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GPS and integer estimation

Het Global Positioning System (GPS) is een wereldwijd plaatsbepa-

lingssysteem op basis van satellieten. De eerste plannen en ont-

werpen voor het systeem dateren uit de vroege jaren zeventig in de

vorige eeuw; reeds in februari van 1978 werd de eerste GPS-satelliet

gelanceerd. De nominale constellatie omvat 24 satellieten, die elk in

ongeveer 12 uur om de aarde cirkelen. Daardoor kunnen overal ter

wereld, doorgaans minstens vier satellieten tegelijkertijd waargeno-

men worden. Peter Teunissen, hoogleraar mathematische geodesie

en positiebepaling aan de Technische Universiteit Delft verzorgde

in de zomer van 2003 colleges over Global Positioning Systems in

het kader van de, door het CWI georganiseerde, vakantiecursus voor

wiskundeleraren.

The Global Positioning System (GPS) nowadays is used for a

whole variety of positioning and navigation applications. These

applications range from navigating your private sailboat to deter-

mining the millimeter movements of the earth’s tectonic plates.

For the very high-accuracy applications of GPS one needs very

precise range information. These precise ranges for positioning

with GPS are obtained from carrier phase measurements. These

measurements of range inherently contain unknown integer am-

biguities to account for the mismatch of a whole number of wave-

lengths or cycles. This contribution describes the problem of GPS

carrier phase ambiguity resolution, discusses some relevant ele-

ments of integer estimation theory and reviews some of the high

precision positioning applications that come into reach when the

integer carrier phase ambiguities can be resolved quickly and cor-

rectly.

Redundant measurements

As in other physical sciences, empirical data are used in geode-

sy to make inferences so as to describe the physical reality. Ma-

ny such problems involve the determination of a number of un-

known parameters which bear a linear or linearized relationship

to the set of data. In order to be able to check for errors or to re-

duce for the effect these errors have on the final result, the col-

lected data often exceed the minimum necessary for a unique so-

lution (redundant data). As a consequence of measurement uncer-

tainty, redundant data are usually inconsistent in the sense that

each sufficient subset yields different results from another subset.

Hence, redundancy generally leads to an inconsistent system of

linear(ized) equations, say

y ∼= Ax
(1)

where vector y contains the m observations, vector x the n un-

known parameters. The m × n matrix A relates the observations

to the parameters. Redundancy of the above system is defined as

m − rankA, which in case of a full rank matrix simplifies to m − n,

the difference between the number of observations and the num-

ber of unknown parameters.

The above inconsistent system is without additional criteria

not uniquely solvable. The problem of solving an inconsistent sys-

tem of equations has attracted the attention of leading scientists

in the middle of the 18th century. Historically, the first methods

of combining redundant measurements originate from studies in



Peter Teunissen GPS and integer estimation NAW 5/5 nr. 1 maart 2004 49

Figuur 1 Least-squares estimation implies a (n orthogonal) projection of the observation
vector y onto the plane spanned by the columns of matrix A. Example with three observati-
ons and two unknown parameters.

geodesy and astronomy, namely from the problem of determining

the size and shape of the earth, and the problem of finding a ma-

thematical representation of the motions of the Moon. Since its

discovery almost 200 years ago, the method of least-squares has

been and still is too a large extent one of the most popular me-

thods of solving an inconsistent system of equations. Although

the method of least-squares may seem ’natural’ for a student in

modern times, its discovery evolved only slowly from earlier me-

thods of combining redundant observations [1]

GPS positioning basically is determining the location of a

(user) receiver with respect to satellites of which the locations (or-

bits) are known. This determination takes place by measuring dis-

tances, and from a geometric point of view three measurements

would suffice to determine the three coordinates of the user (for-

tunately we know on which side of the satellite configuration the

earth is located). The simplest example of (1) in case of GPS is the-

refore when distances are measured from an unknown GPS re-

ceiver position to more than three GPS satellites of which the po-

sitions are known. Since the distance from the unknown receiver

position r to the known position of satellite s is a nonlinear func-

tion of the unknown position coordinates,

ls
r =

√

(xs − xr)2 + (ys − yr)2 + (zs − zr)2 (2)

the common approach is to approximate this relation by a lineari-

zed version, that is, developing the nonlinear relation in a Taylor

series with zeroth and first order terms only, using good approxi-

mate values for the unknown parameters. As a result the (incre-

ments of the) observed distances are collected in vector y, the (in-

crements of the) three unknown coordinates in vector x and the

partial derivatives in matrix A. In reality the equations are far mo-

re complicated than (2) due to the fact that one also has to account

for clock errors, atmospheric delays and orbital errors.

Least-squares

Around 1800 Legendre and Gauss at the same time (most likely

independently), invented the method of least-squares for solving

an inconsistent system of equations. The least-squares solution

to (1) reads

x̂ = (ATQ−1
y A)−1 ATQ−1

y y
(3)

with Q−1
y being the weight matrix. This solution is obtained by

first adding an unknown error vector e to (1), giving the consistent

but undetermined system y = Ax + e, and then minimizing the

weighted norm of e, ‖ e ‖Qy
, as function of x. The least-squares

estimator has various desirable properties. When the positive de-

finite matrix Qy is chosen as the variance-covariance matrix of the

observations, the least-squares estimator has the smallest varian-

ce (best possible precision) of all linear unbiased estimators.

The geometric interpretation of what least-squares does to the

observations is shown in figure 1. The inconsistency between ob-

servations on one hand and model (with unknown parameters)

on the other is removed by orthogonal projection. Vector ŷ = Ax̂

eventually lies in the plane or linear manifold spanned by the

columns of matrix A (indicated by R(A)). The orthogonal pro-

jection realizes shortest distance between the original observation

values y and the adjusted ones ŷ; the observation values are mo-

dified as little as possible, though satisfying the assumed model

afterwards. This follows from interpreting the least-squares esti-

mation principle as the principle of least distance

min
x

‖y − Ax‖2
Qy

.
(4)

The (squared and weighted) distance between y and ŷ = Ax̂ is

minimized.

In order to evaluate the quality of the least-squares solution

in a probabilistic sense, we need the probability density function

(PDF) of x̂. Since x̂ of (3) is a linear function of y, the least-squares

estimator has a Gaussian distribution whenever y is Gaussian dis-

tributed. The PDF of the unbiased least-squares estimator x̂ can

therefore be uniquely characterized by means of the variance-

covariance matrix of x̂. With Qy being the variance-covariance

matrix of the observations, application of the error propagation

law to (3) gives the variance-covariance matrix of the estimated

parameters as

Qx̂ = (ATQ−1
y A)−1 (5)

This matrix can be used to evaluate the precision of the parameter

estimators, as for instance the position coordinates.

GPS carrier phase observable

GPS observations of distance or range are obtained by measuring

signal travel-times (from satellite to receiver) and multiplying the-

se by the speed of light. Two types of distance measurements are

employed: pseudo range code and carrier phase. The code obser-

vation is based on the (binary) code the satellite modulates onto

the signal carrier; the distance can be measured virtually unam-

biguously. For the carrier phase, the receiver measures the diffe-

rence in phase between the carrier wave received from the satelli-

te and the reference carrier wave it generated itself. The (physical)

phase difference reads

ψs
r = φr −φ

s .

With some simplifying assumptions, the phase of a carrier wave

at some epoch t equals frequency f multiplied by time t: φ = f t.

The receiver compares the reference carrier at time of observati-

on tr with the carrier received from the satellite, which was gene-

rated a little earlier in order to be ‘in time’ at the receiver, namely

at tr − τ s
r , where τ s

r is the signal travel time from satellite to re-
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Figuur 2 A GPS receiver and antenna permanently installed for precisely monitoring mo-
tions of the earth’s crust. Site Ranchita in California in the US. Photo taken from album at
http://www.scign.org/

ceiver.

The above phase difference becomes

ψs
r = fτ s

r ,

and when multiplied by wavelength λ = c
f , λψs

r = cτ s
r = ls

r ,

the distance in meters is obtained; it equals the travel time pre-

multiplied by the speed of light c, exactly as with the code obser-

vation.

Figuur 3 Measurement of phase on the continuous carrier wave transmitted by the satelli-
te. The satellite keeps on transmitting the carrier wave, cycle after identical cycle.

As a consequence of carrying out measurements on a (monoto-

ne) continuous carrier wave, the receiver can not distinguish one

cycle from another. The satellite keeps on transmitting the carrier

wave, in principle cycle after identical cycle, see figure 3.

At some epoch in time the receiver simply starts outputing the

measured fractional difference in phase: frac(ψs
r) ∈ [0, 1〉 cycle.

The full (physical) phase difference is then decomposed into

ψs
r = int(ψs

r)
︸ ︷︷ ︸

Ns
r

+ frac(ψs
r)

︸ ︷︷ ︸

φs
r

.

The observed (fractional) phase difference φs
r (times the wave-

length) does thereby not equal the distance from satellite to re-

ceiver ls
r , but equals this distance apart from an integer number of

wavelengths

λφs
r = ls

r − λNs
r .

As a consequence the vector x in (1) will, next to the unknown

receiver coordinates, now also contain unknown integer cycle am-

biguities Ns
r .

Figuur 4 Least-squares with integer parameters: possible solutions for the vector of obser-
vations form a grid in the column-space of matrix A (A1 and A2 are two columns of ma-
trix A); the solution is no longer allowed to lie anywhere in the plane R(A).

Integer least-squares

The least-squares solution (3) is obtained from solving (4), whe-

re x is allowed to vary over the whole n- dimensional space of

real numbers. In case of GPS however, when use is made of the

carrier phase observations, the vector of unknown parameters x

consists of both real-valued and integer valued parameters (real-

valued coordinates and integer-valued carrier phase ambiguities).

We therefore need to modify the solution (3) so as to take the inte-

gerness of some of the parameters into account. To keep the dis-

cussion simple, it will be assumed here that all parameters in vec-

tor x are integer-valued. Due to the integerness of the parameters,

orthogonal projection of y will now not do the job properly, see

figure 4. Nevertheless one can start with ‘ordinary’ least-squares

as a first step, see figure 5. The solution so obtained for the un-

known parameters will be real-valued and is usually referred to

as the ‘float’ solution.

Figuur 5 Least-squares with integer parameters: the first step consists of ‘ordinary’ least-
squares (orthogonal projection); the solution x̂ for the parameters will consist of real-valued
numbers.

To apply the least-squares principle (4), but now under the con-

dition that the parameters in x are all integers, a second step has

to be carried out. Since the first step projects orthogonally to the

plane R(A), the second step takes place in the plane. From the

orthogonal decomposition

‖y − Ax‖2
Qy

= ‖y − ŷ‖2
Qy

+ ‖ŷ − Ax‖2
Qy

(6)

it follows that the second step amounts to solving the minimiza-

tion problem

min
x

(ŷ − Ax)TQ−1
y (ŷ − Ax) =

min
x

(x̂ − x)T ATQ−1
y A(x̂ − x) = min

x
(x̂ − x)TQ−1

x̂ (x̂ − x)
(7)
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for x being integer, where in the last equation (5) has been used.

This minimization can also be visualized in the parameter space,

see figure 6, instead of in the observation space as in figures 1

and 4.

Figuur 6 Least-squares with integer parameters: in the second step the integer solution
for x is sought that is closest to the real-valued solution x̂ of the first step; ‘closest’ is to
be measured in the metric of the variance-covariance matrix Qx̂; the quadratic form (7), set
equal to a constant, is represented by the ellipse in this example with two ambiguities x1
and x2.

The integer least-squares principle has been applied very suc-

cessfully to GPS ambiguity resolution. By the presence of the

variance-covariance matrix Qx̂ in (7), the precision and correla-

tion of the individual real-valued ambiguity estimates is properly

and fully exploited. In contrast to the ‘ordinary’ least-squares so-

lution (3), there does not exist an analytical solution to (7). In prac-

tice a search over possible integer solutions has to be carried out.

The space of integer solutions is restricted by limiting the squared

and weighted distance in (7) to a convenient value. As a result, the

volume of the corresponding ellipse (or hyper-ellipsoid in higher

dimensions) has to be searched through in order to find the inte-

ger least-squares solution of x.

When the ambiguities of the first step are of poor precision and

at the same time highly correlated, the ellipse or ellipsoid gets

very elongated and narrow. As a consequence the discrete search

may get computationally inefficient. For computational efficiency

the quadratic form (7) can be integer transformed, so that the re-

sulting ellipsoid becomes more sphere-like and the transformed

ambiguities become less correlated [2–3].

Alternative integer estimators

Instead of the integer least-squares estimator one can also think

of alternative integer estimators. Starting from the ’float’ solu-

tion, such an estimator x̌ = F(x̂) will consist of a mapping

F : Rn 7→ Zn from the n-dimensional space of real numbers to

the n-dimensional space of integers. Due to the discrete nature

of Zn, the map F will not be one-to-one. This implies that diffe-

rent real-valued ambiguity vectors will be mapped to the same

integer vector. One can therefore assign a subset Sz ⊂ Rn to each

integer vector z ∈ Zn:

Sz = {x ∈ Rn | z = F(x)}, z ∈ Zn (8)

The subset Sz contains all real-valued ambiguity vectors that will

be mapped by F to the same integer vector z ∈ Zn. This subset is

referred to as the pull-in-region of z. It is the region in which all am-

biguity ’float’ solutions are pulled to the same ’fixed’ ambiguity

vector z.

Since the pull-in-regions define the integer estimator comple-

tely, one can define classes of integer estimators by imposing va-

rious conditions on the pull-in-regions. One such class is given as

follows [4].

An integer estimator is said to be admissible if

(i)
⋃

z∈Zn

Sz = Rn

(ii)Sz1

⋂

Sz2 = {0}, ∀z1 , z2 ∈ Zn , z1 6= z2

(iii)Sz = z + S0 , ∀z ∈ Zn

(9)

This definition is motivated as follows. Each one of the above

three conditions describe a property of which it seems reasonable

that it is possessed by an arbitrary integer ambiguity estimator.

The first condition states that the pull-in-regions should not lea-

ve any gaps and the second that they should not overlap. The

absence of gaps is needed in order to be able to map any ’float’

solution x̂ ∈ Rn to Zn, while the absence of overlaps is needed

to guarantee that the ’float’ solution is mapped to just one integer

vector. Note that the pull-in-regions are allowed to have common

boundaries. This is permitted if we assume to have zero probabi-

lity that x̂ lies on one of the boundaries. This will be the case when

the probability density function (PDF) of x̂ is continuous.

Figuur 7 Two-dimensional pull-in regions of rounding, bootstrapping and integer least-
squares.

The third and last condition follows from the requirement that

F(x + z) = F(x) + z, ∀x ∈ Rn , z ∈ Zn. Also this condition is a

reasonable one to ask for. It states that when the ’float’ solution is

perturbed by z ∈ Zn, the corresponding integer solution is pertur-

bed by the same amount. This property allows one to apply the

integer remove-restore technique: F(x̂ − z) + z = F(x̂). It therefore

allows one to work with the fractional parts of the entries of x̂,

instead of with its complete entries.

There exist various admissible integer estimators. The sim-

plest integer map is the one that corresponds to integer roun-

ding. In this case the integer vector is obtained from a rounding

of each of the entries of x̂ to its nearest integer. Since component-

wise rounding implies that each real-valued ambiguity estimate

x̂i , i = 1, . . . , n, is mapped to its nearest integer, the absolute va-

lue of the difference between the two is at most 1
2 . The subsets

SR,z that belong to this integer estimator are therefore given as

SR,z =
n⋂

i=1

{

x̂ ∈ Rn | | x̂i − zi | ≤
1

2

}

, ∀z ∈ Zn (10)

The subset SR,z is an n-dimensional cube, with sides of length 1

and centered at the grid point z.
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Another relatively simple integer ambiguity estimator is the inte-

ger bootstrapped estimator. This estimator can be seen as a gene-

ralization of the previous one. It still makes use of integer roun-

ding, but it also takes some of the correlation between the am-

biguities into account. The bootstrapped estimator results from a

sequential conditional least- squares adjustment and is computed

as follows. If n ambiguities are available, one starts with the first

ambiguity x̂1, and rounds its value to the nearest integer. Having

obtained the integer value of this first ambiguity, the real-valued

estimates of all remaining ambiguities are then corrected on the

basis of their correlation with the first ambiguity. Subsequently

the second, but now corrected, real-valued ambiguity estimate is

rounded to its nearest integer. Having obtained the integer value

of the second ambiguity, the real-valued estimates of all remai-

ning n− 2 ambiguities are again corrected, but now on the basis of

their correlation with the second ambiguity. This process of roun-

ding and correcting is continued until all ambiguities are taken

care of.

With ci denoting the i-th canonical unit vector having a 1 as its

i-th entry, the pull-in-regions SB,z that belong to the bootstrapped

estimator can be shown to be given as

SB,z =
n⋂

i=1

{

x̂ ∈ Rn | | cT
i L−1(x̂ − z) |≤

1

2

}

, ∀z ∈ Zn (11)

with matrix L being the unit lower triangular matrix of the trian-

gular decomposition of Qx̂. Note that these pull-in-regions reduce

to the ones of (10) when L becomes diagonal. This is the case when

the ambiguity variance-covariance matrix is diagonal. In that case

the two integer estimators x̌R and x̌B are identical.

The third admissible estimator of which the pull-in-region will

be given is the integer least-squares estimator. By again using the

LDLT-decomposition of Qx̂ the least-squares’ pull-in-region reads

SLS,z =

⋂

ci∈L−1(Zn)

{

x̂ ∈ Rn | | cT
i D−1L−1(x̂ − z) |≤

1

2
cT

i D−1ci

} (12)

Note that (12) and (11) become identical when the matrix entries

of L−1 are all integer. This is the case when L is an admissible

ambiguity transformation.

As an example of the three types of pull-in regions consider

figure 7. These three types of pull-in region correspond with the

2-by-2 variance-covariance matrix

Qx̂ =

(
0.0847 −0.0364

−0.0364 0.0865

)

The ambiguity success rate

The quality of the integer ambiguity estimator is particularly of

interest in case of GPS. One therefore needs the probability mass

function (S) of x̌. It can be obtained as follows. Using the concept

of the pull-in-region, the integer estimator is defined as x̌ = z ⇔

x̂ ∈ Sz. Hence, for the probability masses one has P(x̌ = z) =

P(x̂ ∈ Sz). With the PDF of x̂ given as px̂(x), the PMF of x̌ follows

as

Figuur 8 Example of the repeatability of GPS positions after resolving the ambiguities by
means of integer least-squares. The three-dimensional position is obtained from a single
epoch of observations (so-called instantaneous positioning). The experiment has been car-
ried out 1200 times, and shown are all 1200 ambiguities-fixed position solutions. The me-
asurement noise in the carrier phase observation is at the few millimeter level and the con-
sequent spread in position is clearly below 1 centimeter.

P(x̌ = z) =
∫

Sz

px̂(x)dx , ∀z ∈ Zn (13)

The ambiguity success rate is defined as the probability of correct

integer estimation P(x̌ = x). Note that the PMF (13) as well as the

success rate still depend on the type of pull-in-region and thus on

the type of integer estimator chosen. Changing the geometry of

the pull-in-region will change both the PMF and the ambiguity

success rate. It is therefore of interest to know which integer esti-

mator maximizes the ambiguity success rate. The answer is given

by the following theorem [4]:

Theorem. Let the PDF of x̂ be elliptically contoured and the integer

least-squares estimator be given as

x̌ILS = arg min
z∈Zn

‖ x̂ − z ‖2
Qx̂

Then

P(x̌ILS = x) ≥ P(x̌ = x)
(14)

for any admissible estimator x̌.

This theorem gives a probabilistic justification for using the inte-

ger least-squares estimator. It applies to GPS ambiguity resoluti-

on for which the PDF px̂(x) is often assumed to be a multivaria-

te normal distribution. For GPS ambiguity resolution one is thus

better off using the integer least-squares estimator than any other

admissible integer estimator, such as integer rounding or integer

bootstrapping.

Applications

Once the integer carrier phase cycle ambiguity has been resol-

ved, the phase observation turns into a direct measurement of dis-

tance. These phase observations possess millimeter precision and

consequently the user receiver position can be determined with a

similar level of precision, see figure 8.

Already early in the history of GPS positioning, the application

of surveying topography emerged. By taking the GPS receiver to
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sites and features on the earth’s surface, their locations can be de-

termined and consequently be mapped. Today, GPS positioning

is an important tool in producing and maintaining road-maps,

town-plans and precise cadastral maps (and databases).

In the early days, precise positions got available only after con-

siderable time spans (of one or several hours). By including the

integer constraints on the ambiguities and developing efficient

ways of solving the integer least-squares problem, high precision

positions become available virtually immediately, see also figu-

re 8. The ambiguities have been demonstrated to be resolved cor-

rectly using just one epoch (second) of observations, thus greatly

improving surveying productivity. At present the position can be

determined directly in the field, by Real-Time Kinematic (RTK)

GPS, see figure 9.

Figuur 9 Real-Time Kinematic (RTK) GPS surveying: the surveyor directly ‘digitizes’ the
points of interest in the field, by holding the antenna accurately in place for just a few se-
conds.

Similar equipment and algorithms can be used for high precision

navigation of moving vehicles on land, vessels at sea and aircraft

in the air. Challenging applications are vessel guidance through

narrow straights with critical clearance and landing aircraft in

conditions of poor visibility.

Precise GPS positioning anywhere on earth is of great benefit

also to earth sciences. Tectonic plates may move by several cen-

timeters a year with respect to each other. Such motions of the

earth’s crust can be monitored with GPS at the required level of

precision. This is of particular interest in areas with considerable

seismic activity. For instance in California in the United States,

with emphasis on the greater Los Angeles metropolitan region,

an array of GPS receivers has been installed — under the name of

Southern California Integrated GPS Network (SCIGN) — to stu-

dy geodynamical phenomena. Over 200 locations are covered and

GPS receivers are in operation 24 hours a day, 7 days a week. Fi-

gure 2 shows an example of a station of the SCIGN.

Conclusion

In this article the problem of the integer cycle ambiguity of the

GPS carrier phase observations for ranging has been addressed.

The ambiguities are resolved using the integer least-squares prin-

ciple thus allowing very precise and fast GPS positioning. Since

various details were skipped in the above presentation, the inte-

rested reader is referred to the many textbooks available on GPS

positioning [5–9]. k
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