in that case assume any colour

player A assigns to it. If there is no such sequence available in the

row of cards, player B wins the game.

Before giving an example, we shall introduce some notation.

The collection of colours will henceforth be called V. We had al-

ready agreed that V contains n elements. The collection of colour

sequences will be called T. Rather than using the full names of

the colours, we will use the numbers 1, 2, . . . , n to indicate the

colours.

Example 1. n = 4, V = {1, 2, 3, 4}, T = {1234, 4231, 1342}. Play-

er A lays down the following row of cards. Each card is represent-

ed by a column containing the two colours on the card. The joker

is represented by J.

1 3 2 4 1

2 2 4 3 2
J

3 1

2 2
.

Player B may now choose the sides of the cards that will be turned

up. If he chooses, for example, the row

1 3 2 4 1 J 3 1,

player A wins, since this row contains the sequence 4231 (with

the joker as 2). If, on the other hand, player B chooses

2 3 2 3 2 J 3 2,

he wins: the row contains neither colour 4 nor colour 1, and as the

joker can only assume one of those colours and each sequence in

T contains all four colours, this row can never contain a sequence.

A condition on T

We would now like to know which of the players can win this

game. This depends heavily on the set T. Suppose, for example,

that T is empty. Then it follows directly from the rules that player

B wins the game. On the other hand we can also easily construct

a T such that player A wins the game.
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Example 2. T = {123 . . . n, n . . . 321}. For n = 2 we have T =

{12, 21} and we see immediately that player A wins with the row

of cards

J
1

2
.

We now use induction to n to show that player A can always

win in this case. Suppose Zn−1 is a winning row of cards

for T = {123 . . . (n − 1), (n − 1) . . . 321}. Now take T =

{123 . . . n, n . . . 321} and observe the following row of cards:

n n n · · · n

1 2 3 · · · n − 1
Zn−1

n · · · n n n

n − 1 · · · 3 2 1
.

First note that Zn−1 contains the joker: if it did not, player B could

pick one colour and turn that to the bottom on each card it appears

on, so this colour would not be visible in the row and therefore

none of the sequences would appear.

Now look at the left side of the row of cards. If player B chooses

the colours 1 2 3 . . . n − 1, the joker can assume colour n and

player A will win with the sequence 123 . . . n. So player B is

forced to choose colour n at least once on the left side of Zn−1.

In the same way, player B is forced to choose n at least once on

the right side of Zn−1. Now we know that Zn−1 is a winning row

for T = {123 . . . (n− 1), (n− 1) . . . 321}, meaning that at least one

of those sequences appears in Zn−1, regardless of what player B

does. Together with the n left and right, we now see that either

123 . . . n or n . . . 321 appears in the full row of cards. So player A

always wins.

Let’s have a closer look at the argument used here to show that

player A always needs the joker. If player B chooses one colour,

say 1, and turns all cards with this colour so that the side with 1

is not visible, then player A is forced to make the joker assume

colour 1. This is a severe restriction, since to construct a sequence

τ every colour to the left of 1 in τ will now have to appear to the

left of the joker in the row of cards, and every colour to the right

of 1 in τ will now have to appear to the right of the joker in the

row.

We introduce a notation for this. Suppose we view τ as a func-

tion that assigns a colour to every place number of the sequence,

such that τ(1) is the first colour in the sequence, τ(2) the second,

and so on, with τ(n) the final colour. The colours left of 1 in the

sequence τ (or rather, the sequence τ(1) τ(2) . . . τ(n) ) we can

now write as τ(i) for each i < τ
−1(1). Similarly, the colours right

of 1 in τ are τ(i) for each i > τ
−1(1).

If player B could force A to use the joker for two different

colours, he would win, since that is impossible. Unfortunately

for player B, things are not that easy. As long as each type of the

cards occurs at least once in the row, player B cannot let two dif-

ferent colours vanish. However, he can split the row in two halves

and let one colour vanish in each half. The most natural way to

do this is obviously to split the row at the joker.

What happens if player B turns colour 1 to the bottom of all cards

to the left of the joker and does the same to colour 2 to the right

of the joker? In order to construct a sequence, player A will have
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to pick either the joker or a card to the right of the joker for colour

1, and either the joker or a card to the left of the joker for colour

2. This means that whatever player A does, colour 1 will always

be to the right of colour 2 in the sequence he constructs. In other

words, player A can only win if there is a sequence τ that satisfies

τ
−1(2) < τ

−1(1).

Player B has a huge advantage here. He can analyse the collec-

tion of sequences T and pick two colours he likes to execute the

above trick with. So for player A to stand a chance, T needs to

satisfy the following condition:

Condition (∗). For all colours v, w ∈ V with v 6= w there exists a τ ∈ T

such that τ
−1(v) < τ

−1(w) .

How player A can win

In example 2 we have seen a set T for which player A can win.

It is immediately obvious that this T satisfies condition (∗). In

fact, this T is the smallest collection of sequences that satisfies the

condition. This means of course that this T has special properties,

but intuitively we feel that the bigger T, the easier player A can

win. Therefore, we hope to find a way for player A to win every

game with a T that satisfies condition (∗).

Let us look carefully at the way player A wins in example 2.

We notice that an important special property of T in example 2 is

that colour n occurs both at the start of a sequence and at the end

of a sequence. This allows player A to force player B to choose n

both to the left and to the right of the joker. We can generalise this

a little.

Suppose a ∈ V is a colour for which there exists a τ such that

τ(1) = a. Then player A can make sure that either he wins or

player B chooses colour a right of the joker at a point in the row

of cards determined by player A. In other words, player A can

make sure colour a appears wherever he wants, as long as it is to

the right of the joker.

Player A can do this by inserting the following set of cards in

the place he likes to the right of the joker:

a a · · · a

τ(2) τ(3) · · · τ(n)

If player B does not choose colour a anywhere in these cards,

he has to choose τ(2), τ(3), . . . , τ(n). Since these cards are lying

somewhere to the right of the joker, the sequence τ is formed, with

the joker assuming colour a = τ(1). So in order to prevent player

A from winning, player B has to choose colour a at least once.

As we see, player A can win if he is able to execute the above

trick with every colour. After all, in that case he can simply force

player B to choose each of the colours to the right of the joker

in the order they appear in one of the sequences. Unfortunately,

there are numerous sets T for which this does not work, like the

one from example 2.

However, we can generalise a bit more. Suppose colour a does

not appear on the first place of a sequence τ , but on the second:

τ(2) = a. Then we can put the following cards to the right of the

joker:

a a · · · a

τ(3) τ(4) · · · τ(n)

Now we are nearly there. If player B does not choose a, the se-

quence τ will nearly appear; only τ(1) and τ(2) = a are not there

yet. Colour a, of course, can be made by the joker. All we now

need to complete the sequence is colour τ(1), say b, to the left of

the joker. If we can force player B to choose b to the left of the

joker, he will also have to choose colour a to the right.

This is where condition (∗) comes in. We know that there is at

least one sequence in T in which a appears to the left of b and at

least one in which a appears to the right of b. Clearly, τ satisfies

the latter. We also pick a sequence σ that satisfies the former. Let’s

call σ−1(a) = m. Now put

a a · · · a

σ(1) σ(2) · · · σ(m − 1)

to the left of the joker and

a a · · · a

σ(m + 1) σ(m + 2) · · · σ(n)

to the right of the joker next to the cards we already had there.

Note that all of these cards exist: as σ(m) = a, none of the colours

σ(i) with i > m is equal to a, and as σ
−1(b) > σ

−1(a) = m, none

of the colours σ(i) with i < m is equal to b.

Now if player B chooses neither a to the right of the joker nor

b to the left of the joker, the sequence σ will appear. If player B

chooses b to the left of the joker but not a to the right of the joker,

the sequence τ will appear. So the only thing left for player B to

do is to choose a to the right of the joker.

We now see that if all n colours occur in either the first or the

second position in a sequence of T, player A can force player B to

choose them all to the right of the joker in the order of one of the

sequences of T. Then player A can win.

This is an encouraging result. Not only have we been able to

generalise a useful principle that we may be able to generalise

even further, we have also explicitly used the condition we im-

posed upon the set T. We may now hope that this condition is not

only necessary, but also sufficient for player A to win the game.

So what to do if a colour a occurs not on the first or second

position in a sequence τ , but even further to the right, say on the

kth position? We then have k − 1 colours left of a in τ . Let’s call

them b1 , b2 , . . . , bk−1. We now want to use condition (∗) and find

a sequence σ that has all of these colours to the right of a. Unfor-

tunately, this is not always possible. All condition (∗) says is that

for each of these colours bi there exists a sequence σi ∈ T such

that σ
−1
i (bi) > σ

−1
i (a), but these sequences are not necessarily all

the same.

We are in luck, however. With a few more cards, we can still

make it work. Let’s call σ
−1
i (a) = mi. We now do for each of

the bi exactly the same thing as we did above for b. We use the

following sets of cards:

Hi =
σi(1) σi(2) . . . σi(mi − 1)

bi bi . . . bi
for k < i ≤ n,

Ki =
σi(mi + 1) σi(mi + 2) . . . σi(n)

a a . . . a
for k < i ≤ n.

Note that we have chosen σi such that all of these cards exist.

If we lay down Hi to the left of the joker and Ki to the right of

the joker, player B will be forced to choose either bi to the left of

the joker or a to the right of the joker. We do this for each i, i < k,
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where k = τ
−1(a). If player B refused to choose a to the right of

the joker, the first half of τ would appear to the left of the joker.

Now we just need to add the other half of τ at the right side:

L =
τ(k + 1) τ(k + 2) . . . τ(n)

a a . . . a
.

The complete row of cards now looks like the following. J repre-

sents the joker.

H1 H2 . . . Hk−1 J K1 K2 . . . Kk−1 L .

If player B does not choose a to the right of the joker, player A

will win, either because one of the σi appears, or because player B

chooses b1 , b2 , . . . , bk−1 to the left and τ(k + 1), τ(k + 2), . . . , τ(n)

to the right, forming the sequence τ .

This can be done for each colour as long as T satisfies (∗), so

by putting the blocks of cards on the right side of the joker in a

certain order player A can make sure one of the sequences of T

appears in the row of cards.

It may seem as though this method requires huge numbers of

cards. It is not nearly as bad as it seems, however. Each pair Hi

and Ki consists of at most n − 1 cards, and there are at most n − 1

of these pairs. The final set of cards L also contains at most n − 1

cards, so for one colour you need fewer than n2 cards (not count-

ing the joker). Since there are only n colours, the total number of

cards will never exceed n3. In practice you need even fewer cards,

as the following example illustrates.

Example 3. Take n = 5 and T = {12345, 45132, 21354, 42315}.

This T satisfies condition (∗), so player A can win. To do so, we

first take a = 3 and τ = 12345. To the left of 3 in this sequence

are 1 and 2. Colour 1 appears to the right of colour 3 in sequence

σ1 = 42315; colour 2 appears to the right of colour 3 in sequence

σ2 = 45132. Player A can now force player B to choose colour 3 to

the right of the joker by laying down the following row of cards:

4 2 4 5 1

1 1 2 2 2
J

1 5 2 4 5

3 3 3 3 3

It is much easier to let 1 and 2 appear to the right of the joker, as

both of these colours occur at the beginning of a sequence:

J
2 3 4 5

1 1 1 1
, J

1 3 5 4

2 2 2 2
.

On the other side of the joker we can do the same with 4, as that

colour occurs at the end of a sequence:

2 1 3 5

4 4 4 4
J.

Now we are already done. We can construct the sequence 45132

by using all of the above and making the joker assume colour 5.

So player A can win this game with the following row of cards:

4 2 4 5 1 2 1 3 5

1 1 2 2 2 4 4 4 4
J

2 3 4

1 1 1
−

5 1 5 2 4 5 1 3 5 4

1 3 3 3 3 3 2 2 2 2
.

The connection with algebra

Now that we know exactly what condition T must satisfy to allow

player A to win, we can easily solve a certain algebraic problem.

Let R be an arbitrary ring and let I, J be two-sided ideals of R

that are coprime. This means that we can find elements x ∈ I and

y ∈ J such that x + y = 1. We now wish to find a relation between

the intersection I ∩ J and the products I J and J I. This is quite easy.

Suppose i ∈ I and j ∈ J are arbitrary elements. One of the main

properties of ideals says that ir ∈ I for all r ∈ R; in particular,

i j ∈ I. Similarly, r j ∈ J for all r ∈ R, hence i j ∈ J. So i j ∈ I ∩ J for

all i ∈ I and j ∈ J; in other words,

I J ⊂ I ∩ J.

Similarly,
J I ⊂ J ∩ I = I ∩ J,

and from this it follows that

I J + J I ⊂ I ∩ J.
(1)

Now let z be an arbitrary element in I ∩ J. Now

z = 1 · z = (x + y)z = xz + yz ∈ I J + J I

since xz ∈ I J and yz ∈ J I. So

I ∩ J ⊂ I J + J I

and hence I ∩ J = I J + J I.

Now we can ask ourselves: is there a shorter way to write I ∩ J in

terms of the products? Perhaps I ∩ J = I J? We want this to hold

for all rings R and all ideals I and J, however, so one counterex-

ample is sufficient to disprove this claim. Such a counterexample

indeed exists.

Example 4. Let n = 2. As ring R we take a subring of the ring of

2 × 2-matrices with entries in Z:

R =

{(

a b

0 c

)

: a, b, c ∈ Z

}

.

It is easy to verify that this is indeed a subring. Now we define

two two-sided ideals of R:

I =

{(

0 b

0 c

)

: b, c ∈ Z

}

.

J =

{(

a b

0 0

)

: a, b ∈ Z

}

.

These ideals are coprime, since

(

0 0

0 1

)

∈ I and

(

1 0

0 0

)

∈ J

and therefore

(

1 0

0 1

)

∈ I + J, which means that I + J = R.

Now for

(

0 b

0 c

)

∈ I and

(

d e

0 0

)

∈ J it holds that
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(

0 b

0 c

) (

d e

0 0

)

=

(

0 0

0 0

)

so I J = {0}. However,

I ∩ J =

{(

0 b

0 0

)

: b ∈ Z

}

6= {0}.

We conclude that I ∩ J 6= I J.

We have now satisfactorily solved this problem with two ideals.

Things become more interesting, however, if we look at n ideals.

So let R once again be an arbitrary ring and let I1 , I2 , . . . , In be

pairwise coprime two-sided ideals. How can we express I1 ∩ I2 ∩

. . . ∩ In in terms of the products of the ideals?

This time we have many more possibilities. There are n! ways to

order the n ideals in a product, and we may have to add two or

more of them. In other words, we are looking for a subset T ⊂ Sn

(with Sn the permutation group) such that

I1 ∩ I2 ∩ . . . ∩ In = ∑
τ∈T

I
τ(1) · · · I

τ(n)
(2)

for all rings R and all pairwise coprime two-sided ideals

I1 , I2 , . . . , In of R.

Using (1), we can show by induction that

I1 ∩ I2 ∩ . . . ∩ In ⊃ ∑
τ∈T

I
τ(1) · · · I

τ(n)
(3)

for all subsets T ⊂ Sn.

We named the subset of permutations T on purpose. If we view

the permutations as orders rather than as functions, we will see

that T is a collection of sequences of ideals: the permutation τ

corresponds with the sequence I
τ(1) · · · I

τ(n). So this T looks very

similar to the T we used in the card game, and we will in fact

prove that the condition (2) on T is equivalent to (∗).

For the first step, we need example 4. Suppose there exist v, w ∈

{1, 2, . . . n} such that for each τ ∈ T it holds that τ
−1(v) <

τ
−1(w). Then (2) is not true for all rings R and all pairwise co-

prime two-sided ideals I1 , I2 , . . . , In of R.

We can prove this claim as follows. Take R as in the above ex-

ample. The assumption on T implies that in each product on the

right-hand side of (2), the ideal Iv appears left of the ideal Iw. Now

take Iv = I and Iw = J as in the above example, and Ii = R for all

other i. The right-hand side of (2) is now reduced to I J while the

left-hand side is reduced to I ∩ J. We already knew that I ∩ J 6= I J,

and this proves our claim.

So now we know that condition (∗) is a necessary condition on T

for (2) to hold. All that is left to prove is that it is also a sufficient

condition. We will not prove this directly, but instead use the card

game. If we can show that player A being able to win the card

game means that (2) holds, we are done, since condition (∗) is a

sufficient condition for player A being able to win the card game.

Rather than proving this formally, we use an example to illustrate

the way it should be proved.

Example 5. Take n = 3 and T = {123, 312, 231}. By using the

techniques we have developed, we can easily construct a winning

row of cards:

2 2

3 1
J

1 1

2 3
.

The fact that this is a winning row of cards means that regard-

less of the choices player B makes, there will always appear a se-

quence of T.

Now we take an arbitrary ring R and three pairwise coprime two-

sided ideals I1 , I2 , I3. Since each pair of them is coprime, we can

find elements x1 , y1 ∈ I1, x2 , y2 ∈ I2, x3 , y3 ∈ I3 such that

y1 + x2 = 1, y2 + x3 = 1, y3 + x1 = 1.

Now we go back to the row of cards and replace each card by 1:

instead of
2

3
we write (y2 + x3), instead of

2

1
we write (x2 + y1),

and so on. We replace the joker by an arbitrary element r ∈ I1 ∩

I2 ∩ I3. So the row of cards now looks like a product:

(y2 + x3)(x2 + y1)r(y1 + x2)(x1 + y3).

All sums between parentheses are equal to 1, so the entire expres-

sion is equal to r. On the other hand, multiplying out the paren-

theses is the same as picking a side of each card except the joker,

so the resulting products all contain a sequence of T. Similar to

the way we can let the joker assume colour i in the card game if

we wish, we can view r as an element of Ii for any i.

Now we use the fact that xI ⊂ I and Ix ⊂ I for all elements

x ∈ R and two-sided ideals I of R. So if in a product the sequence

τ ∈ T appears, we can disregard any elements in the product not

contributing to τ and conclude that the product is an element of

I
τ(1) I

τ(2) I
τ(3). Since each product contains a τ ∈ T, the entire

expression is an element of ∑τ∈T I
τ(1) I

τ(2) I
τ(3). So

I1 ∩ I2 ∩ I3 ⊂ ∑
τ∈T

I
τ(1) I

τ(2) I
τ(3) .

On the other hand, it follows from (3) that

I1 ∩ I2 ∩ I3 ⊃ ∑
τ∈T

I
τ(1) I

τ(2) I
τ(3) .

This proves
I1 ∩ I2 ∩ I3 = ∑

τ∈T

I
τ(1) I

τ(2) I
τ(3) .

It is clear that the same argument can be used for all n and T for

which there exists a winning row of cards. We have obtained the

following result:

Let n ≥ 2 and T ⊂ Sn, which we can view as a set of sequences.

Then the following claims are equivalent:

(i) for all rings R and all pairwise coprime two-sided ideals

I1 , . . . , In of R the identity:
⋂n

i=1 Ii = ∑τ∈T I
τ(1) · · · I

τ(n) holds;

(ii) player A can win the cardgame defined by T;

(iii) for all v, w ∈ {1, 2, . . . n} with v 6= w there exists τ ∈ T such

that τ
−1(v) < τ

−1(w). k


