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Computational problems

Problemen uit de discrete wiskunde lijken op het eerste gezicht vaak

erg simpel. Ze kunnen meestal gemakkelijk en zonder gebruik te

maken van wiskundige begrippen worden geformuleerd. Toch komt

het vaak voor dat zo’n ogenschijnlijk eenvoudig probleem nog open

is of dat er, zoals bij het handelsreizigersprobleem, wel een oplos-

sing gegeven kan worden, maar alleen een die onbruikbaar is omdat

de rekentijd bij grotere getallen te snel groeit. In dit artikel, geba-

seerd op zijn voordracht op het NMC 2002, kijkt Gerhard Woeginger

naar de tegenovergestelde situatie. Hij introduceert allerlei discrete

problemen die onoplosbaar lijken, maar waarvoor er een simpele

oplossing bestaat.

Computational Mathematics and Computer Science are full of in-

nocent looking algorithmic problems that are difficult to solve.

For these problems, the solution of moderately sized instances

may take many many years, even if we use smart programs and

run them on the fastest available computers. For instance:

− consider the product of two 300-digit prime numbers p and q,

and compute p and q from this product;

− consider a 100 × 100 matrix with integer entries. Can one per-

mute the rows and the columns of this matrix in such a way

that in the resulting matrix all non-zero entries lie on the 20

diagonals above and below the main diagonal;

− consider a logical formula with 200 Boolean variables. Can one

find a truth-setting for the variables such that the formula is

satisfied? Or for instance:

− consider a list with 100 positive integers, each of them 100 dig-

its long. Are there two distinct subsets whose elements add up

to the same sum?

Of course the problems as stated are just toy problems. How-

ever, closely related combinatorial problems lie at the founda-

tions of cryptography, artificial intelligence, mathematical eco-

nomics, telecommunication, software analysis, VLSI design, and

many other areas. Many of these problems are computationally

intractable, and thirty years of research did not result in a satis-

fying computational way of attacking them. All known solution

approaches boil down to enumerating zillions of subcases, and it

seems impossible to control the resulting combinatorial explosion

for big instances. For more information on these issues we refer

the reader to the book by Garey & Johnson [1979] on NP-hardness,

and to the book by Papadimitriou [1994] on computational com-

plexity.

In this article we will not discuss such difficult problems. In-

stead, we will concentrate on easy problems that only look diffi-

cult at first sight. We will discuss the problem of arranging data

records in a linear storage array so as to minimize the average ac-

cess time, we will analyze the travelling salesman problem under

specially structured distances, and we will consider a balancing

problem for the blades on a hydraulic turbine wheel. We will ar-

gue that these three problems are absolutely trivial, and that they

can be solved without any computation. It will turn out that there

is one mathematical theorem in the background that explains why

they are trivial.

Average access time in a linear storage array

In our first optimization problem, we consider an information re-

trieval system with a set R of n data records R1 , . . . , Rn that are

referenced and accessed repeatedly. Data record Ri is referenced

with probability pi (0 ≤ pi ≤ 1), and different references are mu-

tually stochastically independent. Without loss of generality we

assume p1 ≤ p2 ≤ · · · ≤ pn. These n data records are to be stored

in a linear array of storage cells C1 , . . . , Cn, like a magnetic tape.

Then they will repeatedly be accessed by a read head that moves

along this storage array. When moving from storage cell Ci to cell

C j, the read head travels a distance di, j. See Figure 1 for an illus-

tration.

What is the best possible ordering of the records in the array

such that the read head’s expected moving time between consec-
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without computation

utively referenced records is minimized? Consider an ordering

φ ∈ Sn of the data records that assigns record Rφ(i) to the storage

cell Ci. The probability that record Rφ(i) is accessed and that right

after it record Rφ( j) is accessed equals pφ(i) pφ( j), and the distance

between the cells is di, j. Hence, we wish to find a permutation

φ ∈ Sn that minimizes the expression

n

∑
i=1

n

∑
j=1

pφ(i) pφ( j) di, j .
(1)

Intuitively one expects that the records with high access proba-

bilities should be stored around the center of the storage array,

whereas the records with low access probabilities should go to the

far ends of the array. In a natural special case of this optimization

problem the storage cells are laid out on the integers 1, . . . , n and

hence their distances are di, j = |i − j|. This special case was stud-

ied by Timofeev & Litvinov [1969], and thirty years later redis-

covered and reproduced (independently) by Vickson & Lu [1998].

These authors proved that the optimal solution is always given

by the same fixed permutation φ∗. In other words, there exists a

universal optimal ordering φ∗ of the data records for all possible in-

stances with di, j = |i − j|. This universal ordering only depends

on the ranking of the probabilities; it does not depend on their

actual values!

Now, what does this universal solution φ∗ look like? If we

write φ = 〈φ(1),φ(2), . . . ,φ(n)〉 to specify a permutation φ, then

φ∗ = 〈1, 3, 5, 7, 9, 11, 13, . . . 14, 12, 10, 8, 6, 4, 2〉.
(2)

The permutation φ∗ starts with all the odd numbers in increasing

order, followed by all the even numbers in decreasing order. If we

want to solve an instance of the data arrangement problem with

distances di, j = |i − j|, then we do not need to check thousands

of cases and subcases, we do not need to write smart computer

programs, and we do not need to use a computer. In fact, no com-

putation is necessary at all: We simply use the permutation φ∗.

What about other, less restricted distances di, j? Burkov, Rubin-

shtein & Sokolov [1969] considered the case where the distances

satisfy di, j = f (|i − j|) for some non-decreasing and convex func-

tion f . For f (x) = x we again get the special case considered

by Timofeev & Litvinov. For f (x) = x2 we get the special case

di, j = (i − j)2 where travel times increase quadratically in |i − j|.

Surprisingly, it turns out that this more general version is also uni-

versally solved by the permutation φ∗. Again, no computation

is needed to handle instances of this type! The proof of Burkov,

Rubinshtein & Sokolov starts with an arbitrary permutation, and

then restructures, modifies, and rebuilds it, bringing it closer and

closer to permutation φ∗. By exploiting the convexity of f , they

show that with every such step of restructuring, modifying, and

rebuilding, the objective value does not go up. In the end they

arrive at permutation φ∗ without increasing the objective value.

Consequently, permutation φ∗ must also yield an optimal solu-

tion. This proof is heavily based on the convexity of f . Is the

result itself only true for convex functions f ? No!

Metelski [1972] and Pratt [1972] realized that convexity is not

necessary for the result. Metelski and Pratt also realized that

the above results are all contained in a much older result due to

Figure 1 Data records in a linear storage array. The read head is accessing the data in
cell 3.
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Figure 2 Illustrations for the proof of Supnick’s result

Hardy, Littlewood & Pólya [1926]: Translated into the language

of our article, this much older result states that the data arrange-

ment problem is universally solved by the permutation φ∗, as

long as the distances satisfy di, j = f (|i− j|) with an arbitrary non-

decreasing function f . This result can also be found in the well-

known book Inequalities by Hardy, Littlewood & Pólya [1934]; its

proof is discussed in Chapter 10 dealing with rearrangements of

sequences. Let us summarize that there is a rich family of distance

functions for which the data arrangement problem can be solved

without computation.

The travelling salesman problem on Supnick matrices

Our second optimization problem is the travelling salesman prob-

lem: The goal is to find a shortest closed tour through n cities

whose distances are specified by an n × n distance matrix C =

(ci, j). In other words, a travelling salesman starts from his home-

town, visits all the other cities exactly once, in the end again

returns to his hometown, and he does this with the minimum

possible amount of gas. Mathematically, the salesman starts in

city φ(1), then visits cities φ(2),φ(3), . . . ,φ(n), and then returns

home. We wish to find a permutation φ ∈ Sn that minimizes the

expression

(

n−1

∑
i=1

cφ(i),φ(i+1)

)

+ cφ(n),φ(1)
(3)

The travelling salesman problem is probably the most prominent

and most studied problem in combinatorial optimization. It can

be traced back to the work of the Irish mathematician Sir William

Rowan Hamilton [1858]. The travelling salesman problem mod-

els situations that arise in robotics, production, scheduling, engi-

neering, and many other areas. For more specific information on

the travelling salesman problem and its applications, we refer the

reader to the book by Lawler, Lenstra, Rinnooy Kan & Shmoys

[1985].

In its general form the travelling salesman problem is an NP-

hard problem; see Garey & Johnson [1979]. Hard problems that

require lots of computation are not discussed in this article, so

we will concentrate on the travelling salesman problem with a

more restricted type of distance matrices, so-called Supnick ma-

trices. An n × n matrix C = (ci, j) is a Supnick matrix, if (i) it is

symmetric and if (ii) it satisfies the Monge inequalities

ci, j + cr,s ≤ ci,s + cr, j
(4)

for all 1 ≤ i < r ≤ n and 1 ≤ j < s ≤ n. In words: In every

2 × 2 submatrix the sum of the two entries on the main diagonal

is less than or equal to the sum of the two entries on the other di-

agonal. These inequalities go back to the eighteenth century, and

to the work of the French mathematician Gaspard Monge [1781].

Burkard, Klinz & Rudolf [1996] survey the role of Monge struc-

tures in combinatorial optimization. Here are some examples of

Supnick matrices:

− Sum matrices:

Let α1 , . . . ,αn be real numbers. Then the sum matrix C with

ci, j = αi +α j is a Supnick matrix. In fact, for a sum matrix the

inequality signs in (4) can be replaced by equality signs

− Negative product matrices:

Let 0 < β1 ≤ β2 ≤ · · · ≤ βn be positive real numbers. Then

the negative product matrix C with ci, j = −βi ·β j is a Supnick

matrix. The inequalities in (4) are equivalent to (βr −βi)(βs −

β j) ≥ 0 with r > i and s > j.

− LL-UR block matrices:

Let 1 ≤ x < y ≤ n be integers, and consider the Lower-Left

Upper-Right block matrix C with ci, j = 1 if i ≤ x and j ≥ y

or if i ≥ y and j ≤ x, and with ci, j = 0 in all other cases.

This matrix C is a Supnick matrix. It has a rectangular block of

1-entries in the lower left corner (below the main diagonal), a

symmetric block of 1-entries in the upper right corner (above

the main diagonal), and it has 0-entries everywhere else. See

Figure 3 for an illustration.

Note that the inequalities stated in (4) are linear inequalities.

Hence, if we multiply a Supnick matrix by a positive real, or if

we add two Supnick matrices, we will always end up with an-

other Supnick matrix: The Supnick matrices form a cone. Rudolf

& Woeginger [1995] investigated this cone and its extremal rays,

and they came up with the following simple characterization of

Supnick matrices: A matrix C is a Supnick matrix if and only if it

Figure 3 A Lower-Left Upper-Right block matrix.(LL-UR block matrix)
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can be written as the sum of a sum matrix S and a non-negative

linear combination of LL-UR block matrices.

Let us now return to the travelling salesman problem: Supnick

[1957] proved via a fairly involved exchange argument that for the

travelling salesman problem with Supnick distance matrices, the

optimal tour is always given by choosing φ = φ∗ in Expression

(3). Surprise! Again, the optimal solution φ∗ can be written down

without looking at the actual data and the actual city distances.

Again, no computation is needed! And again, it is the permuta-

tion φ∗ that constitutes the universal optimal solution! Supnick’s

result was rediscovered once by Rubinshtein [1971] and once by

Michalski [1987]. In the following paragraphs we will present an-

other, simple and straightforward argument for Supnick’s result

that is based on the above mentioned additive characterization

of Supnick matrices in terms of sum matrices and LL-UR block

matrices.

The travelling salesman problem with sum distance matrices

C with ci, j = αi + α j is completely uninteresting: Every city i

contributes the value 2αi to the total tour length, and thus every

possible tour has length 2 ∑n
i=1 αi. Every permutation φ ∈ Sn

minimizes the expression in (3), and, in particular, the permuta-

tion φ∗ constitutes an optimal solution for the travelling salesman

problem on sum matrices.

The travelling salesman problem on LL-UR block matrices is

more interesting. For technical reasons, we will now double every

travelling salesman problem tour and traverse it once in forward

and once in backward direction. Since the distances are symmet-

ric, this simply doubles the total tour length. Optimal solutions

remain optimal, and non-optimal solutions remain non-optimal.

Let us take a closer look at such a doubled tour corresponding to

the permutation φ∗: In the forward direction, the doubled tour

runs from city 1 to city 3, from city 3 to city 5, from 5 to 7 and so

on. In the backward direction, it runs from city 2 to city 4, from 4

to 6, and so on. Hence, the doubled tour picks the entries ci,i+2

and ci+2,i for i = 1, . . . , n − 2 together with the four entries c1,2,

c2,1, cn−1,n, cn,n−1 out of the distance matrix, and it pays their to-

tal value. All the picked entries lie in the two diagonals above and

in the two diagonals below the main diagonal of C. See the first

matrix in Figure 2 for an illustration.

Let us now argue that the doubled tour for φ∗ is the cheap-

est doubled tour for any LL-UR block matrix C. We distinguish

three cases that depend on the size and position of the two rect-

angular blocks of 1-entries. We recall that the lower left corner

of the upper right block is the matrix element cx,y with indices

1 ≤ x < y ≤ n.

− In the first case y − x ≥ 3, and the rectangular blocks in matrix

C do not touch the doubled tour φ∗; see Figure 2, Matrix (1).

Then the corresponding cost is 0, which clearly is optimal.

− In the second case y − x = 1. Then the rectangular blocks in

C cover four of the entries picked by the doubled φ∗, and the

corresponding cost is 4. See Figure 2, Matrix (2) for an illustra-

tion. In this case, the cities in G1 = {1, . . . , x} are pairwise at

distance 0, and the cities in G2 = {x + 1, . . . , n} are pairwise at

distance 0. The distance between any city in G1 and any city

in G2 equals 1. Any travelling salesman tour must go at least

once from G1 into G2, and at least once back from G2 into G1.

Hence, in this case, any tour has cost at least 2 and any dou-

bled tour has cost at least 4. Again permutation φ∗ yields an

optimal solution.

Figure 4 Gaspard Monge (1746–1818) is well-known for his work on partial differential
equations, calculus of variations and combinatorics. He contributed to various parts of sci-
ence. As a great admirer of Napoleon, he joined Napoleon’s expeditionary force into north-
ern Africa.

− In the last case y − x = 2: see Figure 2, Matrix (3). In this

case, the cost of the doubled tour φ∗ equals 2. Every travel-

ling salesman problem tour must contain some move from a

city with number ≤ x to a city with number ≥ y, or a move

from a city ≥ y to a city ≤ x. Therefore any tour has cost at

least 1, any doubled tour has cost at least 2, and also in this

case permutation φ∗ yields an optimal solution.

Summarizing, we have shown that permutation φ∗ yields the op-

timal travelling salesman problem tour for every distance matrix

that is an LL-UR block matrix and for every distance matrix that is

a sum matrix. Then φ∗ also yields the optimal travelling salesman

problem tour for any non-negative linear combination of such

matrices, and by the result of Rudolf & Woeginger these combi-

nations are exactly the Supnick matrices. The proof of Supnick’s

result is complete.

The problem of balancing hydraulic turbine runners

Our third optimization problem concerns the static balancing of

turbine fans. A hydraulic turbine runner of the so-called Francis

design consists of a cylinder around which a number of blades

are welded at regular spacings. A blade may weigh up to 16 tons,

but due to manufacturing imperfections the blades are not identi-

cal; their weights as well as the locations of their centers of grav-

ity vary. Mosevich [1986] mentions differences as large as ±5%

in the weights of the blades. Because of the differences in the

weights, the center of gravity of the runner may not coincide with

the axis of rotation, and this then leads to unbalance. Unbalance

results in vibrations and in excess stresses on the supports, and

thus shortens the life of the runner. Therefore, one of the main

objectives during the welding process is to find a ‘good’ sequence

of the blades around the cylinder which minimizes the deviation

of the runner’s center of mass from the runner axis. This balanc-

ing problem has been discussed by Bolotnikov [1978], by Stoyan,

Sokolovskii & Yakovlev [1982], by Schlegel [1987], and by Laporte

& Mercure [1988]. See Figure 6 for an illustration.

In a mathematical formulation of this problem (Laporte & Mer-

cure [1988]), we are given n positive masses (=blades) 0 < m1 ≤

m2 ≤ · · · ≤ mn. These masses have to be assigned to the n vertices

vi = (sin(2iφ/n), cos(2iφ/n)), 1 ≤ i ≤ n, of a regular polygon

(=cylinder) whose center (=runner axis) lies in the origin; see Fig-
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Figure 5 Eight masses assigned to the vertices of a regular octagon

ure 5. The goal is to assign the masses in such a way that the cen-

ter of gravity of the resulting weighted polygon is as close to the

origin as possible. That is, we want to find a permutation φ ∈ Sn

that minimizes the Euclidean norm of the two-dimensional vector

n

∑
i=1

mφ(i)

(

sin 2iπ
n

cos 2iπ
n

)

.
(5)

The square of the Euclidean norm of this vector equals

(
n

∑
i=1

mφ(i) sin 2iπ
n )2 + (∑n

i=1 mφ(i) cos 2iπ
n )2 =

=
n

∑
i=1

m2
φ(i)+

n

∑
i=1

n

∑
j=1

2mφ(i)mφ( j) (sin 2iπ
n sin

2 jπ
n + cos 2iπ

n cos
2 jπ

n )

=
n

∑
i=1

m2
φ(i) + 2

n

∑
i=1

n

∑
j=1

mφ(i)mπ( j) cos
2(i− j)π

n .

Since the value of ∑n
i=1 m2

φ(i)
= ∑n

i=1 m2
i does not depend on the

permutation φ, the minimization of the Euclidean norm of the

vector in (5) is equivalent to the minimization of the expression

n

∑
i=1

n

∑
j=1

mφ(i)mφ( j) cos
2(i − j)π

n
.

(6)

Unfortunately, Burkard, Çela, Rote & Woeginger [1998] proved

that the just described minimization version of the turbine bal-

ancing problem is NP-hard. This means that the minimization

version is very difficult to solve and needs exponential time un-

less the complexity classes P and NP coincide. This problem cer-

tainly does not belong to the optimization problems that can be

solved without computation, and it is of no further interest for

this article.

Let us instead consider the maximization version of the turbine

balancing problem, where the goal is to get the center of gravity

of the weighted polygon as far away from the origin as possible.

That is, we want to find a permutation φ ∈ Sn that maximizes the

expression in (6). Intuitively, all the heavy masses should go on

one side of the polygon and all the light masses should go on the

opposite side. Good! Maximization looks a lot easier than mini-

mization! And in fact, Çela & Woeginger [1994] proved that the

permutation φ∗ yields a universal optimal solution for this max-

imization version of the turbine balancing problem. Once again

we can get the optimal solution without any computation, and

once again the permutation φ∗ plays a central role.

A question

The permutation φ∗ shows up as a universal optimal solution for

all three optimization problems that we have touched so far: in

the data arrangement problem where the distances satisfy di, j =

f (|i − j|) with an arbitrary non-decreasing function f ; in the trav-

elling salesman problem where the underlying distance matrix is

a Supnick matrix; in the maximization version of the turbine bal-

ancing problem. Is there a mathematical explanation for this triple

occurrence of φ∗? What are the common properties of these three

problems that make them all solvable — without any further com-

putation — by permutation φ∗?

Some more definitions

A matrix A = (ai, j) with 1 ≤ i, j ≤ n is called monotone if ai, j ≥

ai, j+1 and ai, j ≥ ai+1, j hold for all indices i, j. That is, the entries

in every row and in every column are non-increasing. A matrix

A is called a Monge matrix if it satisfies the Monge inequalities in

(4). We stress that Monge matrices are not necessarily symmetric.

An n × n matrix B = (bi, j) is called a symmetric Toeplitz ma-

trix, if there exists a function f : {0, . . . , n − 1} → R such that

bi, j = f (|i − j|) for 1 ≤ i, j ≤ n. The symmetric Toeplitz matrix

B is said to be generated by this function f . A symmetric Toeplitz

matrix is constant along every diagonal that is parallel to the main

diagonal. Note that such a matrix is fully determined by the n en-

tries in its first row.

The quadratic assignment problem in Koopmans-Beckmann form

(Koopmans & Beckmann [1957]) takes as input two n× n matrices

A = (ai, j) and B = (bi, j) with real entries. The objective is to find

a permutation φ ∈ Sn that minimizes the cost function

n

∑
i=1

n

∑
j=1

aφ(i),φ( j) bi, j .
(7)

The quadratic assignment problem is a notoriously difficult NP-

hard problem. Some quadratic assignment problem instances for

n = 30 had remained unsolved for decades, and have only recent-

ly been solved by Anstreicher, Brixius, Goux & Linderoth [2002].

We refer the reader to the survey paper by Lawler [1963] and to

the book by Çela [1998] for more information on the quadratic

assignment problem. For us (and for this article) the quadratic

assignment problem is relevant, since it provides a common gen-

eralization of our three optimization problems.

How to rewrite the three optimization problems

We will now bring our three optimization problems into the form

of a quadratic assignment problem with a monotone Monge ma-
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trix A and a symmetric Toeplitz matrix B. This quadratic assign-

ment problem formulation is straightforward to find for the data

arrangement problem where the distances satisfy di, j = f (|i − j|)

with an arbitrary non-decreasing function f : The minimization of

the expression in (1) is equivalent to determining

minφ∈Sn

n

∑
i=1

n

∑
j=1

(−pφ(i) pφ( j))(− f (|i − j|)).
(8)

The matrix A = (ai, j) with ai, j = −pi p j is a negative product

matrix, and hence a Monge matrix. Since 0 ≤ p1 ≤ p2 ≤ · · · ≤

pn, this matrix A is also monotone. The matrix B = (bi, j) with

bi, j = − f (|i − j|) is a symmetric Toeplitz matrix. Therefore, the

optimization problem in (8) is a quadratic assignment problem

with a monotone Monge matrix and a symmetric Toeplitz matrix.

Next, let us consider the travelling salesman problem on Sup-

nick matrices. Every Supnick matrix C = (ci, j) is by definition a

Monge matrix, but it is not necessarily a monotone matrix. Here

is a cheap way of making C monotone: Let γ = maxi, j 2|ci, j|,

and define the sum matrix S = (si, j) with si, j = −(i + j)γ. In

our above discussion of the travelling salesman problem, we ob-

served that adding a sum matrix S to an arbitrary distance matrix

C is irrelevant for the travelling salesman problem. A travelling

salesman problem tour φ is optimal for the distance matrix C, if

and only if it is optimal for the distance matrix C′ = C + S. If the

length of φ for matrix C equals L, then the length of φ for matrix

C′ equals L + n(n + 1)γ. Moreover, by the definition of S the new

distance matrix C′ = C + S is a monotone Monge matrix. This

gives us a monotone Monge matrix for the quadratic assignment

problem.

In order to formulate the travelling salesman problem as a

quadratic assignment problem (7), we also need a second ma-

trix. This second matrix H = (hi, j) describes the structure of a

so-called Hamiltonian cycle 〈1, 2, 3, 4, . . . , n〉 running through all

cities. We set hi,i+1 = 1 for i = 1, . . . , n − 1 and we set hn,1 = 1.

As in our proof of Supnick’s result, we double this cycle and tra-

verse it another time backwards. Hence, we set hi+1,i = 1 for

i = 1, . . . , n − 1 and h1,n = 1. All remaining entries hi, j are 0.

With this it is not hard to see that minimizing the expression in (3)

is equivalent to finding

minφ∈Sn

n

∑
i=1

n

∑
j=1

c′
φ(i),φ( j)hi, j .

(9)

This is a quadratic assignment problem where the first matrix C′

is a monotone Monge matrix, and where the second matrix H is a

symmetric Toeplitz matrix.

Finally, let us reformulate the maximization version of the tur-

bine balancing problem. That really is simple. In the minimiza-

tion version of the turbine balancing problem, we want to min-

imize the expression in (6). Hence in the maximization version,

we want to minimize the expression in (6) multiplied by −1. That

amounts to computing

minφ∈Sn

n

∑
i=1

n

∑
j=1

−mφ(i)mφ( j) cos
2(i − j)π

n
.

(10)
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Figure 6 A hydraulic turbine runner

Analogously to the data arrangement problem, we observe that

the negative product matrix (−mim j) is a monotone Monge ma-

trix. Moreover, the symmetry cos(x) = cos(−x) of the cosine

function yields that the second matrix B = (bi, j) with bi, j =

cos(2(i − j)π/n) is a symmetric Toeplitz matrix.

Where is the common structure?

We have seen that each of the three optimization problems can

be written as a quadratic assignment problem with a monotone

Monge matrix and a symmetric Toeplitz matrix B. Is this the com-

mon property that we are looking for? Is this the common proper-

ty that automatically makes permutation φ∗ the universal optimal

solution of a quadratic assignment problem? This would be just

too good to be true. And actually, we already know that it can not

be true: The minimization version of the turbine balancing prob-

Figure 7 The generating functions for the three symmetric Toeplitz matrices
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lem in (6) can be written as the quadratic assignment problem,

minφ∈Sn

n

∑
i=1

n

∑
j=1

(−mφ(i)mφ( j)) (− cos
2(i − j)π

n
).

(11)

Here the first matrix (−mim j) is a monotone Monge matrix, and

the second matrix B = (bi, j) with bi, j = − cos(2(i − j)π/n) is

a symmetric Toeplitz matrix. Now we know from our above dis-

cussion of the turbine problem that the minimization version is an

NP-hard problem. It definitely can not be solved without compu-

tation, and it definitely can not have permutation φ∗ as a univer-

sal optimal solution. So we must search for a stronger common

property of the three optimization problems, and the right place

to search are the generating functions for the three Toeplitz matri-

ces.

− The generating function f1 of the Toeplitz matrix in the data

arrangement problem (8) is a non-increasing function.

− The generating function f2 in the travelling salesman problem

on Supnick matrices in (9) is given by f2(1) = f2(n − 1) = 1,

and f1(i) = 0 otherwise.

− The generating function in the maximization version of the tur-

bine problem in (10) is f3(x) = cos 2xπ
n .

Examples for the graphs of such generating functions f1, f2, f3 are

depicted in Figure 7. At first sight, these graphs do not have much

in common. At second sight, the reader will notice that all three

functions are non-increasing in the left half of the picture. More-

over, the graphs of f2 and f3 are symmetric with respect to the

vertical line through n/2. The graph of f1 is also non-increasing

in the right half of the picture, but apart from this property it may

behave quite chaotically. All three generating functions show the

following behavior:

− On the domain 1, . . . , ⌊n/2⌋ the function f is non-increasing.

− On the domain ⌈n/2⌉, . . . , n − 1 the function f satisfies f (x) ≤

f (n− 1− x). That is, in the right half of the picture the function

graph never goes above the graph of its mirror image from the

left half of the picture.

Let us say that a function f : {0, . . . , n − 1} → R is benevolent if it

satisfies these two crucial properties, and let us say that a symmet-

ric Toeplitz matrix is benevolent if it is generated by a benevolent

function. See Figure 8 for an example of a benevolent function.

Figure 8 A function f is benevolent if on the domain 1, . . . , ⌊n/2⌋ the function f is non-
increasing and on the domain ⌈n/2⌉, . . . , n − 1 the function f satisfies f (x) ≤ f (n − 1 −
x). That is, in the right half of the picture the function graph never goes above the graph of
its mirror image from the left half of the picture..

Now we have finally found the desired common structure: If ma-

trix A is a monotone Monge matrix, and if matrix B is a benev-

olent Toeplitz matrix, then the corresponding quadratic assign-

ment problem in (7) always has the permutation φ∗ as an optimal

solution. This result has been formulated and proved by Burkard,

Çela, Rote & Woeginger [1998].

A glimpse of the proof

We will now sketch the idea for the proof that the permutation φ∗

constitutes a universal optimal solution for any quadratic assign-

ment problem of the type described above. The proof technique

is essentially the same as in our argument for Supnick’s travelling

salesman problem result; it works with the extremal rays of the

underlying matrix cones.

It is easy to see that the monotone Monge matrices form a cone.

A trivial example for a monotone Monge matrix are the constant

matrices L = (ℓi, j) with ℓi, j = λ for all indices i, j. Here λ is

an arbitrary real number. Another example for monotone Monge

matrices are the Lower-Right block matrices C = (ci, j). Such an LR

block matrix has a rectangular block of 0-entries in the lower right

corner, and it has 1-entries everywhere else. Formally, for fixed

integers x and y an LR block matrix satisfies ci, j = 0 if i ≥ x and

j ≥ y, and ci, j = 1 otherwise. Rudolf & Woeginger [1995] have

shown that every monotone Monge matrix can be written as the

sum of a constant matrix and the non-negative linear combination

of LR block matrices.

The benevolent Toeplitz matrices also form a cone. Let us con-

sider two representative types of benevolent generating functions

f : {0, . . . , n − 1} → R:

− The first type depends on a parameter α with 1 ≤ α ≤ n/2.

f (x) = 0 if α ≤ x ≤ n −α and f (x) = 1 otherwise.

− The second type depends on a parameter β with n/2 ≤ β ≤

n − 1:

f (x) = −1 if x = β and f (x) = 0 otherwise.

Generating functions of the first type are symmetric with respect

to the middle-axis x = n/2, and they are non-increasing in the

left half of their domain. Generating functions of the second type

are identically zero in the left half of their domain, and they are

non-positive in the right half of their domain. If a Toeplitz ma-

trix is generated by such a function of first (respectively, second)

type, then we call it a benevolent Toeplitz matric of first (respec-

tively, second) type. It is not difficult to see that every benevolent

Toeplitz matrix can be written as the sum of some constant matrix,

plus a non-negative linear combination of benevolent Toeplitz

matrices of the first type, plus a non-negative linear combination

of benevolent Toeplitz matrices of the second type.

The above observations set up the scene for the proof: We

have a simple additive characterization of monotone Monge ma-

trices, and we have a simple additive characterization of benev-

olent Toeplitz matrices. The constant matrices that show up in

these characterizations are irrelevant for the quadratic assignment

problem in (7). They contribute some fixed value to the objective

function, and this fixed value is independent of the permutation

φ. It remains to deal with LR block matrices on the one side, and

with benevolent Toeplitz matrices of first and second type on the

other side. Burkard, Çela, Rote & Woeginger [1998] show that

the permutation φ∗ constitutes a universal optimal solution for

(i) the quadratic assignment problem with an LR block matrix A

and a benevolent Toeplitz matrix B of the first type, and for (ii) the
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quadratic assignment problem with an LR block matrix A and a

benevolent Toeplitz matrix B of the second type. The exact argu-

ments are simple, but somewhat tedious. Since all entries in the

investigated matrices are 0 or 1, the purely combinatorial line of

argumentation goes through.

By combining the results in (i) and (ii), we conclude that permu-

tation φ∗ is a universal optimal solution for any quadratic assign-

ment problem with a monotone Monge matrix and a benevolent

Toeplitz matrix. k
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