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Stochastic geometry and interacting fields

Op het 38ste Nederlands Mathematisch Congres op 4 april 2002 in

Eindhoven werd aan Michael Aizenman de Brouwermedaille toege-

kend. Hij ontving deze onderscheiding voor zijn baanbrekende werk

op het gebied van de mathematische fysica. Bij de uitreiking hield

Aizenman onderstaande lezing.

I would like to express my joy and deep gratitude for being hon-

ored with the Brouwer Medal. The award comes from a most

esteemed professional society, of colleagues amongst whom are

the originators of various fundamental contributions to the area

in which I have worked.

The award conveys a recognition not only of the recipient, but

also of the field of mathematical physics. By its very name, this

field has roots in more than one discipline. It invites a diversi-

ty of perspectives, whose combined expression can be found in

mathematical results which advance our understanding of fun-

damental physics issues. The field has been enriched through the

contributions of many colleagues, which has made working in it

an exciting experience.

In this article I intend to outline some of the issues which have

been tackled in one of the active areas of research in mathematical

physics. I shall do so omitting most of the technicalities, though

some of these were presented in the Brouwer lecture. Even be-

fore explaining more, let me note a curious link with the work

of L.E.J. Brouwer. Some of the recent developments in the sub-

ject concern the nature of the continuum theory which emerges

through the process of the scaling limit. As is explained below,

this limiting procedure corresponds to taking down to zero the

length scale at which the physics model is formulated with its

detailed description of the fundamental variables and their dy-

namics. In the continuum theory which captures such a limit (for

which the discrete models serve as a scaffold which is eventually

taken down), each neighborhood represents a vast ‘universe’ in

whose microscopic state there is only little continuity with ‘adja-

cent’ neighborhoods. Thinking along this line, one quickly reach-

es some perplexing issues which are related to the vastness of the

continuum. L.E.J. Brouwer had well appreciated the challenges

presented by the vastness of the continuum topology, and ad-

dressed it in some of his work. Apparently, we are still tantalized

by the many related issues.

Criticality in Statistical Mechanics

The topic on which I shall focus in these comments concerns col-

lective phenomena in systems with many degrees of freedom, as

encountered in statistical mechanics, in particular, issues related

to critical behavior. Here, criticality of the system is synonymous

with an enhanced capacity of response to small changes. These

may be induced in a number of ways: through the varying of

control parameters, through small changes in the ‘typical’ config-

uration, or through naturally occurring fluctuations. Criticality is

often encountered at phase transitions, where the state of the sys-

tem undergoes a non-analytic change as a function of the external

control parameters, though it has been noted that there are abun-

dant mechanisms for ‘self-organized criticality’ as well (P. Bak).

It is an often encountered situation in physics that there is a

very considerable difference between the length scale on which

various effects of interest may be observed and the scale of dis-

tances at which the underlying interactions occur. In such a case

it is natural to formulate a continuum theory for the phenomena

observed on the larger scale, which may be quite different from

the smaller scale appropriate for the detailed description of the

underlying model. The notable fact is that one often encounters

laws which make sense and are valid on the larger scale with no

reference to the smaller scale. These then ought to be mathemat-

ically derivable from the more fundamental small-scale descrip-

tion through the process of a scaling limit, the limit in which the

smaller scale is taken down to zero (relative to the scale of the

observed phenomena).

Statistical mechanical systems are typically described by large

arrays of correlated random variables, which are indexed by ei-

ther a discrete lattice (e.g., Z
d) or a continuum space (e.g., R

d) and

are correlated through interactions which are ‘local’ in the natu-
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Gibbs measure

A Gibbs measure for a finite-volume system is a probability

distribition with a density given by the ‘canonical ensemble’

prescription of the American physicist Josiah Willard Gibbs,

of the form exp[−(β × energy)], with β denoting the inverse

of the temperature. The generalization to infinite-volume

systems requires the use of conditional probability densities

for finite volumes embedded in infinite volumes, expressible

in this Gibbsian form.

ral sense. (The case where the space is the continuum of course

requires some extra care, as does the extension to quantum-

mechanical situations where the variables are replaced by non-

commuting operators.)

The earliest contribution of statistical mechanics has been to

reconcile the thermodynamic behavior observed in macroscopic

physical systems with their more basic microscopic descriptions, in

particular, to shed light on entropy as a derived concept (L. Boltz-

mann, J.W. Gibbs). A more recent challenge has been to under-

stand critical phenomena. As mentioned above, critical systems

are encountered at the onset of various phase transitions (gas to

liquid, paramagnetic to ferromagnetic, etc.). Mathematically, this

is manifest by the random variables having anomalously large

fluctuations, i.e., divergent on the scale of the natural ‘central lim-

it’ fluctuations.

Interest in this topic has been fed by physicists’ observation

that various features of the critical behavior in physics are shared

by systems which are quite different on the microscopic level.

This ‘universality’ has suggested that the critical behavior may be

guided by the relations among some aggregate quantities. This

in turn has led to the notions (firmly embraced, even if not rigor-

ous) of ‘scaling laws’, ‘universality classes’, and ‘renormalization

group’ (B. Widom, L. Kadanoff, M.E. Fisher, K.G. Wilson). Since

the models are typically not amenable to exact solutions, it has

been of interest to develop mathematical results which can shed

light both on the qualitative features of some specific instructive

systems and on the general structure which emerges on the larger

scale. One may regard as the next layer of research in equilibrium

statistical mechanics the growing collection of works which ad-

dress issues concerning the scaling limits of critical systems. More

will be said on this below.

Geometrization of Correlations

A simply stated example which already exhibits interesting be-

havior, including phase transitions and related critical phenom-

ena, is provided by the so-called Potts model of ferromagnetism

(the latter being an example of a cooperative phenomenon). The

system is described by the collection of random variables σ =

{σx}x∈Zd (‘attached’ to the d-dimensional lattice Z
d), each of

which takes Q distinct values, with a joint probability distribu-

tion of the form of a ‘Gibbs measure’

1

Norm.
exp{−βH(σ)} ρ(dσ),

where ρ(dσ) is a product measure which gives equal weights to

all the configurations in a finite system, H(σ) is the ‘Hamiltonian’

which gives the agreement-enhancing (ferromagnetic) interaction

H(σ) = − ∑
u,v∈Zd

J|u−v| δσu ,σv ,

with {J|u−v|} rapidly decaying in |u − v| and non-negative, and

β a control parameter which in physical terms corresponds to the

‘inverse temperature’. In dimensions d > 1, the (nearest neigh-

bor) Potts model exhibits phase transitions from the disordered

phase (at β < βc, with βc the critical inverse temperature), where

the infinite-volume limit of the finite-volume Gibbs measure is

ergodic under the group of translations, to a mixture of ordered

phases (at β > βc), where the latter limit is a superposition of Q

distinct ergodic measures, each exhibiting a higher density for one

of the Q possible values over the other values. The coexistence

of different Gibbs measures with different densities represents a

‘first-order phase transition’, at which some local quantities have

discontinuous expectation values as a function of thermodynamic

parameters such as chemical potential, temperature, etc. Critical

behavior in the sense usually ascribed to it (i.e., enhanced sensi-

tivity to small changes, as described above, but less drastic than

plain discontinuity) is associated with a ‘second-order phase tran-

sition’, in the classification of P. Ehrenfest. Depending on Q and

the dimension, the Potts model may exhibit critical behavior at the

particular value βc at which the discontinuity sets in. Indeed, this

is proven to be the case for all the Potts models with Q = 2 (the

so-called Ising models) with short-range translation-invariant fer-

romagnetic interactions in dimensions d > 1.

In non-critical models the fluctuations of local variables have

only short-range correlations, which decay exponentially with a

finite ‘correlation length’. Critical systems are characterized (in-

deed, defined) by the divergence of that correlation length. At

critical points the systems exhibit large scale fluctuations, ex-

pressed through either the correlation functions or some suitable

characteristics of ‘typical configurations’, e.g., the sum

∑
u∈[−L,L]d∩Zd

[σu − E (σu)]

being of order Lλ with λ exceeding the central limit value λ =

d/2. This λ is an example of an exponent which is expected to

show a remarkable degree of independence of many of the local

parameters of the model, for instance, the values of the coupling

constants {J|u−v|} within the class of short-range d-dimensional

translation-invariant ferromagnetic interactions. Such ‘univer-

sality’ is expected of various other so-called ‘critical exponents’.

(This notion extends the original observation of the experimental-

ly discovered universality of the ‘scaling laws’ and ‘scaling expo-

Potts model

A Potts variable (or Potts spin) is a q-valued object σ =

1, . . . , q. In the ferromagnetic Potts model, the energy of

a configuration in some finite volume is given by the sum

over all nearest-neighbor pairs (i, j) in that volume of the

functions −δ(σi ,σ j). This implies that the lowest energy is

reached when at all sites one chooses the same value (out of

the q possible ones).
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nents’ of the related thermodynamics.)

Among the very helpful observations for the study of such sys-

tems has been the realization of C.M. Fortuin and P.W. Kasteleyn

that the correlations among the random variables with the above

probability distribution can be accounted for through the geomet-

ric connectivity properties of an associated system of random clus-

ters (which since has been extended to various other systems). For

a simple example, one may note via the relation

eβ(δ−1) = e−β + (1 − e−β)δ, δ ∈ {0, 1},

that for an isolated pair of Potts variables {σu ,σv} the correspond-

ing probability distribution admits a ‘polarized’ representation, in

which there is an added ‘random bond’ binary variable nu,v, con-

ditioned on which {σu ,σv} are constrained to be either equal, if

nu,v = 1, or completely independent, if nu,v = 0. For the more

extended system the enhanced description involves a system of

random bond variables {n{u,v}}, whose configurations yield ran-

dom partitions of the lattice into clusters. Conditioned on the aux-

iliary bond variables, the Potts variables take values which are

constrained to be constant on each of the connected clusters, and

statistically independent between different clusters.

This random cluster representation allows to express the corre-

lation between a pair of variables {σu ,σv}, which usually is given

by only a subtle difference between two probabilities, as the prob-

ability (up to a simple multiplicative constant) that in the random

configuration of the associated system of random bond variables

the two sites, u, v ∈ Z
d, are connected by a path of occupied

bonds. The existence of more than one ergodic Gibbs measure

for the Potts model corresponds to the occurrence of an infinite

cluster of these random bonds. This provides an example of a

percolation transition. This approach also permits to present var-

ious characteristic exponents which are associated with the decay

of correlations in the critical case, like η in

|E (δσu ,σv ) − Q−1| ≈ Const./|u − v|d−2+η , |u − v| → ∞,

as related to dimension-like parameters of random clusters,

which in the scaling limit appear to form random fractal objects.

Implications for the Critical Behavior in High and in Low Dimensions

The above geometrization of critical phenomena is reminiscent of

the picture advocated by B. Mandelbrot. From a technical per-

spective, it presents two key advantages:

i. it brings positivity into the description of subtle cancellations

(e.g., as seen already at the level of two-point correlations);

ii. it permits to account for multi-correlations in terms of intersec-

tion properties of random clusters.

Positivity is a potent tool; it has been employed both for gener-

ally useful inequalities (C.M. Fortuin - P.W. Kasteleyn - J. Ginibre,

J. van den Berg - H. Kesten, J. van den Berg - C. Maes), and for spe-

cific results concerning the phase transitions in models of interest

(works by M. Aizenman, J. Chayes, L. Chayes, R. Fernández, J.

Fröhlich, C.M. Newman).

The reduction of multicorrelations to the intersection proper-

ties of random clusters adds a useful perspective. Loosely speak-

ing: if these clusters tend to have specific dimensions (as, for in-

stance, does the path of Brownian motion, which appears in the

scaling limit of random chains with no repulsion and which are

two-dimensional in any d ≥ 2), then their intersections would

be very rare in sufficiently high dimensions (d > 4), but not that

unusual in low dimensions (certainly in d = 2 dimensions, and,

as it turns out, also in d = 3). Such observations, of course with

more precision and much more analytical input than what is de-

scribed here, have been instrumental for rigorous derivations of

the fact that in various systems the scaling exponents take sim-

ple values in sufficiently high dimensions (e.g., d > 4 for Ising

models, d > 6 for certain percolation models, d > 4 for certain

self-repellent random walk models). Rigorous results along this

vein (e.g., [1–2]) include contributions by M. Aizenman, D. Bry-

dges, R. Fernández - J. Fröhlich - A. Sokal, T. Hara, R. van der

Hofstad, F. den Hollander, C.M. Newman, G. Slade, T. Spencer,

and others.

The Scaling Limit

Since the fluctuations observed in critical systems give rise to fea-

tures observed on arbitrary scales, it is natural to consider them

through the limit in which the scale of the underlying microscopic

description is taken down to zero. This is the scaling limit in sta-

tistical mechanics. Many of the underlying variables which are

part of the explicit formulation of the model have to drop out
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Percolation

In percolation theory one consider networks of sites and of

bonds between them, which can be open with probability

p ∈ (0, 1) and closed with probability 1 − p, independent-

ly of each other. The main interest is to study the geomet-

ric properties of the ‘clusters’ of sites and/or bonds that are

all open. At a critical value pc ∈ (0, 1), the system changes

its behavior drastically: for p < pc all clusters are finite,

while for p > pc there is one infinite cluster that pervades

the whole system.

in this limit (essentially, for reasons of measurability). One may,

nevertheless, seek a mathematical theory with a collection of vari-

ables which express those fluctuations extending in space over

scales close to the one on which the limit is focused. Such a theory

may also be rich in mathematical structure: asymptotic symme-

tries, such as emergent rotational invariance or conformal invari-

ance, would become exact laws. The theory should also capture

a rich local structure. Its description requires tools which go con-

siderably beyond smooth functions, since in the scaling limit even

infinitesimal neighborhoods contain an infinite amount of detail.

Continuum theories with the above characteristics have at-

tracted physicists’ attention also in relation to quantum physics,

where the scaling limit is essential for a constructive grasp of

the meaning of quantum field theory. It turns out that many of

the mathematical issues involved in statistical mechanics and in

quantum field theory are related, and form bridges between the

two subjects.

One may note that the challenge of understanding the contin-

uum appears to include two different, but not unrelated, tasks.

One is to develop a mathematical language with terms suitable to

the continuum limit, dealing with the infinite (though neverthe-

less somewhat limited) collection of quantities which are mean-

ingful on that scale. The continuum symmetries should also find

a simple expression. This challenge is taken by ‘field theory’ [3],

which carries its own terminology, the tool chest including no-

tions like fields, operators, and stress-energy tensor (to mention

but some of the contributors: A.A. Belavin - A.M. Polyakov - A.B.

Zamolodchikov, C.G. Callan, L. Faddeev, G. ‘t Hooft, L. Kadanoff,

K. Symanzik, K.G. Wilson). Lest one gets the feeling that this

chapter of the book may be closed, let me add that right now re-

markable new tools, applicable to a variety of two-dimensional

systems, are being added through the SLEκ processes introduced

recently by O. Schramm [6] (the so-called ‘Stochastic Loewner

Evolutions’, parametrized by κ).

The other task in understanding the physical continuum is to

start from analytically tangible models, either discrete in nature

or continuous but with ‘cutoffs’ which render the relevant inte-

grals absolutely convergent, and to study their behavior in the

suitable limit. Such a program has been the goal of ‘constructive

field theory’, an area in which various rigorous results were de-

rived, both constructive — in particular, in dimensions d = 2, 3

(J. Glimm - A. Jaffe, D. Brydges, J. Fröhlich, A. Sokal, T. Spencer)

— and some outlining the limitations of possible approaches in

high dimensions (M. Aizenman [1], J. Fröhlich). I shall not com-

ment here on this very extensive body of work. However, let me

add that new developments are now taking place in the area of

two-dimensional systems, which may shed further light and a

new perspective on conformal field theory in two dimensions (G.

Lawler - O. Schramm - W. Werner [7], R. Kenyon, S. Smirnov [8]).

Impetus for the later work was provided, to some extent, by the

desire for a better understanding of scaling limits in stochastic ge-

ometric models such as those mentioned above [4], [5].

Percolation

The representation of a phase transition as a percolation phe-

nomenon in an interacting system of random bonds, as described

above, has further boosted the motivation for the study of the per-

colation transition in models which are simpler to present, such as

systems of independently placed geometric objects.

Specific formulations of percolation models include the bond

percolation model, where bonds (nearest-neighbor links) of a lat-

tice are ‘open’ with probability p and ‘closed’ with probabili-

ty 1 − p, independently of each other. Alternatively, the model

may be based on randomly occupied lattice sites, or randomly

placed disks in the continuum. Such models have provided fer-

tile grounds, and there has been plenty of positive feedback be-

tween the mathematical analysis of percolation systems and of

systems of interacting ‘spin’ variables (J. Hammersley, H. Kesten,

M. Aizenman, D. Barsky, T. Hara, G. Slade, and more recently, R.

Langlands, Y. Saint-Aubin, J. Cardy, G. Lawler, O. Schramm, W.

Werner, S. Smirnov).

As with other systems of statistical mechanics, a very de-

tailed structure has emerged in two dimensions. Many insights

were obtained by methods related to physicists’ analysis of two-

dimensional Potts models (B. Nienhuis, M. den Nijs, B. Du-

plantier, J. Cardy). Some key results of a qualitative nature were

derived rigorously by other methods (L. Russo, P. Seymour, D.

Welsh, H. Kesten). Recently, the subject was revisited with the

goal of shedding further light on the possible formulations of the

scaling limit, in two as well as in higher dimensions.

The simplest example of a stochastic geometric model with a

well-understood scaling limit is provided by the simple random

walk. Its scaling limit is the process of Brownian motion, which

for this purpose is viewed through the Wiener measure on the

Brownian motion

Brownian motion is a random path in Euclidean space whose

increments are ‘completely random’. This means that the

changes in the path over disjoint time intervals are indepen-

dent from each other, resulting in a ‘fully noisy motion’.

Brownian motion is called after the botanist Robert Brown,

who observed the motion of pollen particles early in the 19th

century. The first theoretical description is due to Einstein,

in the most-cited paper of his miracle year 1905. The further

development of the mathematical theory owes much to Nor-

bert Wiener.

Brownian motion is used to model a large variety of ran-

dom phenomena. As such it is a basic building block for

probabilists. Random walk is a discrete space-time version

of Brownian motion, where the increments take values in a

space grid (or lattice) and run over a time grid. In the limit

as the space-time grid tends to zero, random walk converges

to Brownian motion.
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space of continuous functions. This example exhibits a number of

the characteristics which were mentioned above:

i. Details about the individual steps are lost in the limit, never-

theless, aggregate fluctuations of a suitable scale are part of the

continuum description.

ii. The paths exhibit fluctuations on all scales, are rough (nowhere

differentiable, ‘tortuous’ in a specific sense), yet retain Hölder-

type continuity.

iii. Higher symmetry emerges in the scaling limit: the probability

distribution is invariant under rotations, and in two dimen-

sions is conformally invariant, up to time reparametrization.

iv. Various related quantities obey simple differential equations

(e.g., hitting probabilities are harmonic functions). It would be

of interest to extend this success to other stochastic geometric

models. In particular, the Fortuin-Kasteleyn construction sug-

gests that progress on this may shed further light on certain

field theories.

Interesting questions are encountered when one asks which vari-

ables ought to be used for the scaling limit of critical percolation

models. In joint work with A. Burchard, we present conditions

under which the scaling limit may be expressed through a family

of connected paths which are tortuous yet are Hölder continu-

ous. However, the effectiveness of such a description would of

course depend on the properties of the limiting object, and thus

be dimension-dependent (a more detailed discussion is provided

in ref. [5]).

In the special case of two dimensions the boundaries of con-

nected clusters are curves. This fact has been used in two ways.

In one approach, considerable insight has been obtained by ap-

proaching these curves as the level sets of random functions and

by proceeding with some very insightful conjectures about the

limiting distribution of such ‘height functions’ (B. Nienhuis, M.

den Nijs). Another approach, departing from this observation,

was proposed by O. Schramm, who has pointed out that there are

severe limitations on the possible laws of random curves in two

dimensions, if they are to possess the conformal invariance prop-

erties which correspond to existing conjectures about the scaling

limit. This has led him to the introduction of the aforementioned

SLEκ processes, which are now the basis for a fast growing body

of beautiful results (G. Lawler, O. Schramm, W. Werner, and oth-

ers). There has also been progress in establishing links between

specific models and continuum theories which have been conjec-

tured to describe their scaling limits (R. Kenyon, S. Smirnov).

Our understanding of the situation in the interesting dimen-

sions d = 3, 4 is more limited. However, the fog lifts as one moves

to higher dimensions, where the large critical clusters behave as

continuum objects which have enough space to ‘unfold’ with-

out significant intersections (M. Aizenman, D. Barsky, T. Hara, G.

Slade, R. van der Hofstad, F. den Hollander). In particular, T. Hara

and G. Slade [9] have shown that the individual clusters attain the

distribution of a critically and continuously branching Brownian

motion (‘integrated super-Brownian excursion’).

In closing, let me say that I hope to have conveyed here some

of the intertwined issues which are part of the fabric of modern

statistical mechanics. One may note that both the subject dis-

cussed above, as well as other related areas, such as the theory

of Gibbs states (see A. van Enter, C. Maes and S. Shlosman [10]),

and the vast field of non-equilibrium statistical mechanics, have

much benefited from excellent contributions by Dutch physicists

and mathematicians. It has therefore been a special joy for me to

have been honored by the invitation of het Wiskundig Genootschap

to give the Brouwer lecture. k
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