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The Universitaire Wiskunde Competitie (UWC) is a ladder competition for students.

Others may participate ’hors concours’. The results can also be found on internet at:

http://www.nieuwarchief.nl/uwc

Each issue contains three problems A, B and C. A total of 12 points can be obtained for

each problem: 8 for a complete and correct answer, at most 2 points for elegance, and

at most 2 points for possible generalisations. To compute the overall score, the totals for

each problem are multiplied by a factor 3, 4 and 5, respectively.

The three best contributions will be honoured with a Sessions Prize of respectively 100,

50 and 25 Euro. The points of the winners will be added to their total after multiplication

by a factor of respectively 0, 1/2 and 3/4. The highest ranked participant will be given

a prize of 100 Euro, after which he/she starts over at the bottom of the ladder with 0

points.

Twice a year there is a Star Problem, of which the editors do not know any solution.

Whoever first sends in a correct solution within one year will also receive a prize of 100

Euro.

Group contributions are welcome. Submission by email (in LATEX ) is preferred; partici-

pants should repeat their name, address, university and year of study at the beginning

of each problem/solution. The submission deadline for this session is November 1, 2005.

The Universitaire Wiskunde Competitie is sponsored by Optiver Derivatives Trading, the

Nederlandse Onderwijs Commissie voor Wiskunde and the Vereniging voor Studie- en Studen-

tenbelangen in Delft.

Problem A

In what follows f , g are two continuous functions.

1) Determine f : R → R and g : R → R such that f ◦ g(x) = x + 1 and g ◦ f (x) = x − 1.

2) Determine f : R
+ → R and g : R → R such that f ◦ g(x) = x + 1 and g ◦ f (x) = 2x.

As usual, the symbol ‘◦’ denotes the composition of functions and R
+ the set of all strict

positive real numbers.

Problem B

1. Let G be a group and suppose that the maps f , g : G → G with f (x) = x3 and

g(x) = x5 are both homomorphisms. Show that G is Abelian.

2. In the previous exercise, by which pairs (m, n) can (3, 5) be replaced if we still want

to be able to prove that G is Abelian.

Problem C

For s > 1 define

Φ1(s) = ∏
p

(1 − 1

ps
)−1 with p over all primes ≡ 1 mod 4

and
Φ3(s) = ∏

q
(1 − 1

qs
)−1 with q over all primes ≡ 3 mod 4.

Describe how lims↓1
Φ3(s)
Φ1(s)

can be computed to ‘any’ degree of (high) accuracy (precision).

(The use of an algebra-package is permitted.)

Star Problem

It is known that ∑∞

n=1

(3n
n

)

( 1
8 )n = 3√

5
. This can be checked with Mathematica or Maple.

Does there also exist an elementary proof for this equality?
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For Session 2005/1 of the Universitaire Wiskunde Competitie we received submissions

from Leendert Bleijenga; DESDA (Nijmegen); the team of Gerben Stavenga, Jan Kuipers,

and Jaap Eldering; Hendrik Hubrechts; Ruud Jeurissen; and Jaap Spies.

Problem 2005/1-A Calculate

∞

∑
n =1

1

∑n
i =1 i2

and
∞

∑
n =1

1

∑n
i =1 i3

.

Solution This problem has been solved by Leendert Bleijenga; DESDA (Nijmegen); the

team of Gerben Stavenga, Jan Kuipers, and Jaap Eldering; Hendrik Hubrechts; Ruud

Jeurissen; and Jaap Spies. The solution of Gerben Stavenga, et al. is given here.

Using the standard results ∑n
i=1 i2 = 1

6 n(n + 1)(2n + 1) and ∑∞

n=1
(−1)n

n = − log 2 we

obtain:

∞

∑
n=1

1

∑n
i=1 i2

= lim
N→∞

N

∑
n=1

1
1
6 n(n + 1)(2n + 1)

= lim
N→∞

6

(

N

∑
n=1

(

1

n
+

1

n + 1
− 4

2n + 1

)

)

= lim
N→∞

6

(

N

∑
n=1

(

2

n
− 4

2n + 1

)

− 1 +
1

N + 1

)

= lim
N→∞

6

(

4

(

N

∑
n=1

(

1

2n
− 1

2n + 1

)

)

− 1 +
1

N + 1

)

= lim
N→∞

6

(

4

(

2N+1

∑
n=1

(−1)n

n
+ 1

)

− 1 +
1

N + 1

)

= 6 (−4 log 2 + 3) .

Using the standard results ∑n
i=1 i3 = 1

4 n2(n + 1)2 and ∑∞

n=1
1

n2 = π
2

6 we obtain:

∞

∑
n=1

1

∑n
i=1 i3

= lim
N→∞

N

∑
n=1

1
1
4 n2(n + 1)2

= lim
N→∞

4

(

N

∑
n=1

(

1

n2
+

1

(n + 1)2
− 2

n
+

2

n + 1

)

)

= lim
N→∞

4

(

N

∑
n=1

2

n2
− 1 +

1

(N + 1)2
− 2 +

2

N + 1

)

=
4

3

(

π
2 − 9

)

.

Problem 2005/1-B On a ruler of length 2 meter are placed 100 black ants and one red

ant. Each ant walks with a speed of 1 meter/minute. If two ants meet then both turn

1800. So does an ant that reaches the end of the ruler. At the start the red ant is exactly

in the middle. Calculate the probability that the red ant is exactly in the middle after 4

minutes.

Solution This problem was solved by Michel Bel; DESDA (Nijmegen); the team of Gerben

Stavenga, Jan Kuipers, and Jaap Eldering. We give Michel Bel’s solution.

Let the ants take part in a relay race: when two ants meet, each ant gives his baton to

the other ant. This way every baton moves in a single direction until the end of the ruler,

after which it turns around and comes back. Hence: after four minutes every baton has
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made exactly one complete round and has come back to the same place. All batons are

therefore at the same spot as at t = 0. (And the ants too. . .)

As the ants have not changed order every ant, including the red ant, has his own baton

back. Conclusion: every ant is back at its own starting point. P = 1

In the original exercise one does not look after 4 minutes but after 2 minutes. That is

interesting because the probability is no longer 1 and is not 0 either.

Problem 2005/1-C We call a triangle integral if the sides of the triangle are integral.

Consider the integral triangles with rational circumradius.

1. Prove that for any positive integral p there are only a finitely many integral q such that

there exists an integral triangle with circumradius equal to p/q.

2. Prove that for any positive integral q there exist infinitely many integral triangles with

circumradius equal to p/q for an integral p with gcd(p, q) = 1.

Solution This problem has been solved by the team of Gerben Stavenga, Jan Kuipers, and

Jaap Eldering, and by Jaap Spies. We give the solution of the team of Gerben Stavenga et

al.

Solution to 1

If the denominator q is bigger than 2p, the diameter of the circumcircle is smaller than 1,

so that no integral sides and also no integral triangles will fit in the circle. So the values

for q, such that an integral triangle with circumradius equal to p/q possibly exists, are

limited to 1 . . . 2p, which is a finite set. �

Solution to 2

Take a denominator q ≥ 1 and take

a = b = 4(q + 1)(2q2 + 2q + 1) and c = 8(q + 1)(2q + 1).

It is clear that a, b, c > 0 and a < b + c, b < a + c and c < a + b, so that there exists a

integral triangle with sides equal to a, b and c.

The circumradius of a triangle is given by

R =
abc

√

(a + b + c)(a + b − c)(a + c − b)(b + c − a)
,

which in this case reduces to

R =
(2q2 + 2q + 1)2

q
.

Since gcd((2q2 + 2q + 1)2 , q) = 1, there exists an integral triangle with circumradius p/q

for an integral p with gcd(p, q) = 1, namely p = (2q2 + 2q + 1)2. To obtain infinitely

many integral triangles, we can scale this triangle with factors k, such that gcd(k, q) = 1,

for example k = (q + 1)n for n ∈ N. �

Non-congruent triangles

It is also possible to construct an infinite set of non-congruent triangles:

The triangles constructed above are presented without derivation. We will give a sketch-

wise derivation now, and also show how they yield an infinite set of non-congruent inte-

gral triangles.

Instead of constructing integral triangles with rational circumradii, we will construct

rational triangles with rational circumradii first. Scaling these will give integral triangles

with rational circumradii. We will call its sides a, b and c and take c = 1.

The circumradius of a triangle is given by

R =
c

2 sin γ
,

so we are looking for triangles with rational sines of the angles. For rational sides, the

cosine formula, c2 = a2 + b2 − 2ab cos γ
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gives that the cosines of the angles are rational. Furthermore since the sine and cosine

are connected via sin2
γ + cos2

γ = 1, we take sin γ = p/r and cos γ = q/r with (p, q, r)

a Pythagorean 3-tuple. These 3-tuples can be parametrised as follows

(m, n) 7→ (m2 − n2 , 2mn, m2 + n2),

so we take
cos γ =

m2 − n2

m2 + n2
and sin γ =

2mn

m2 + n2
,

for m, n > 0 and integral.

Next we will try to find rational solutions (a, b) to the cosine formula with c = 1 and

fixed cos γ:
a2 + b2 − 2ab cos γ = 1.

This equation can be rewritten as

(a sin γ)2 + (b − a cos γ)2 = 1,

so we are looking for rational point (a′ , b′) = (a sin γ, b− a cos γ) on the unit circle. These

again are given by Pythagorean 3-tuples, which we will parametrise by r, s > 0 integral:

a′ =
2rs

r2 + s2
. and b′ =

r2 − s2

r2 + s2

This gives as rational solutions (a, b, c) to the cosine formula with cos γ = m2−n2

m2+n2 :

a =
(m2 + n2)rs

mn(r2 + s2)
, b =

(m2 − n2)rs + mn(r2 − s2)

mn(r2 + s2)
and c = 1

Scaling this triangle with a factor of 4mn(r2 + s2) then gives the following integral solu-

tions to the cosine formula with cos γ = m2−n2

m2+n2 :

a = 4(m2 + n2)rs, b = 4(m2 − n2)rs + 4mn(r2 − s2) and c = 4mn(r2 + s2).

This integral triangle has circumradius equal to

R = (m2 + n2)(r2 + s2).

If we now take m, n, r and s such that q divides mn, q divides rs and gcd(q, (m2 + n2)(r2 +

s2)) = 1, then the sides a, b, c are all divisible by q. Dividing them by q then results in an

integral triangle with circumradius

R =
(m2 + n2)(r2 + s2)

q
.

In this way an infinite set of non-congruent integral triangles with rational circumradii

with denominator q can be constructed.

The ones given above as solution to Part 2 of the problem are obtained by taking

m = q + 1, n = q, r = q + 1 and s = q,

and swapping b and c.

Problem 2005/1-D This problem has appeared earlier in Session 2004/2. It was reprinted

in Session 2005/1 with a hint.

Quasiland has 30.045.015 inhabitants. Every two inhabitants are each others friend or

foe. Any two friends have exactly one mutual friend and any two foes have at least ten

mutual friends.

1. Describe the relations between the inhabitants.

2. Is it possible that less people live in Quasiland, while the inhabitants are still friend or

foe as above?

Solution No submissions were received. We give the solution of Robbert Fokkink, who

proposed the problem.
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1) Note that 30.045.015 =
(30

10

)

. Let us start with 30 colours. Associate 10 colours to each

inhabitant of Quasiland, so that no two different inhabitants have all colours alike. Two

inhabitants are friends if their sets of associated colours are disjunct. For each pair of

friends there is a third inhabitant who has been assigned the complimentary ten colours.

This third inhabitant is unique. If the sets of two inhabitants are not disjunct, they are

foes. In this case they have at least one colour in common, and together account for at

most 19 colours. There are at least 11 complementary colours left. As there are at least 11

ways to choose 10 colours out of these, the two have at least 11 common friends.

2) If there are 4.686.825 =
(27

9

)

inhabitants in Quasiland, the argument above still holds.

Results of Session 2005/1

Name A B C Total

1. Gerben Stavenga e.a. 8 9 10 110

2. DESDA 7 9 - 57

3. Hendrik Hubrechts 7 8 - 53

4. Leendert Bleijenga 8 - - 24

Final Table after Session 2005/1

We give the top 3, the complete table can be found on the UWC website.

Name Points

2. Filip Cools e.a. 123

3. Peter Bruin 99

4. Hendrik Hubrechts 90


