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Laudatio

Laudatio for Michael Aizenman

Eens per drie jaar reikt het Wiskundig Ge-

nootschap in opdracht van de Koninklijke Ne-

derlandse Academie van Wetenschappen de

Brouwermedaille uit aan een internationaal

toonaangevend onderzoeker. Hij wordt uit-

genodigd om een voordracht te geven op het

Nederlands Mathematisch Congres, waar na

afloop de laureaat de Brouwermedaille wordt

uitgereikt. In 2002 werd de medaille toege-

kend aan Michael Aizenman voor zijn bijdra-

ge aan de mathematische fysica. Op het Ne-

derlands Mathematisch Congres in Eindho-

ven op 4 april 2002 sprak Frank den Hollan-

der de laudatio uit.

The 2002 Brouwer Medal, in the field of

mathematical physics, is awarded to Michael

Aizenman of Princeton University. Michael is

an outstanding mathematical physicist, who

is admired and loved by his colleagues for his

many beautiful contributions to the field and

for his warm personality. In this laudatio, we

give a brief overview of his career and of his

scientific contributions.

Michael studied at Hebrew University in

Jerusalem. In 1975 he obtained his PhD at

Yeshiva University in New York, under the su-

pervision of Joel Lebowitz. From 1975 to 1977

he was a postdoc at Princeton University, with

Elliott Lieb. Both Lebowitz and Lieb are stars

of mathematical physics, so Michael could

hardly have done better in the choice of his

teachers! From 1977 to 1982 Michael was

assistant professor at Princeton University,

from 1982 to 1987 associate and full professor

at Rutgers University in New Brunswick, and

from 1987 to 1990 full professor at Courant In-

stitute in New York. Since 1990 he is profes-

sor of Mathematics and Physics at Princeton

University.

Michael is the author of seventy-five research

papers in journals of mathematics, physics

and mathematical physics. He has collaborat-

ed with many co-authors on a broad range of

topics. Much of his work is inspired by proba-

bility theory and statistical physics, both clas-

sical and quantum. In his papers he typically

‘rides several horses at the same time’, in the

sense that cross-fertilization between differ-

ent areas in physics and mathematics is at

the very heart of most of his work.

Among the many honors that Michael has

received we mention only three: in 1990 he

was awarded the Norbert Wiener Award of the

American Mathematical Society; since 1997

he is a member of the National Academy of

Sciences of the USA; since 2001 he is Editor-

in-Chief of Communications in Mathematical

Physics, the leading international journal in

mathematical physics.

In his work Michael has solved a number of

very hard open problems central to statistical

mechanics and field theory. He has repeat-

edly introduced new, powerful and elegant

ideas, concepts and techniques that paved

the way for others. Most of his papers are

true eye-openers, and contain a high density

of truly new ideas. As a mathematical physi-

cist pur sang he often opens up new panora-

mas by combining ideas and techniques from

different parts of physics and mathematics.

The two-dimensional Ising model has no in-

terfaces (1980)

The Ising model is the paradigmatic model in

statistical physics for the study of phase tran-

sitions. It describes a system of two-valued

random variables, living on a lattice of a cer-

tain dimension. These random variables can

be interpreted either as magnetic spins (‘up’

or ‘down’) or as particles (‘occupied’ or ‘emp-

ty’). Their finite-volume conditional distribu-

tions (i.e., the probabilities of events inside a

finite volume given the state outside) are pre-

scribed by a nearest-neighbor interaction that

tends to ‘align spins’ or ‘glue together parti-

cles’ and that contains the temperature as a

parameter. At low temperature and in two

or more dimensions, there exists more than

one infinite-volume probability measure hav-

ing the prescribed finite-volume conditional

probabilities. These probability measures are

interpreted as the different phases of the sys-

tem. There is a so-called ‘plus-phase’, where

the majority of spins is up (positive magneti-

zation) or the density of particles is high (liq-

uid), and a ‘minus-phase’, where the majority

of spins is down (negative magnetization) or

the density of particles is low (gas). This phe-

nomenon is referred to as a phase transition.

The temperature separating the more-phase

region from the one-phase region is the ‘criti-

cal temperature’. Aizenman’s result can be in-

terpreted as the statement that below the crit-

ical temperature two-dimensional ‘crystals’ of

one phase inside the other phase have no

facets. Various other researchers had ob-

tained partial results before him. Aizenman

proved the definitive result. R. Dobrushin had

earlier shown that in three or more dimen-

sions such facets do exist.

Destructive field theory in high dimensions

(1981–1982)

Simple models of quantum field theory can be

constructed as mathematically well-defined

objects by analytic continuation in imaginary

time of statistical-physics-like models, at or

near their critical temperature and subject to

a scaling limit procedure. Aizenman proved
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that, in dimension at least four, for a class of

scalar field theories, this construction cannot

describe systems with interacting particles.

Namely, the limiting quantum field theory is

trivial in the sense that it is Gaussian, describ-

ing only non-interacting particles. Again, al-

though there were partial results before, the

deciding step was provided by Aizenman.

Uniqueness of critical points for Ising and

percolation models (with D. Barsky and R. Fer-

nández, 1985–1987)

In percolation models, each site (or bond)

in a lattice network is empty or occupied in

some random manner, governed by a param-

eter that controls the densities of occupied

sites (or bonds). One considers the question

whether far apart sites (or bonds) are con-

nected by an occupied cluster and what the

geometry of such clusters is. Again, there is

a ‘critical density’ separating a region where

clusters are finite from a region where there

is an infinite cluster running through the net-

work. The uniqueness result showed that var-

ious a priori different notions of critical den-

sity coincide. This work widely extended the

famous result for two-dimensional indepen-

dent bond percolation due to H. Kesten (1981

Brouwer Medal in the field of probability the-

ory) and solved a problem that for many years

was open. A similar result was proved for the

Ising model and various a priori different no-

tions of critical temperature.

Uniqueness of infinite percolation clusters

(with H. Kesten and C. Newman, 1987)

This result, which applies to independent

percolation on regular lattices with a certain

growth restriction, states that no two infinite

percolation clusters can coexist, i.e., above

the critical density there is one and only one

infinite cluster. The proof was afterwards

beautifully extended and simplified by R. Bur-

ton and M. Keane.

Revival of the Fortuin-Kasteleyn representa-

tion (with J. Chayes, L. Chayes and C. New-

man, 1986–1988)

The random cluster model, introduced in the

late 1960’s by Dutch physicists C. Fortuin and

P. Kasteleyn, relates in a precise manner a cor-

related percolation model to various magnetic

models, including the Ising model and its gen-

eralization to random variables taking more

than two values (called the Potts model). The

relation is achieved in such a way that mag-

netic correlations are mapped to probabilities

of connections, and vice versa. This rela-

tion was used to study phase transitions in
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long-range Ising, Potts and percolation mod-

els. Since this revival, a plethora of applica-

tions has come up, including applications in

numerical simulations.

The two-dimensional random field Ising mod-

el has no phase transition (with J. Wehr,

1990–1991)

If one considers the Ising model in a weak

symmetric random external magnetic field,

then the minimum dimension in which coexis-

tence of different phases can occur becomes

three instead of two. This result was predicted

in the physics literature on the basis of a non-

rigorous argument due to Y. Imry and S.-k. Ma,

but it took many years to be mathematically

confirmed.

Fractional moment estimates for the estab-

lishment of localization in disordered quan-

tum systems (with S. Molchanov, 1993)

The problem of localization — “Why are cer-

tain materials insulating?” — was analysed in

physics, among others by Nobel Prize winners

N. Mott and P. Anderson. Their ideas — “It is

due to impurities in these materials and these

impurities can be modelled by introducing a

random term in the appropriate Schrödinger

equations!” — found mathematical confirma-

tion in the KAM-type analysis of J. Fröhlich and

T. Spencer. KAM-theory — after Kolmogorov,

Arnol’d and Moser — is a kind of perturba-

tion theory for dynamical systems that works

even if the perturbation series diverges for

a dense set of parameter values. For disor-

dered quantum systems, this dense set is the

set of eigenvalues of the random Schrödinger

operator, describing the energy levels of the

system. Localization is modelled by the ex-

istence of a complete set of eigenfunctions

that decay exponentially fast in space. Lo-

calization is expected to occur for all energies

in the case of sufficiently strong disorder, and

for a restricted range of energies in the case of

weak disorder (in three or more dimensions).

The work of Fröhlich and Spencer confirmed

part of this picture. Aizenman and Molchanov

gave a different, very elegant and much sim-

plified proof of localization, based on estimat-

ing the expectation of fractional moments of

resolvents of random operators with a dense

point spectrum.

Conformal invariance in percolation, exis-

tence and properties of scaling limits (1995–

1998)

If one takes the scaling limit of a lattice the-

ory in which the lattice distance approaches

zero, then one obtains a theory that lives in

the continuum. For many two-dimensional

statistical-physics-like models ‘at criticali-

ty’, the limit is predicted to be non-trivial

and to be invariant under conformal trans-

formations. The existence of such limits

and their properties are mathematically puz-

zling. Aizenman has provided various impor-

tant ideas, which have developed further in

the hands of other researchers, in particu-

lar, G. Lawler, O. Schramm, S. Smirnov and

W. Werner, leading to great leaps forward in

our understanding of critical phenomena in

two dimensions. For these developments we

refer to Aizenman’s Brouwer Lecture.

The above summary gives an impression (not

a full one) of the wide scope and broad in-

terests of Aizenman’s research. His work has

been influential both among mathematicians

and among physicists, which makes him a

true representative of the field of mathemati-

cal physics. He has a deep intuition as well as

an impressive technical mastery. He enjoys

scientific interactions, whether in the form of

collaborations, discussions or otherwise.

Based on these considerations, the selec-

tion committee for the 2002 Brouwer Medal,

consisting of Robbert Dijkgraaf, Aernout

van Enter, Frank den Hollander (chair) and

Floris Takens, unanimously decided to hon-

or Michael Aizenman and congratulates him

wholeheartedly with the award. k


