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Beroemde problemen

The Invariant
Subspace Problem

Heeft elke begrensde lineaire operator, wer-

kend op een Hilbert ruimte, een niet-triviale

invariante deelruimte? Het antwoord is posi-

tief voor zowel eindig-dimensionale ruimtes

als voor niet-separabele ruimtes. Het onop-

geloste probleem voor het geval daar tus-

senin, dus voor separabele Hilbert ruimtes

staat bekend als het invariante deelruimte

probleem.

Professor B.S. Yadav van de Indian Soci-

ety for History of Mathematics in Delhi heeft

de afgelopen 25 jaar veel over het onder-

werp gepubliceerd en geeft hier een histo-

risch overzicht.

The invariant subspace problem is the

simple question: “Does every bounded

operator T on a separable Hilbert space

H over C have a non-trivial invariant sub-

space?” Here non-trivial subspace means

a closed subspace of H different from {0}

and different from H. Invariant means

that the operator T maps it to itself. The

problem is easy to state, however, it is still

open. The answer is ‘no’ in general for

(separable) complex Banach spaces. For

certain classes of bounded linear opera-

tors on complex Hilbert spaces, the prob-

lem has an affirmative answer.

It seems unknown who first stated the

problem. It apparently arose after Beurl-

ing [1] published his fundamental paper

in Acta Mathematica in 1949 on invariant

subspaces of simple shifts, or after von

Neumann’s unpublished result on com-

pact operators which we shall discuss in

the sequel.

A history of the problem

Let H be any complex Hilbert space and T

a bounded operator on H. An eigenvalue

λ of T clearly yields an invariant subspace

of T, namely the kernel of T − λ. So if T

has an eigenvalue, the problem is solved

(the special case where T is multiplication

by λ being trivial). However, not every

bounded operator T on a complex Hilbert

space has an eigenvalue. For example, the

shift operator T on ℓ2, the Hilbert space

of all square-summable sequences of com-

plex numbers, defined by

Tx = (0, x0 , x1 , . . .)

for each vector x = (x0 , x1 , . . .) ∈ ℓ2, does

not have any eigenvalue. However, if H is

finite-dimensional, then of course every T

on H has an eigenvalue, so the problem is

solved for finite dimensional complex vec-

tor spaces.

Next, suppose H is infinite-dimensional

but not separable. Let T be a bound-

ed operator on H. Take a non-zero vec-

tor x and consider the closed subspace M

generated by the vectors {x, Tx, T2x, . . .}.

Then M is invariant under T and obvious-

ly M 6= {0}. Moreover, M does not coin-

cide with H as this would contradict that

H is non-separable. Thus every operator

T on a non-separable infinite-dimensional

complex Hilbert space H has a non-trivial

invariant subspace.

What remains to be examined is actu-

ally the invariant subspace problem: does

every bounded operator T on an infinite-

dimensional separable complex Hilbert

space H have a non-trivial invariant sub-

space?

The solution for Banach spaces

During the annual meeting of the Amer-

ican Mathematical Society in Toronto in

1976, the young Swedish mathematician

Per Enflo announced the existence of a

Banach space and a bounded linear op-

erator on it without any non-trivial in-

variant subspace. Enflo was visiting the

University of California at Berkeley at

that time. However, nothing appeared in

print for several years and it was only in
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1981 that he finally submitted a paper for

publication in Acta Mathematica. Unfor-

tunately the paper remained unrefereed

with the referees for more than five years,

though its manuscript had a world-wide

circulation amongst mathematicians. This

happened, as they say, because the pa-

per was quite difficult and not well writ-

ten. The paper was ultimately accepted

in 1985 and it actually appeared in 1987

with only minor changes: [4]. However,

he had announced his construction of the

counterexample earlier in the “Seminaire

Maurey-Schwarz (1975–76)” and subse-

quently in the “Institute Mittag-Leffler Re-

port 9 (1980)”; see [2], [3].

In the meantime, C.J. Read, following

the ideas of Enflo, also constructed a coun-

terexample and submitted it for publica-

tion in the Bulletin of the London Math-

ematical Society. The paper was quickly

refereed and it appeared in July 1984 [5]

breaking the queue of backlog for publica-

tion. A shorter version of this proof was

published again by Read in 1986. He also

constructed in 1985 [6] a bounded linear

operator on the Banach space ℓ1 without

non-trivial invariant subspaces.

The temptation on the part of Read to

have precedence over Enflo for solving

the problem was considered profession-

ally unethical by many mathematicians.

Particularly, because his work was essen-

tially based on ideas of Enflo. For ex-

ample, the French mathematician Bernard

Beauzamy also sharpened the techniques

of Enflo and produced a counterexam-

ple. He presented it at the Function-

al Analysis Seminar, University of Paris

(VI-VII) in February, 1984. But he de-

clined to publish his result in the Bulletin

of the London Mathematical Society, al-

though the Editors offered him the same

Cyclic vectors

A vector x in H is called a cyclic vec-

tor of a bounded operator T on H

if the closure of the span of all Tnx

equals H. The operator T has no non-

trivial invariant subspaces if and on-

ly if every non-zero vector is a cyclic

vector of T: if a vector x is non-cyclic,

then the closure of the span of all Tnx

is a non-trivial invariant subspace of

T. And if M is a non-trivial invariant

subspace, then every non-zero vector

in M is non-cyclic.

facilities as they did to Read. Beauzamy’s

paper appeared later in June 1985 in Inte-

gral Equations and Operator Theory.

The ℓ1-example of [6] was further sim-

plified by A.M. Davie, as can be found in

Beauzamy’s book (1988).

One should not get the impression that

all counterexamples which have been pro-

duced so far are based directly or indirect-

ly on the techniques developed by Enflo.

As a matter of fact, a series of papers writ-

ten by Read himself after his first paper

in 1984 makes a further significant con-

tribution to the subject. For example, the

counterexample that he constructed on ℓ1

in 1985 is characteristically different from

and simpler than Enflo’s, and could be

counted as a major achievement. Again, in

yet another paper in 1988, Read construct-

ed a bounded linear operator on ℓ1 which

has no invariant closed sets (let alone in-

variant subspaces) other than the trivial

ones. Not only is this a stronger result,

it also gives rise to a new situation: sup-

pose that the invariant subspace problem

is solved in the negative one day (as in the

case of Banach spaces), one would ask a

next question: “Does every bounded op-

erator have a non-trivial invariant closed

set?”

Building on his earlier work, Read pub-

lished in 1997 an example of a quasinilpo-

tent bounded operator (i.e., lim ||Tn||1/n =

0) on a Banach space without a non-trivial

invariant subspace. The same result is

nicely described in [8].

Von Neumann’s unpublished result

John von Neumann (unpublished) showed

that every compact operator on a Hilbert

space has a non-trivial invariant subspace.

The first proof of this result was pub-

lished by Aronszajn and Smith in 1954.

The result was extended to polynomial-

ly compact operators by A.R. Bernstein

and A. Robinson in 1966 using techniques

from non-standard analysis due to Robin-

son. Halmos translated their proof into

standard analysis. Interestingly, his paper

appeared in the same issue of Pacific Jour-

nal of Mathematics, just after theirs. In

1967, Arveson and Feldman transformed

the result in a still more general form by

essentially chiselling the technique of Hal-

mos: if T is a quasinilpotent operator such

that the uniformly closed algebra generat-

ed by T contains a non-zero compact op-

erator, then T has a non-trivial invariant

subspace.

Per Enflo

The Lomonosov technique

The result of Arveson and Feldman was,

in a sense, the climax of the line of ac-

tion initiated by von Neumann. Howev-

er, operator theorists were stunned in 1973

when the young Russian mathematician

V. Lomonosov obtained a more general re-

sult:

If a non-scalar bounded operator T on a

Banach space commutes with a non-zero com-

pact operator, then T has a non-trivial hyper-

Normed linear spaces

A vector space X over the field R(C)

of real (complex) numbers is called

a normed linear space if each vector

x ∈ X has a ‘norm’ ||x|| ∈ R, such

that ||x|| ≥ 0 and ||x|| = 0 if and on-

ly if x = 0, ||αx|| = |α| ||x|| for each

scalar α and ||x + y|| ≤ ||x|| + ||y||

for all x, y in X. Every normed lin-

ear space X is a metric space with the

metric defined by d(x, y) = ||x − y||.

A Banach space is a normed linear

space which is complete (as a met-

ric space). A Hilbert space is a Ba-

nach space endowed with the addi-

tional structure of an inner product

< x, y > such that the norm is related

to the inner product by the equality

< x, x >= ||x||2. By a bounded oper-

ator on a Banach space X one means

a linear transformation of X to itself

such that there exists a constant K >

0 for which ||Tx|| ≤ K||x|| for all x ∈

X. The operator norm of a bounded

operator T, denoted ||T||, is by defi-

nition ||T|| := sup{||Tx||/||x|| ; x 6=

0}. A normed space X is called sepa-

rable if it has a countable dense sub-

set.
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invariant subspace (this means, a subspace

which is invariant under every operator

that commutes with T).

This theorem was quite exciting for

many reasons:

I. Lomonosov used a brand-new tech-

nique (namely, an ingenious use of

Schauder’s fixed point theorem), en-

tirely different from the line of action

followed hitherto by other mathemati-

cians.

II. His result was much stronger than

what was known so far: every poly-

nomially compact operator has a non-

trivial invariant subspace.

III. His theorem highlighted another,

stronger, form of the ‘invariant sub-

space problem’: “Does every bound-

ed linear operator on a Hilbert space

have a non-trivial hyperinvariant sub-

space?”

IV. Many mathematician tried to find al-

ternative proofs of Lomonosov’s the-

orem, say, by replacing the use of

Schauder’s fixed-point theorem by the

Banach contraction principle, but the

theorem stands as it was even to-

day. M. Hilden, however, succeeded

in proving its special case that every

non-zero compact operator has a non-

trivial hyperinvariant subspace with-

out using any fixed-point theorem.

In fact, Hilden assumed without

any loss of generality a non-zero com-

pact operator also to be quasinilpo-

tent: if a non-zero compact oper-

ator is not quasinilpotent, then it

must have a non-zero eigenvalue, and

hence the eigenspace corresponding

to this eigenvalue is a non-trivial hy-

perinvariant subspace. Hilden ex-

ploits the quasinilpotence of the com-

pact operator to finish his proof.

V. Initially it was felt that Lomonosov’s

theorem might lead to a solution of the

general ‘invariant subspace problem’

in the affirmative. However, seven

years after his result, in 1980, Hadvin-

Nordgren-Radjavi-Rosenthal gave an

example of an operator that does not

commute with any non-zero compact

operator.

VI. A number of extensions and applica-

tions of Lomonosov’s theorem have

been obtained by several mathemati-

cians.

Normal-like non-normal operators

A bounded operator T on a Hilbert space

H is called ‘normal’ if it commutes with

its adjoint T∗. It is called ‘subnormal’ if

it is the restriction of a normal operator to

an invariant subspace, and ‘hyponormal’

if ||T∗x|| ≤ ||Tx|| for all x∈H. It is not dif-

ficult to see that normality ⇒ subnormal-

ity ⇒ hyponormality, but the converse is

true in neither case. An important result in

operator theory, known as Fuglede’s theo-

rem, states that if T is a normal operator

and S ∈ B(H) is such that TS = ST, then

T∗S = ST∗.

Fuglede’s theorem implies that every

non-scalar normal operator on a Hilbert

space has a non-trivial hyperinvariant

subspace. To show the existence of

non-trivial invariant (hyperinvariant) sub-

spaces of non-normal operators satisfying

certain nice conditions has been a fascinat-

ing subject for operator theorists. One of

the most striking results in this direction

was due to Scot Brown who showed in

1978 that every subnormal operator has a

non-trivial invariant subspace. J.E. Thom-

son (1986) found a simple and elegant

proof of Brown’s result. Consider the

Hilbert space L2(µ), where µ is a suit-

able positive Borel measure with compact

support in the complex plane. Thomson

makes a decisive use of the fact that a

cyclic subnormal operator can be mod-

elled as a multiplication by z on the clo-

sure of the space of all polynomials in

L2(µ). (A bounded operator T on the

Hilbert space H is called cyclic if there ex-

ists x ∈ H such that the closure of the span

of {Tn
x ; n ≥ 0} equals H.) As a matter

of fact, Thomson’s method gives rise to a

more general result:

Let A be a subalgebra of L∞(µ) contain-

ing z and let H be a subspace of L2(µ). If H

contains constants and is invariant for A, then

there is a non-trivial subspace of H that is A-

invariant.

In 1987 Brown, extending his techniques

and using descriptions of hyponormal op-

erators due to M. Putinar (1984), proved

that every hyponormal operator with the

spectrum having a non-empty interior has

a non-trivial invariant subspace.

Lastly we mention yet another signifi-

cant result in this direction due to Brown,

Chevreau and Pearcy: every contraction

whose spectrum contains the unit circle

has a non-trivial invariant subspace.

Heritages of the problem

For an operator T one denotes by LatT the

lattice of all invariant subspaces of T, with

set-inclusion as partial order. For a general

operator T, it is extremely difficult to de-

scribe LatT, particularly when we do not

know whether there exists a bounded op-

erator T for which LatT is isomorphic to

the lattice {0, 1} (this is the invariant sub-

space problem!). However, for certain spe-

cial operators T, namely the shifts and the

Volterra operators, the structure of LatT is

completely known. We now describe this,

and discuss the role of shifts and their in-

variant subspaces in the structure theory

of operators, as initiated by G.-C. Rota.

Let {en}∞

n=0 be an orthonormal basis

for H. The operator U on H such that

Uen = en+1 , n = 0, 1, 2 . . . is called the

(forward) shift operator. A simple calcu-

lation shows that its adjoint S is the back-

ward shift, given by Se0 = 0 and Sen =

en−1 for n ≥ 1. We shall be concerned with

Compact operators

An operator T on a Banach space X

is called ‘compact’ (completely con-

tinuous) if for every bounded subset

A ⊂ X, the closure T(A) of its im-

age is compact in X. An operator

T is called ‘polynomially compact’ if

there exists a polynomial p such that

the operator p(T) is compact. Every

compact operator is obviously poly-

nomially compact, but the converse

is not true; examples can be found in

Paul Halmos’ A Hilbert space problem

book (1967).

A bounded operator T is ‘quasinilpo-

tent’ if limn→∞ ||Tn||1/n = 0.

We say that a subalgebra of the alge-

bra of bounded operators on X is uni-

formly closed if it is closed with respect

to the operator norm.



B.S. Yadav The Invariant Subspace Problem NAW 5/6 nr. 2 juni 2005 151

the following concrete representations of

U and S.

Let L2 = L2(C, µ) be the Hilbert space

of all square-integrable functions defined

on the unit circle C, where µ is the normal-

ized Lebesgue measure on C(i.e.µ(C) =

1). If for each integer n, en = en(z) = zn,

then {en}∞

n=−∞
is an orthonormal basis

of L2. The Hardy space H2 is the closed

subspace of L2 generated by the vectors

{e0 , e1 , e2 , . . .}. We see that the multipli-

cation by e1(z) = z on H2 is U.

As a second example, let ℓ2 be the

Hilbert space of all square-summable com-

plex sequences x = (xn)∞

n=0. Then U and

S on ℓ2 appear as Ux = (0, x0 , x1 , . . .) and

Sx = (x1 , x2 , x3 , . . .).

Beurling’s theorem and its ramifications

In 1949, A. Beurling characterized the in-

variant subspaces of the shift operator on

the Hardy space H2 on the unit circle. His

result is:

If M is an invariant subspace of the shift

operator on the Hardy space H2 on the unit

circle C, then there exists an inner function

φ on C (this means that φ is measurable and

|φ(z)| = 1 almost everywhere on C), such

that M = φH2.

If both φ1 and φ2 are such functions, then

φ1/φ2 is equal to a constant function almost

everywhere.

As Beurling’s theorem showed an inter-

play between the theory of functions and

the operator theory, it has naturally had

John von Neumann (1903–1957)

numerous ramifications both in harmonic

analysis and functional analysis. Mainly

there have been three directions:

I. Replacing the Hardy space of scalar-

valued functions by the Hardy space

of vector-valued functions;

II. Extending Beurling’s characterization

to the Hardy space of scalar-valued

functions on the torus;

III. Viewing (i) and (ii) in the sense of de

Branges, which puts Beurling’s theo-

rem as well as its vector-valued gen-

eralizations due to Halmos (1961) and

others in a more general setting.

Weighted shifts

Shifts form an important class of oper-

ators. They have been rightly called

the ‘Building Blocks’ of operator theory.

Many important operators are, in a sense,

‘made up’ of shifts, for example, every

pure isometry is a direct sum of shifts and

every contraction with powers strongly

tending to zero is a ‘part’ of a backward

shift.

More importantly, shifts serve as an un-

ending source of counterexamples. Read

uses a shift to construct his counterexam-

ple of a bounded operator on a Banach

space without a non-trivial invariant sub-

space.

Let H be a Hilbert space with an or-

thonormal basis {en}∞

n=0 and let w =

{wn}∞

n=1 be a sequence of non-zero com-

plex numbers. Consider the weighted for-

ward shift Tw:

Twen = wn+1en+1 , n = 0, 1, 2, . . .

and the corresponding weighted back-

ward shift Sw:

Swe0 = 0,

Swen = w̄nen−1 , n = 1, 2, 3, . . .

A weighted forward shift is the adjoint

of a weighted backward shift and vice-

versa. Note that a subspace M is invari-

ant under an operator T if and only if its

orthogonal complement M⊥ is invariant

under T∗. Hence determining LatSw is

equivalent to determining LatTw.

Let Mn denote the closed subspace

spanned by

{e0 , e1 , . . . en}.

Then Mn ∈ LatSw for all n. Under certain

conditions on the weight sequence w, one

The work of the Swedish mathemati-

cian Arne Beurling (1905–1986) has

been pace-setting in many directions

in abstract harmonic analysis, func-

tional analysis and operator theory.

When conscripted in 1931, he recon-

structed Swedish cryptology ingeni-

ously leading to information vital for

the survival of Sweden during the

World War II. Although appointed

professor at the Institute of Advanced

Study, Princeton in 1954, he always

missed the right social environment

and would not even apply for a Green

Card. A review of this book appeared

in September 2003 in the Notices of

the AMS. Codebreakers: Arne Beurling and the

Swedish Crypto Program during World War II , Bengt

Beckman, AMS 2002, ISBN 0-8218-2889-4.

can show that LatSw consists of Mn’s on-

ly: if a weight sequence w = {wn}∞

n=1 is

such that {|wn|} is monotonically decreas-

ing and

∞

∑
n=0

|wn|
2

< ∞,

then every non-trivial invariant subspace

in LatSw is some Mn.

This result is due to N.K. Nikolskii

(1965). The case wn = 2−n was obtained

in 1957 by W.F. Donoghue.

Volterra integral operators

Consider the Volterra integral operator V

defined on L2(0, 1) by
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(V f )(x) =
∫ x

0
f (t)dt, 0 ≤ x ≤ 1,

for all f ∈ L2(0, 1). This operator is an-

other one whose invariant subspaces have

been characterized. For each α∈ [0, 1], let

Mα = { f ∈ L2(0, 1) : f = 0

almost everywhere on[0,α]}.

Obviously, Mα ∈ LatV for all α ∈ [0, 1]. In

fact,

LatV = {Mα : α ∈ [0, 1]}.

This was proven by J. Dixmier (1949) in

case of the real space L2(0, 1). W.F. Donog-

hue and M.S. Brodskii independently set-

tled it in 1957 for the complex space

L2(0, 1).

These results have been extended to in-

tegral operators K on L2(0, 1) defined by

(K f )(x) =
∫ x

0
k(x, y) f (y)dy, 0 ≤ x ≤ 1,

for all f ∈ L2(0, 1), where k(x, y) is

a square-integrable function on [0, 1] ×

[0, 1]. The characterization of LatK in this

case may be used to obtain a functional-

analytic proof of the famous classical

Titchmarsh convolution theorem (G.K. Ka-

lisch, 1962).

Rota’s models of linear operators

By a part of an operator T on a Hilbert

space H, we mean the restriction T|M of

T to an invariant subspace M of T.

Let l2(H) denote the Hilbert space

of all square-summable sequences x =

(x0 , x1 , . . . , xn , . . .) in H. Take a bounded

sequence w = (wn) of positive real num-

bers. The backward shift Sw on l2(H) is

given by

Swx = (w1x1 , w2x2 , . . . , wn+1xn+1 , . . .).

Put β0 = 1 and βn = w1w2 · . . . · wn, for

n ≥ 1. One has the following result.

Suppose T is a bounded operator on H and
∞

∑
n=0

β−2
n ||Tn||2 < ∞.

Then T is similar to a part of Sw on l2(H)

in the following sense: define A : H → l2(H)

by Ax = {β−1
0 x, β−1

1 Tx, β−1
2 T2x, . . .}, then

the image M of A is closed and Sw A = AT.

This implies M is an invariant subspace of

Sw and T is similar to Sw|M.

If the spectral radius,

r(T) := lim
n→∞

(

||Tn||2
)1/n

,

of T is less than 1, then the conditions of

the above result are satisfied for the con-

stant sequence wn = 1. This observation

leads to the result of G.-C. Rota (1960):

If a bounded operator T on a Hilbert space

H has spectral radius r(T) < 1, then T is sim-

ilar to a part of the standard backward shift on

l2(H). In particular, this holds for a strict con-

traction T, i.e. if ||T|| < 1.

Since any bounded operator can be

‘scaled’ so as to be a strict contraction, Ro-

ta’s work yields a reformulation of the in-

variant subspace problem: Are the mini-

mal non-zero invariant subspaces of backward

shifts one-dimensional?

More details on this work initiated by

Rota may be found in [7]. k
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