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It is common belief that two arbitrary persons are linked by a chain of at most six acquaintances.

This idea was coined in 1929 by the Hungarian writer Frigyes Karinthy in a short story called

Chains. Later it made it into a romantic play, and a movie called ‘Six Degrees of Separation’,

both by playwright John Guare. The World Wide Web has a far more complicated structure, and

contains many more web pages, than there are humans on the planet. What can be said about

its structure and its connectivity? Nelly Litvak, assistant professor in the field of Stochastic

Operations Research at the Universiteit Twente, gives an account of what is currently known

about the World Wide Web and its search engines.

In our informational society, the World Wide

Web has quickly become one of the most im-

portant media. Given the gigantic size of the

Web and its uncontrollable random expan-

sion, the structure of the Web may seem com-

pletely chaotic, and the high performance of

modern search engines looks almost like a

magic. This note addresses two topics. First,

we attempt to highlight some well-known

structural properties of the World Wide Web

and show how they can be modeled mathe-

matically. Second, we will explain the princi-

pal scheme of a Web search engine and dis-

cuss important ranking algorithms used for

listing the search results in an appropriate or-

der.

The common viewpoint in the literature is

to present the Web as a graph, with the web

pages regarded as vertices and the links as di-

rected edges. This simplified representation

suffices to answer many important questions

such as: What is a typical number of in- and

out-going links? Does the Web consist of one

giant knot of pages and links (the graph is

connected) or is it more like several separate

‘islands’? What is the average path length be-

tween two connected pages? These extreme-

ly important questions have been partly an-

swered in the famous paper by Broder et al. [7]

that is discussed later in this article.

Several typical properties of the Web can

also be observed in other complex stochas-

tic networks such as network of collabora-

tions, airline routes networks, biological net-

works, scientific citations, children’s friend-

ships, and many others [12]. This suggests

that a network structure builds up in a cer-

tain way, which is similar for various large

systems. Understanding how this structure

appears enables one to predict the devel-

opments in a highly dynamic environment

such as the World Wide Web. Currently,

growing network models with preferential at-

tachment are widely accepted as a possible

mathematical explanation for many empiri-

cally discovered properties of complex net-

works. The main idea in these models is

that the observed structure is a result of a

network growth driven by a ‘rich get richer’

mechanism. That is, a newly created node is

more likely to link to nodes that are already

well-connected. We will address the growing

network models in more detail in this paper.

For a user, the practical availability of the

enormous amount of information offered by

the Web depends greatly on the efficiency of

search engines. At the end of this paper we

will briefly explain how a search engine works

and focus on the hyperlink-based techniques

used for listing the search results in a user-

friendly order. In particular, we will explain

the relatively simple mathematical model be-

hind the Google PageRank.

Graph Structure in the Web

As mentioned before, we view the Web as

a set of vertices (pages, nodes), and direct-

ed edges (links) between them. We say that

there is an edge from page i to page j if i has

a hyperlink to j, i.e., a user can go from i to j

by just one click.

Given the spontaneous chaotic develop-

ment of the Web, one can hardly expect any

regularity in its structure. From the first sight,

it looks like the Web graph may have any

shape you please. However, the fundamen-

tal research by Broder et al. [7] revealed sev-

eral robust structural properties of the Web.

The experiments in [7] were carried out on

two large crawls each containing about 200

million pages and 1.5 billion links. To indi-
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Figure 1 Graph Structure of the Web (from [7])

cate the importance of the Broder et al. paper,

we just mention that it was cited in about 500

articles! Strikingly, most typical traits discov-

ered in the World Wide Web have also been

observed in other complex networks such as

social networks, networks of scientific cita-

tions, biological networks, etc.

In Figure 1 we depict the structure of the

Web as discovered in [7]. We see that the

majority of the pages are united in one con-

nected component, which has a shape of a

‘bow tie’. For any two pages i and j in the

‘bow tie’, there is a hyperlink path either from

i to j or from j to i. In the middle, there is

a Strongly Connected Component (SCC) con-

taining more than one quarter of all pages.

SCC as used in graph theory stands for a set of

nodes where each node can be reached from

any other node by traversing directed edges.

For the Web, it means that in the SCC, each

page can be reached from any other page by

clicking on hyperlinks. Next, there are large IN

and OUT components. The pages in IN (OUT)

have a path to (from) the SCC, but not back.

There are also smaller groups such as Ten-

drils branching from IN or leading directly to

OUT, and Tubes offering a path from IN to OUT.

The little ‘islands’ represent the Disconnected

components, which amount to less than 10%

of the Web.

From the above, one may have the impres-

sion that the Web is greatly connected, and

that for two random pages i and j, a hyperlink

path from i to j is likely to exist. However, a

closer look suggests that this is not the case.

Roughly speaking, a hyperlink path exists on-

ly if page i belongs to IN+SCC, and page j is in

SCC+OUT. As both IN and OUT contain slightly

less than 1/4 of all pages, the probability that

the path exists is (only!) about 24%.

Assuming that a path from one page to an-

other exists, one may ask what the average

path length is? Despite the enormous size of

the Web, the average path turns out to be rel-

atively short. Experiments in [7] report about

16 clicks only! Moreover, if links can be tra-

versed in both ways, the average path length

reduces to the value of about 7.

This phenomenon — a short average dis-

tance between the nodes in large networks —

has been known for a long time as a small-

Figure 2 In- and out-degree (May99, Oct99) in the log-log scale (from [7])

world effect. One of the most famous experi-

ments in this respect was carried out by Stan-

ley Milgram in the sixties in a context of so-

cial networks. The participants were asked

to pass a letter to their first-hand acquain-

tances so that it would finally reach the as-

signed targets individual. About 1/4 of the

letters reached the target passing, on aver-

age, through the hands of only about 6 peo-

ple! [12]

While looking quite astonishing, the small-

world effect actually has a simple mathemat-

ical explanation. Here is a greatly simplified

argument, which is far from being rigorous

but helps to grasp the main idea. For a given

node, assume that the number of nodes with-

in a distance r is roughly ar , where a > 0 is

a constant. This assumption is true for many

real-life networks. Now, let l be the maximal

distance from one node to another. Then it

follows from geometric series that the total

number of nodes N is

N = 1 + a + a2 + · · · + al =

= (al+1 − 1)/(a− 1) ≈ al+1/(a− 1).

Hence, for largeN, the value l turns out to be

of the order log(N). For example, in a network

of one billion nodes, this number is of the or-

der 10, which is exactly the small-world effect

observed in experiments. For more detail on

the small-world effect, we refer to the brilliant

survey by Mark Newman [12] and references

therein.

Power laws

Let us consider the number of in- and out-

going links, called, respectively, in- and out-

degree, of a Web page. The question is, for in-

stance, what is the fractionpk of pages whose

in-degree is exactly k? The experiments car-

ried out in different times on different crawl

sizes agree that pk is approximately propor-

tional to k−2.1. In Figure 2 (left side), we

present the experimental results on the in-
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degree distribution [7].

Plotted in the log-log scale, for each in-

degreek, the values ofpk concentrate around

a straight line: log(pk) = −2.09 log(k)+const,

which signals the power law: pk ≈ const ·

k−2.09.

Put in words, the power law means that the

majority of the pages have a relatively small

in-degree but there is a noticeable group of

pages whose in-degree is high. To see that,

let us evaluate the number of pages with in-

degree 1000. According to the power law dis-

tribution, the fraction of such pages is of the

order 1000−2.1 ≈ 10−6. Hence, for a net

of one billion pages, the number of pages

whose in-degree is one thousand is of the or-

der 109 ·10−6 = 1000. A group of this magni-

tude can not be neglected in any reasonable

network analysis.

To demonstrate a difference with, for in-

stance, the exponential law, assume that pk
is of the order 10−k. Then for k = 1000,

the proportion 10−1000 results in a negligible

group of pages, even in a truly giant network.

As we know that there are well-connected

nodes (think for instance of the homepage of

Google or CNN), the power law seems to be a

more realistic model for the in-degree distri-

bution. As we see in the right plot in Figure 2,

the out-degree also obeys a power law but

it has an exponent of about −2.7. Thus, for

large k, the probability of in-degree k is larger

than the probability of out-degree k.

Clearly, the Web can be subdivided in-

to large logically united components, for in-

stance, by domain or by topic. Surprisingly, it

turns out that such large components have a

structure similar to the Web as a whole, which

is a result of many essentially independent

stochastic processes evolving in the Web at

various scales.

This phenomenon, called self-similarity,

was observed in a number of experiments on

different crawl sizes, and analyzed in detail

in [8]. There it was shown that a Web-like

structure is present in so-called thematically

unified clusters, i.e. sets of pages that share

some common feature, for instance, content,

domain, or geographical location.

The authors also note that in a purely ran-

dom set of pages the structure will be lost.

Indeed, assume that a sample of one million

pages out of possible one billion is chosen at

random. Then the probability that both ends

of some edge belong to the chosen sample is

(106/109) · (106/109) = 10−6. Since the av-

erage number of links per page is just about

8, we get on average 8 · 109 · 10−6 = 8000

links in the random collection of one million

nodes. With such a small amount of links

one can hardly expect any interesting graph-

theoretic structure.

Mathematical models of the Web: preferen-

tial attachment

Currently, growing network models with pref-

erential attachment are widely accepted as a

possible mathematical explanation of many

empirically discovered properties of the Web.

In these models, a newly created page is more

likely to link to pages that are already well-

connected. The most famous model of this

sort was suggested in 1999 by Barabasi and

Albert [3], and many modifications have ap-

peared since then. We will closely follow New-

man [12] in explaining how the model works

and why it leads to the power law in-degree

distribution.

In [3], a networks starts with one node.

When a new node appears, it has m ≥ 1

undirected, or, equivalently, bi-directed links

to distribute among the existing nodes. In

doing so, a node follows the ‘rich get rich-

er’ strategy, meaning that the probability that

some node v gets a new link is proportional

to the current in-degree of v. Thus, if the frac-

tion of nodes with in-degree k is pk, then the

probability that a new link goes to this group

is

kpk

1 · p1 + 2 · p2 + 3 · p3 + · · · + kpk + · · ·

=
kpk

2m
, k ≥ 1.

The denominator on the left-hand side is first

defined so that the sum of the probabilities

equals 1; we then notice that it equals the av-

erage number of links per page, which is 2m

since each node bringsm bi-directed edges.

Now, with each new node, the group of in-

degree k receives on averagem·kpk/(2m) =

(1/2)kpk links, which is independent of m.

Thus, the number of vertices with in-degree k

decreases by this amount since these nodes

join the group of in-degree k+1. On the other

hand, on average (1/2)(k − 1)pk−1 nodes of

in-degree k − 1 will also receive a new link,

so the number of vertices with in-degree k

will increase by this number. If the total num-

ber of nodes is very large then the proportion

of nodes with in-degree k almost does not

change (in fact, this proportion converges to

a constant when the number of nodes goes

to infinity). So, when the nth new node is

added and n is large enough, the number of

nodes with in-degree k changes approximate-

ly bynpk−(n−1)pk = pk. Equating the incre-

ments in the number of nodes with in-degree

k, we can write so-called master equations,

which hold when the number of vertices in

the graph goes to infinity:

pk =















1

2
(k− 1)pk−1 −

1

2
kpk, for k > m

1−
1

2
mpm, for k = m

Here the last equation reflects that there is

always one new node with exactly m links,

and at the same time the group of such nodes

deceases by (1/2)mpm, as happens for any

other value of k. Writing the equation for pm
we get pm = 2/(m + 2), and for k 6= m we

obtainpk = pk−1 · (k−1)/(k+2). Recursively,

we arrive at

pk =
(k− 1)(k− 2) · · ·m

(k + 2)(k + 1) · · · (m + 3)
pm

=
2m

(k + 2)(k + 1)k
.

Thus, for large k, we have pk ∼ k−3, which is

a power law with exponent 3. We note that the

present model deviates from the experimen-

tal results suggesting pk ∼ k−2.1. However,

this deviation was resolved in later general-

izations by other authors.

The significance of the Barabasi and Al-

bert model is that besides modeling the grow-

ing random graph that exhibits the power law

in-degree distribution, it also aims to explain

why such distribution appears. We note that

this model is in the spirit of the earlier mod-

el developed in 1965 by Derek de Solla Price

in his work on scientific citations. Even be-

fore that in the 1950s, Herbert Simon showed

that the power law distributions arise from the

‘rich get richer’ mechanism, also referred to as

the Matthew effect [12] in sociology. As an ex-

ample, we note that something like the power

law can be observed in a group of school chil-

dren: a few boys and girls are very popular

while others have only one or two friends. Is

it not natural to explain this by the tendency

of the children to make friends with popular,

or ‘well-connected’ classmates?

The models with preferential attachment

have received much attention in the network

literature. There is a lot of research on gener-

alizing these models in such a way that they

better reflect complicated features of the Web

such as directed links, the hierarchical struc-

ture, appearing and disappearing of links and

even the willingness of users to link to high-

ly ranked pages [16]. The other research

direction concerns a rigorous mathematical
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Figure 3 General scheme of a search engine

analysis of (generalized) preferential attach-

ment models, based on the theory of random

graphs. In particular, the power law distribu-

tions were rigorously derived, and it was also

shown that the models with preferential at-

tachment exhibit a small-world effect [4–5].

The ‘rich get richer’ mechanism appears to be

responsible for many typical developments in

complex networks.

Search Engines

Studying and modeling Web structures is one

of the main challenges for designing Web

search engines [9], which are of extreme im-

portance for navigating the Web. Here, we

briefly discuss the working of a search engine,

and consider two prominent hyperlink-based

ranking techniques (in particular, the Google

PageRank) for selecting important and inter-

esting Web pages. The general scheme of a

so-called crawler-based search engine is pre-

sented in the above figure.

Using this scheme we highlight essen-

tial components of the Web search, using

a nice paper by Gallianno Cosme published

in Search Engine Guide in May 2005 (www.

searchengineguide.com). According to that

paper, a crawler-based search engine con-

sists of three main parts: the spider (also

known as crawler or robot), the index, and

the software.

The spider is a program that visits pages

and follows hyperlinks to move from one page

to another. The main goal is to obtain the

most recent copy of each page but, as we

will see later, it may be also important for

recording the hyperlink structure. The spi-

ders start their journey from the pages that are

already in the search engine database. The

most active spiders on the Web are Googlebot

(Google), Slurp (Yahoo!) and MSNBot (MSN

Search).

The copies of crawled pages are stored in

the index, which is essentially a giant cata-

logue or database where the pages are clas-

sified, filtered, indexed, transformed (if need-

ed) and grouped according to some rules, for

instance, according to the topic. The size of

the index is truly enormous. Just to give an

idea, the latest figure revealed by Google is 8

billion pages! In practice, both crawling and

indexing require significant computing time

and capacity.

When a user inserts a query in a query in-

terface (like a famous white page of Google),

the search engine finds relevant pages in its

database using software based on sophisti-

cated algorithms and state-of-art information

retrieval techniques. In Figure 3 this software

tool is denoted as Match Engine. It is be-

yond the scope of this paper to discuss the

methods for retrieving relevant pages from

the database. We observe only that, in one

way or another, the query is compared with

the key-words related to a Web page. Natu-

rally, these are mainly the keywords and the

text included in the page itself. However, cu-

riously enough, the text of the hyperlinks con-

necting to a page is also taken into account, at

least by Google. That is why the query ‘miser-

able failure’ returns a biography of G.W. Bush

although these words have never been men-

tioned in this document! The relevant pages

are then ranked in some order that the search

engine finds most appropriate, and the re-

sults are presented to the user. The ranking

algorithm is a well-kept secret, and it depends

on many factors, for instance, on geographi-

cal location of the user and maybe even on

his/her last searches.

We would like to emphasize that the main

structural feature of a search engine is that

crawling and indexing happen without involv-

ing the user, who ‘only’ needs to consult a

database and receive the results from the in-

dex rather than from the Web itself. Search

engines are equipped with modern software

and powerful processors that scan the index

extremely fast so that the search results ap-

pear on a screen almost instantaneously. As

a minor drawback of this scheme, the user

may access only the pages listed in the index,

which is not complete and not entirely up-to-

date. For instance, new pages that have been

crawled but have not yet been added to the

index, will not be available to those search-

ing with the search engine. This is the rea-

son why Web site owners have to make sure

that their sites are timely indexed and highly

ranked. In business, there is a whole branch

of marketing called Search Engine Optimiza-

tion that develops techniques for increasing

the Web site’s ranking performance.

In the end, the main goal of any search

engine is to satisfy the user, so we may trust

that the vastly expanding index is frequent-

ly updated, and matching/ranking algorithms

are steadily improving to provide us with the

desirable results. Note, by the way, that the

index and the matching/ranking mechanisms

are different for different search engines, and

therefore it is not uncommon to use several

search engines for the same query.

Node ranking based on the hyperlink struc-

ture

We claimed that the knowledge of the hyper-

link structure is important for search engines.

Obviously, such knowledge helps to optimize

the spider’s crawl, and it can be used for

matching as well. However, some search en-

gines, and particularly Google, also use hy-

perlinks for ranking the Web pages according

to their importance.

Suppose, a search engine has received a

query and found relevant pages in its index.

Then another problem arises. Namely, thou-

sands of pages may match the query, leav-

ing the question how to define the most im-

portant page. In the beginning, this problem

was solved solely by finding pages with best-

matching text. However, with fast expansion

of the Web, such methods soon became in-

efficient. Two innovative path breaking ap-

proaches were presented in 1998: one be-

longs to a well-known academician Jon Klein-

berg [11], and another came from two PhD

students from Stanford, Sergey Brin and Lar-

ry Page [6] known as the ‘founding fathers’

of Google. Although the two approaches are

different, the main idea is similar: the page

should be ranked high and listed high if many

other good pages have a hyperlink to this

page, and thus the page is recognized by the

Web community as an important source of in-

formation. In contrast to the previously used

methods, these novel ranking techniques are

based not on the content of the pages but on

the most fundamental feature of the Web –

the hyperlink structure. Naturally, both meth-

ods require the knowledge of who is linking

to whom. This information is recorded in the

adjacency matrix A defined as follows:

Aij =







1, there is a link from i to j,

0, otherwise.
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Such a matrix can be obtained by the spider

while crawling the Web.

In his work [11], Kleinberg considers two

sorts of pages: hubs and authorities. A hub

serves as a reference giving many links to im-

portant authorities. The authorities, on the

other hand, contain important information

and thus receive many links from the hubs.

Formally, let ai and hi be respectively the au-

thority and the hub score of page i = 1, . . . , n.

Then

ai =
∑

j

Ajihj , hi =
∑

j

Aijaj .

The HITS algorithm suggested by Kleinberg, is

as follows:

1. Retrieve a set of relevant pages from the

database.

2. Extend this set by adding all pages that

have links to and from the selected pages.

3. For the extended set, compute the hub and

authority scores.

4. Since the user is mostly interested in au-

thoritative sources, list the search results

according to the authority score.

If we want to include this ranking algorithm in-

to the scheme of Figure 3, we should add an

Authority Score Computation block between

the Database and the User (this option is de-

picted in Figure 4 with dashed arrows).

Fortunately, the authority scores can be

computed very fast because the number of

pages involved in the computations is not

very large, which results in a well solvable lin-

ear algebra problem.

The approach of Brin and Page is differ-

ent. In their work [6], they introduce a univer-

sal popularity measure – the PageRank. The

PageRank PR(i) of page i depends on how

many other pages link to i and how important

these pages are. The original formula is as

follows:

PR(i) = c
∑

j

Aji

dj
PR(j) + (1− c),

(1)

where i = 1 . . . n, dj is the number of out-

going links from page j, n is the number of

pages in the Web, and c is a constant be-

tween zero and one (Google originally used

c = 0.85). Brin and Page’s algorithm works

as follows:

1. Right after crawling the Web, retrieve and

store the matrix A.

2. Compute the PageRank score for each page

and store the PageRank vector.

3. For each query, list the matching pages ac-

cording to their PageRank.

In order to reflect this procedure in Figure 3,

we have to add a chain that is depicted in

Figure 4 by solid arrows: there is a large com-

putation block right after crawling but there is

no computation involved after consulting the

database, which in general helps to deliver

search results faster.

Let us now take a closer look at the famous

PageRank formula (1). We see that two factors

are taken into account: the quality and the

quantity of incoming links. The idea is that if

we view a link as a vote, then pages with many

links deserve attention. Moreover, if a page

has only a few links but these links come from

important sites, then this page is also worth

browsing.

PageRank has an insightful probabilistic

interpretation. The PR(i) in (1) can be normal-

ized so that they sum up to one. We denote

the normalized PageRank values by πi’s:

πi =
PR(i)

PR(1) + PR(2) + · · · + PR(n)
,

(2)

for i = 1, . . . , n. The vectorπ = (π1, π2, . . . , πn)

is a probability distribution that can be inter-

preted via the so-called easily bored surfer

model. Consider a random surfer who starts

navigating the Web from a random page. At

each page, with probability c, the surfer fol-

lows a randomly chosen hyperlink, and with

probability 1−c he gets ‘bored’ and jumps to

a random page. To keep the model equivalent

to (1), we have to make a natural assumption

that the user always jumps to a random page

when reaching a page which does not have

out-going links. Such pages, called dangling

nodes, should not influence the ranking.

The described surfing process can be

modeled as an irreducible Markov chain

[10], since there is a possibility to make

a random jump, and thus, any two pages

(states) can be reached from each oth-

er. Hence, it follows from the theory of

Figure 4 Ranking computation: HITS versus PageRank

Markov chains that πi is nothing else but the

long-run probability, or long-run fraction of

time, that a random surfer spends on page i.

Moreover, this probability is uniquely defined

for all i = 1, . . . , n. Naturally, the higher the

probability, the more popular the page is. It

follows from the description of the surfing pro-

cess that all πi satisfy

πi = c
∑

j

Aji

dj
πj + c

1

n

∑

j∈D

πj +
1− c

n
,

∑

i

πi = 1,

with i = 1 . . . n andD a set of dangling nodes.

The last equation is equivalent to (1) and (2).

The ‘dumping factor’ c < 1 is needed in

particular because the random jump option

guarantees that the unique distributionπ ex-

ists. With c = 1, it is quite likely that some

pages can not be reached from each other,

and then according to the Markov chain theo-

ry, the PageRank vector is not well defined.

The PageRank citation ranking technique

is very efficient and is actually used by

Google, although maybe not in its original

form. The disadvantage of this method is

however obvious. Equation (1) must hold

for each i = 1, . . . , n, with n the number of

pages in the index. This means that we have

a huge linear system with n equations and n

variables, where n is of the order of billions.

Solving such linear system directly is practi-

cally unfeasible. Google originally proposed

to use a power iteration method that works

as follows. First, put π (0) = (1/n, . . . ,1/n).

Then for each k ≥ 1 compute

π (k) = c
∑

j

Aji

dj
π

(k−1)
j +

+ c
1

n

∑

j∈D

π
(k−1)
j +

1− c

n
.



38 NAW 5/7 nr. 1 maart 2006 Googling Maths Nelly Litvak

The algorithm stops when π (k) ∼ π (k−1). In

their first work, Brin and Page reported con-

vergence in 50-100 iteration.

It can be shown using Perron-Frobenius

theory that the difference between the ap-

proximationπ (k) and the real PageRank value

π is of the order ck (see e.g. [13]). Thus,

the power iterations converge exponential-

ly, while smaller values of c ensure an even

faster convergence, which is a valid reason to

keep c not too close to 1. On the other hand,

in (1), the term that depends on hyperlinks de-

creases with c, so small c results in an almost

uniform PageRank. Hence, a reasonable com-

promise has to be found, and Google’s origi-

nal choice was c = 0.85. We refer to the inter-

esting and extremely well written survey [13]

for more detail on this respect.

The present value of c and the actual algo-

rithm used by Google nowadays is not known

to the public but nevertheless, the PageRank

distribution still plays an important role in

defining the order of search results. More-

over, according to the publicly available infor-

mation, power iterations are still used for the

PageRank computation. There are a lot of in-

telligent techniques developed for making the

power method more efficient, such as paral-

lel computing, block iteration methods, rear-

ranging, two-stage methods, and many others

[13–15].

Alternative algorithms that allow to com-

pute the PageRank on-line while crawling the

Web also exist. One of the methods that

works surprisingly well is a Monte Carlo al-

gorithm [2]. In a nutshell, this algorithm runs

a random surfing process from each page. If a

random jump has to be made, the simulation

stops and then starts from the next page. At

the end, the PageRank of page i is computed

as the number of visits to this page divided

by the total number of steps performed. Sur-

prisingly, it is sufficient to run such simulation

only once from each page to obtain a reason-

able estimate of the PageRank.

Another intelligent on-line method is pro-

posed in [1]. Initially, each page receives an

equal amount of cash, and whenever a page

is crawled, it distributes all its cash among

its outgoing links. After several crawls, the

importance of a given page is evaluated as

a fraction of cash spent by this page com-

pared to the total amount spent by all pages

together. The algorithm converges very fast,

does not require any storage of the hyperlink

matrix, and quickly adopts to the changes in

the Web. Besides, analytical studies of this

algorithm give rise to many interesting math-

ematical problems.

Although the PageRank is not directly relat-

ed to the number of incoming links there is an

intimate connection between these two mea-

sures of page popularity. For instance, it turns

out that the fraction of pages whose PageR-

ank is about k/n is roughly proportional to

k−2.1 [16], exactly the fraction of pages with k

incoming links! Since the models with prefer-

ential attachment explain the power law phe-

nomenon for the in-degree, it is interesting to

study the PageRank and its evolution in these

models. This leads to a whole class of chal-

lenging research problems in the novel excit-

ing area of complex stochastic networks. k
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