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What field of science would one be talking about when hear-

ing the following words: butterflies, eagles, rainbows, passports,

Europeans, Americans, Asians, Parisians, Russians, knock-in,

knock-out, barriers, swaps, swaptions, calls, puts, baskets, digi-

tals, swings, down-and-under, . . .? This rather strange zoology

of terms comes from the realm of modern finance. All the words

above refer to so-called financial derivatives. Most of them are

options. A derivative is a financial product written on (derived

from) another financial product. The latter is typically referred

to as the underlying. A typical example is a so-called European

call option written on a stock. This product (derivative) gives the

holder the right (not the obligation) to exchange for the underly-

ing stock at a predetermined date and price. The date is referred

to as maturity, the price as strike. The buyer pays the seller a pre-

mium for this right. For instance, suppose a bank on March 28,

2002 writes a European call with maturity 1 year and strike 160.–

CHF on Swiss Re N, then it promises the buyer (holder) of the call

to deliver him one year from March 28, 2002 one stock Swiss Re N

at the agreed price of 160.– CHF. A key question now concerns

the calculation of a premium, fair for both buyer as well as sell-

er. Swiss Re N closed on March 28 at 154.75 CHF. The Wizards of

Wall Street mentioned in the title of this paper not only solved this

problem, but also devised for the seller a perfect hedge; starting

with the initial premium, they constructed a dynamic portfolio

which allows the seller to exactly replicate the value of the call at

maturity.

In this paper, I will discuss some mathematical techniques

used in solving the above problem. Special attention will be given

to the conditions underlying the solution. The world of deriva-

tives will be placed in its historic context. Besides a brief excur-

sion into the realm of risk management, I will also make some

comments on current and future research in the field.

Pricing a European call

Returning to the example above, denote by St the stockprice at

time t (t = 0 is today), T stands for maturity and K denotes the

strike, then, at maturity, the value of the European call is

C(T) = (ST − K)+ = max (ST − K, 0) .
(1)

Given a risk free interest rate r > 0 in the market, a first intuitive

guess of today’s value of the claim (ST − K)+ at future time T is

C(0) = E
(

e−rT (ST − K)+

)

.
(2)

Here E(X) denotes mathematical expectation of the random vari-

able X defined on some basic probability space (Ω, F, P) where P

stands for the (so-called physical) probability measure,

E(X) =
∫

Ω

X(ω)dP(ω).

In order to make the latter point clear, I could have denoted

EP(X) = E(X). It now turns out that (2) yields the wrong price

(compare with (6))! A more intricate (so-called no-arbitrage) ar-

gument starting for instance from (6) yields the ‘correct’ price:

S0Φ (d1) − Ke−rT
Φ (d2)

(3)

where

d1 =
log (S0/K) +

(

r +σ
2/2

)

T

σ

√
T

d2 = d1 −σ

√
T.
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Moreover,

Φ(z) =
1√
2π

∫ z

−∞

e−
1
2 t2

dt,
(4)

the (cumulative) standard normal distribution function. The final

parameter remaining unexplained is σ . The latter stands for the

standard deviation (volatility) of the underlying stock. A more

precise, mathematical definition will be given later, after the in-

troduction of the model (10).

That the normal distribution function (4) has something to do

with finance was early on clear to the Deutsche Bundesbank; see

their old 10.– DM bank note with Karl Friedrich Gauss on it to-

gether with Φ(z) also referred to as the Gauss distribution. That

Φ enters fundamentally in the pricing of derivatives, we owe to

Fisher Black, Myron Scholes [4] and Robert C. Merton [22] and

indeed very much depends on the conditions in the underlying

model.

Formula (3) can without doubt be referred to as ‘A Nobel for-

mula’, as indeed the 1997 Bank of Sweden Prize in Economic Sci-

ences in Memory of Alfred Nobel was given to Merton and Sc-

holes (Black died some years earlier) “for a new method to deter-

mine the value of derivatives”. As Keith Devlin wrote in 1997:

“The award of a Nobel Prize to Scholes and Merton shows that

the entire world now recognizes the significant effect on our lives

that has been wrought by the discovery of that one mathematical

formula.” Little did Devlin realise how true his statement would

become one year later.

There exist several ways to arrive at the Black-Scholes (-Merton)

formula (3).

Solution 1. (PDE approach, Black and Scholes [4], Merton [22])

Denote the option price at time t (0 ≤ t ≤ T) by C(t) = f (t, St),

then f (t, s) satisfies the so-called Black-Scholes partial differential

equation

{

∂ f
∂t + rs

∂ f
∂s + 1

2σ
2s2 ∂2 f

∂s2 = r f

f (s, T) = (s − K)+ .

(5)

It is not difficult to show that (5) can be transformed into the heat

equation and as such corresponds to one of the fundamental PDEs

in physics. The reason for this will be given later.

Solution 2. (Martingale approach, Harrison and Kreps [15]; see

Harrison and Pliska [16] for details on the early work)

So far we have only given one basic σ-algebra F of (measurable)

events on Ω. In order to fully model financial markets, one has to

introduce the notion of information. This is done through turning

(Ω, F, P) into a filtered probability space
(

Ω, F, (Ft)t≥0 , P
)

where

the σ-algebras Ft are increasing, i.e., for all s ≤ t, Fs ⊂ Ft. The

σ-algebra Ft can be viewed as the market information available at

time t. One often takes the natural filtration Ft = σ (Ss , s ≤ t) gen-

erated by the underlying price process (St). This choice is howev-

er less appropriate when one wants to model for instance insider

information; in that case one may want to augment Ft above by

some extra σ-algebra G denoting the extra information available.

This then leads to interesting mathematical problems for proper-

ties of stochastic processes under augmented filtrations; see for

instance Amendinger et al. [1]. Given now a filtration, one can

speak about the conditional expectation of X given all informa-

tion up to and including time t, E (X | Ft). The necessary correc-

tion to the intuitive formula (2) now becomes:

C(0) = EQ
(

e−rT (ST − K)+

)

(6)

or indeed more generally for the value C(t) of the call at time

t ∈ [0, T]:

C(t) = EQ
(

e−r(T−t) (ST − K)+ | Ft

)

.
(7)

In (6) and (7), expectation with respect to the physical measure

is replaced by expectation with respect to a so-called risk-neutral

probability measure Q. Again, at this point, some fundamental

conditions on the underlying model for (St) enter.

Solution 3. (Binomial tree pricing, Cox, Ross and Rubinstein [5])

Whereas Solutions 1 and 2 presuppose a continuous time mod-

el for (St), Cox, Ross and Rubinstein came up with a discrete

time solution which methodologically stands to the previous ap-

proaches as a random walk relates to its weak limit, Brownian

motion (and hence the normal distribution). Assume that price

processes can only go up or down with some (physical) probabil-

ity p, 1 − p respectively, i.e. for t ∈ N,

St+1 =

{

uSt with probability p

dSt with probability 1 − p

(8)

where 0 < d < 1 + r < u. Then for τ = T − t, time to maturity,

C(t) = (1 + r)−τ
r

∑
j=0

(

r

j

)

p∗ j (1 − p∗)r− j
(

Stu
jdτ− j − K

)

+

(9)

where

p∗ =
1 + r − d

u − d
∈ (0, 1).

Formula (9) is of the form (6) where Q corresponds to the binomial

probabilities based on p∗. In general p∗ 6= p, hence in (8) it is not

important with which probability p prices go up or down. It is

the stock’s volatility (implicitly present in u and d) that plays the

key role.

The above solutions are mathematically linked. The basic as-

sumption on the underlying stock process (St) in Solutions 1 and

2 is geometric Brownian motion:

dSt = St (µdt +σdWt)
(10)

where µ is a drift parameter, σ the (assumed constant!) vola-

tility and (Wt) stands for standard Brownian motion. The fact

that the increments of Brownian motion are normally distributed,
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Wt − Ws ∼ N(0, t − s), explains, after some calculations, the Φ in

(3). Indeed, in micro-economic theory interacting agents (traders)

are viewed as gas particles bombarding each other (or better said,

the price of the stock). As Brownian motion has almost surely

nowhere differentiable sample paths, the so-called Itô stochastic

differential equation (10) has to be defined in a proper way. The

solution to (10) is called a diffusion, properties of which can be

studied via the theory of PDEs, leading to Solution 1, or via the

(equivalent) theory of stochastic (martingale) calculus, leading to

Solution 2. Solution 3 can be seen as a discrete time version of

Solution 2, indeed, Solution 2 can be obtained through a central

limit argument (weak convergence) of Solution 3. Also note the

absence of µ (in (10)) from the formula (3).

I have refrained from giving detailed references to the results

above. By now, a multitude of textbooks exists on the subject. For

a mathematician, a good place to start is Bingham and Kiesel [3]

for a fairly easy introduction. Mathematically more demanding

are for instance Musiela and Rutkowski [23] and Karatzas and

Shreve [18]. These texts contain numerous references for further

reading. An excellent introduction in discrete time is Föllmer and

Schied [12].

What about the conditions

There is no doubt that the Black-Scholes-Merton formula (3), and

more importantly the methodology developed for the rational

pricing and hedging of financial derivatives, changed finance. As

such, the (mathematical) Wizards of Wall Street had a non-trivial

impact on the developments of financial markets over the last

couple of decades. Not only did the new option pricing formu-

la (3) work, it transformed the market. When the Chicago Op-

tions Exchange first opened in 1973, less than thousand options

were traded on the first day. By 1995, over a million options were

changing hands each day. So great was the role played by the

Black-Scholes-Merton formula in the growth of the new options

market that, when the American stock market crashed in 1978,

the influential business magazine Forbes put the blame squarely

onto that one formula. Scholes himself has said that it was not

so much the formula that was to blame, but rather that market

traders had not grown sufficiently sophisticated in how to use it.

However, much more important it is to realise under what as-

sumptions (mathematically as well as economically) does the for-

mula hold. Already Black said that he found it difficult to appre-

hend that a formula like (3) based on so many unrealistic assump-

tions was so widely used and did so well. Here is a partial list of

the key underlying assumptions:

− constant volatility

− independent, normally distributed relative returns

− no-arbitrage

− self-financing strategies

− no frictions (taxes, dividends, transaction costs)

− infinite liquidity

− stocks tradable at every fraction

− efficient, rational, complete markets

− perfect hedging.

One can show (partly statistically) that all of the above assump-

tions are violated to some extend in practice. For several of them

(for instance constant volatility and frictions) the theory can be

salvaged and necessary adjustments to (3) be made. In the end

however, there always remain conditions that may not hold (even

approximately) for real markets. The ‘may not’ case typically oc-

curs when markets are under stress, like the events surrounding

the LTCM disaster in September 1998.

Long-Term Capital Management (LTCM) was a hedge fund set

up around the former Salomon Brothers trader John Meriwether.

With Merton and Scholes on the company’s board, LTCM was us-

ing highly quantitative techniques for taking advantage (through

leverage) of, according to their methodology, mispriced products.

For those (relatively few but big) investors allowed to join, a mon-

ey machine seemed to emerge. A dollar invested in the fund

around March ‘94 grew as follows: 3/94 ($1), 3/95 ($1.40), 3/96

($2.30), 3/97 ($3.50), 3/98 ($4), just short of its peak of around

$4.10. July ‘98 was down to $3.50 before the lightening crash tak-

ing the fund down to about $0.30 by early September 1998. By

then, the fund reached a complete collapse and was saved from

bankruptcy by a (still hotly debated) deal set up by the New York

Fed and several large international banks. The latter deal was

made out of fear for a worldwide financial meltdown. A ‘too big

to fail’ situation surrounded LTCM in those crucial days. I am not

saying that (3) was to blame for this; no doubt however, a far too

optimistic view on the robustness for the methodology underly-

ing (3) had an important role to play in the fall of LTCM. Readers

interested in the more detailed non-technical story can read Dun-

bar [10] or Lowenstein [21]. For an excellent, more technical dis-

cussion on which conditions mainly caused the bad performance

of LTCM’s risk management system as an early warning system,

see Jorion [17].

In the aftermath of the 1998 LTCM (and other) disaster(s), the

public transformed the hailed Wizards of Wall Street into the failed

Wizards of Wall Street. My claim however is that not less, but

more mathematical (critical) thinking is strongly needed. Mathe-

maticians working in the field of finance (and insurance) have to

communicate more forcefully the weaknesses/shortcomings and

the assumptions underlying the models used. And let us not for-

get: mathematicians working in this area with a claim to applied

relevance of their work will have to study and understand the under-

lying economics!

Some pricing techniques

By far the most useful economic device in the field of quantitative

finance is the notion of no-arbitrage. An arbitrage opportunity is

a self-financing strategy with zero initial value, which produces

a non-negative final value with probability one and has a positive

probability of a positive final value. By not allowing such strate-

gies, economists can easily price new products exploiting their re-

lationship with other existing ones. One example are the so-called

currency triangles, as there is (US$/D , D /£, £/US$): these ex-

change rates must be perfectly linked, otherwise one could make

a sure, riskless gain. A further example is the so-called put-call

Right: Oct 29 Dies Irae , 1929, James N. Rosenberg, litho, druk: George
Miller. James Rosenberg was born in Pittsburgh, Pennsylvania, and
grew up in New York City, attending Columbia University and graduating
from Columbia Law School in 1898. Even after becoming a successful
bankruptcy lawyer in Manhattan, Rosenberg nevertheless continued to
cultivate a passion for art, which led to his becoming a collector. He
painted and made prints in his spare time, discovering lithography under
George Miller’s tutelage in 1919 (source: Life of the people, Washing-
ton, Library of Congress.) Copyright: Estate of James N. Rosenberg,
permission granted by Anne Geismar.
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parity. A European put is the right to sell a given stock at a given

date for a given price, hence for the buyer it has a value at matu-

rity of

P(T) = (K − ST)+ .
(11)

Recalling from the first section the value of a call at time 0 ≤
t ≤ T, C(t) and denoting similarly by P(t) the value of the corre-

sponding put, then the put-call parity becomes, for 0 ≤ t ≤ T,

St + P(t) − C(t) = Ke−r(T−t) .
(12)

The easiest way of proving (12) is by assuming strict inequality for

some 0 ≤ t ≤ T and then come up with a portfolio which shows

a riskless profit by time t = T. Note that by the definitions of

a European call and put ((1), (11)) one immediately has at maturity

t = T, that

ST + P(T) − C(T) = K.
(13)

An excellent reference on the use of arbitrage arguments in order

to prove relationships like (12) is Cox and Rubinstein [6].

The early, main contribution of mathematics to finance is

no doubt the formulation of a methodological foundation to

the above economic no-arbitrage argument. The pricing equa-

tion (7) holds for general contingent claims Y (meaning Y ∈
L1 (Ω, FT , P)):

VY(t) = EQ
(

e−r(T−t)Y | Ft

)

,
(14)

for 0 ≤ t ≤ T where VY denotes the value (or price) function

of the claim Y. Applying now (14) to (13) and using a similar

formula to (7) for a put yields:

EQ
(

e−r(T−t)ST | Ft

)

+ P(t) − C(t) = Ke−r(T−t) .

At this point, a key observation has to be made, namely, for 0 ≤
t ≤ T:

St = EQ
(

e−r(T−t)ST | Ft

)

or equivalently:

e−rtSt = EQ
(

e−rT ST | Ft

)

, 0 ≤ t ≤ T.
(15)

This means that the discounted price process
(

e−rtSt
)

is a (Q, Ft)-

martingale. It is this fundamental link between no-arbitrage for

the price process and its martingale property (15) which lies at the

heart of the importance of modern stochastic calculus for mathe-

matical finance. This link, starting with Harrison and Kreps [15],

found its culmination point in the so-called Fundamental Theo-

rem of Asset Pricing as discussed in Delbaen and Schachermay-

er [9]. It is fair to say that early on, economists were able to derive

pricing formulae for derivatives using the very powerful (and in-

tuitive) device of no-arbitrage. By showing that the no-arbitrage

concept is ‘equivalent’ with a martingale property of the underly-

ing discounted price process, the doors were opened for the anal-

ysis of much more complex (so-called exotic) options. A whole

stochastic calculus industry for finance emerged. It still largely

is a matter of taste to use stochastic calculus (martingale) tech-

niques directly or go via the equivalent PDE theory. In order to

get an idea on what type of options can be priced in practice, see

for instance Lipton [20].

Above we saw that mathematics enters very fundamentally in

order to establish a coherent methodology for the rational pric-

ing of contingent claims. This is however only the beginning, the

theory has been extended in a variety of ways. Some of these

extensions are fundamental for practice, as for instance the anal-

ysis of pricing and hedging in incomplete markets. Other exten-

sions contribute to a beautiful mathematical theory but offer lit-

tle (if any) to the solution of real problems in finance; I refrain

at this point from discussing examples of the latter category. Re-

turning to the former, incompleteness of financial markets is of

fundamental importance and is more the rule rather than the ex-

ception. A typical example of an incomplete market is one where

jumps in the price process with random size occur. Contingent

claims cannot be perfectly hedged (replicated), there are infinite-

ly many equivalent (pricing) martingale measures Q and conse-

quently, investors will have to indicate their attitude to risk. No-

tions like utility pricing and non-perfect hedging enter. Most of

the modern textbooks on finance contain excellent accounts of the

(non-trivial) mathematical theory. A very readable review pa-

per is Schweizer [26]. A more in depth discussion on the use of

mathematical techniques in finance is for instance to be found in

Schachermayer [25].

As so oft in modern applied probability, and indeed as shown

above very much so in mathematical finance, solving a practical

problem posed can essentially be reduced to ‘spot the martingale’!

In view of the ever occuring ups and (especially) downs of finan-

cal markets, one may recall in this context the words of that fa-

mous gambler Giacomo Casanova (Venice, 1754): “At this same

time I was being ruined at cards. Playing by the martingale, I lost

very large sums; urged on by M.M., I sold all her diamonds, leav-

ing her in possession of only five hundred zecchini. There was no

more question of an elopement.” This story leads us nicely to the

next section, putting the above sketched development in a wider

historical perspective.

Is history repeating itself

In the Code of Hammurabi, 1800 BC, the following text can be

found “If any one owe a debt for a loan, or the harvest fail, or

the grain does not grow for lack of water; in that year he need

not give his creditor any grain, he washes his debt-tablet in water

and pays no rent for this year.” As is explained in Dunbar [10]

p. 25, the above can be viewed as the debtors having an option to

call upon the lendors to cover their interest payments in the event

of crop failure, which effectively put a cap on their grain price

exposure.

Hence derivatives in general, and options more in particular

are not so new. All too often they are viewed as inventions of the

‘capitalistic devil’ and mathematicians seriously working on them

ought to be scorned. I take a completely different view; financial

options are so much part of every day life that it is an absolute ne-

cessity for mathematicians to take a serious interest. Who has not

yet considered a prepayment option in a mortgage or a change

from a fixed interest rate agreement to a variable one, or vice ver-

sa (a so-called swap). I go along with Steinherr [27] who claims
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in his excellent (pre LTCM) book that the development of deriva-

tives markets, and the from this development established quanti-

tative risk management tools, constitute no doubt one of the key

innovations of the 20th Century. The main reason why the gen-

eral public occasionally loaths these modern tools of finance is

through their perceived triggering effects in crashes and bubbles.

Let me at this point quote some, especially for the Netherlands

relevant ‘history is repeating itself’ anecdotes.

The first concerns the well-known history srrounding the in-

flation and consequently steep drop in the price of tulip bulbs in

17th Century Holland. At the peak of Tulipomania (Amsterdam,

1636–1637) 1 bulb of viceroy was sold for:

Two lasts of wheat 448

Four lasts of rye 558

Four fat oxen 480

Eight fat swine 240

Twelve fat sheep 120

Two hogsheads of wine 70

Four tuns of beer 32

Two tuns of butter 192

One thousand lbs. of cheese 120

A complete bed 100

A suit of clothes 80

A silver drinking cup 60

amounting to the considerable total of 2500 florins. The rea-

son that such prices were paid lay in the fact that homogeneous

coloured tulips at some (random?) time in the future could ‘break’

and transform into a highly non-homogeneous multi-coloured

very rare species. As such, the buyer was investing into the future

random payout and prepared to pay handsomly for that. Just be-

fore the bubble burst, tulip bulbs were sold forward (like futures

today). It may be disputed to what level irrationality was present

in the tulip market of 17th Century Amsterdam. One of the ways

prices were determined involved assistants of the buyer and the

seller to negotiate the price standing in an inn within a small cir-

cle drawn on the ground. This circle was referred to as ‘het ootje’.

Hence linguistic history seems to have chosen for considerable ir-

rationality if we are go to by todays interpretation of ‘in het ootje

nemen’. It was only realised on the 20th century that the magical

breaking of tulips was due to a virus. A most readable account of

the history of the tulip from an early day Turkish delight to the

present day Dutch emblem is to be found in Pavord [24].

A second Dutch historical account showing that serious option

trading has been with us for centuries is to be found in Joseph

de la Vega’s Confusión de Confusiones [13]. Joseph de la Vega was

a 17th Century businessman living in an Amsterdam community

of Portugese Jews having fled from the Spanish Inquisition. He

recounts the following discussion on the floor of the Amsterdam

stockmarket (‘beurs’) by the end of the 17th Century:

“If I may explain ‘opsies’ [further, I would say that] through

the payment of the premiums, one hands over values in order

to safeguard one’s stock or to obtain a profit. One uses them as

sails for a happy voyage during a beneficent conjucture and as an

anchor of security in a storm.

The price of the shares is now 580, [and let us assume that] it

seems to me that they will climb to a much higher price because

of the extensive cargoes that are expected from India, because of

the good business of the Company, of the reputation of its goods,

of the prospective dividends, and of the peace in Europe. Nev-

erthesee I decide not to buy shares through fear that I might en-

counter a loss and might meet with embarrassment if my calcu-

lations should prove erroneous. I therefore turn to those persons

who are willing to take options and ask them how much [premi-

um] they demand for the obligation to deliver shares at 600 each

at a certain later date. I come to an agreement about the premium,

have it transferred [to the taker of the options] immediately at the

Bank, and then I am sure that it is impossible to lose more than

the price of the premium. And I shall gain the entire amount by

which the price [of the stock] shall surpass the figure of 600.

In case of a decline, however, I need not be afraid and dis-

turbed about my honor nor suffer fright which could upset my

equanimity. If the price of the shares hangs around 600, I [may

well] change my mind and realize that the prospects are not as

favorable as I had presumed. [Now I can do one of two things.]

Without danger I [can] sell shares [against time], and then every

amount by which they fall means a profit. [Or I can enter into

A pamphlet that warns against the speculative trade in tulips. C. van der Woude: Tooneel
van flora. , 1637. Copyright: Bibliotheek Wageningen UR, Speciale Collecties
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another option contract. In the earlier case] the receiver of the

premium was obliged to deliver the stock at an agreed price, and

with a rise in the price I could lose only the bonus, so now I can

do the same business (in reverse), if I reckon upon a decline in the

price of the stock. I now pay premiums for the right to deliver

stock at a given price.”

Hence the above quote contains the notions of put and call

together with the risk management consequences of buying or

selling such products. De la Vega further discusses the notion of

shortselling.

I would like to add that the edition [13] also contains the

most interesting Extraordinary Popular Delusions and the Madness

of Crowds by Charles MacKay, written in 1841. His text clearly

shows that ‘there is nothing new under the sun’ when it comes

to bubbles and crashes, greed, irrationality, herding and market

psychology. Every student interested in financial markets ought

to read these historical accounts. A final comment I would like

to make however. In all analyses of bubbles and crashes one has

to be careful in too quickly filing such events par default in the

chapter on irrational behaviour. A much more detailed study on

the specific case at hand is always warranted. This also holds true

for the Tulip Bubble. Garber [14] offers a market-fundamental

explanation of the latter, as well as for two other bubbles also dis-

cussed by MacKay [13], the Mississippi Bubble (1719–1720) and

the closely connected South Sea Bubble (1720).

Some thoughts on the present and the future

By now, the mathematical theory of financial markets is highly de-

veloped and well understood. Without wanting to make a link to

econophysics, many compare the present state of the theory with

the power of Newtonian mechanics used for describing nature in

a first approximation. I personally think that we are not there

yet; too many really fundamental practical issues remain too lit-

tle understood. We may understand markets in a ‘normal’ state,

however we have little to go by with that same theory when the

very important ‘abnormal/extreme’ situations occur. The whole

field of international market regulation, through globally accept-

ed principles for quantitative risk management, is precisely in-

terested in these ‘bad case scenarios’. For a brief introduction

in some of the issues mathematicians ought to be aware about,

see Embrechts [11]. Also the development of new markets puts

a challenge on the mathematical theory now available. I am for

instance thinking of derivatives in insurance markets (see for in-

stance Lane [19]), the deregulation of energy markets and real op-

tion markets (Davis et al. [8]) to name some of the more impor-

tant ones. In all of these, besides the modelling of a price pro-

cess, one also has to model an underlying physical process with

all the added intricacies; as a prime example in the case of ener-

gy derivatives, think of the modelling of electricity transportation

and storage. Because there is no effective way to store electric-

ity, one cannot construct arbitrage portfolios with the underly-

ing commodity and hence one needs to model the so-called term

structure of future prices directly. Also, supply and demand fun-

damentals translate directly into spot price behaviour leading to

a mean reverting spot process with spikes. These markets also

lead in a very natural way to highly complex contract structures

with implicit options. An example are the so-called swing op-

tions which are American style and have a path-dependent pay-

off structure. A swing option gives the holder of the options the

right to buy power on a daily basis during the lifetime of the con-

tract (30 days, say). There is an upper limit for the number of

days at which exercise is allowed (20 days, say). The strike price

may be fixed (F, say) or floating and typically a distinguishing

feature, like a volumetric constraint, is present. Examples of such

constraints are:

− a maximum flow rate, Rt;

− a monthly minimum demand m, maximum demand M and

a daily maximum demand D, all quoted as percentages of the

theoretically possible energy consumption over the respective

time intervals (M ≤ 20), and

− a ‘take or pay’ constraint: the failure to take m by the end of

the month costs (m − C)Fm where Fm is an agreed unit price,

C =
∫ 30

0
Vsds,

where Vt denotes the instantaneous consumption rate at time t.

Using these constraints, the swing option can now be defined

precisely (mathematically). Let

T = {= (τ1 , . . . , τ20) | τi stopping times, τ1 < · · · < τ20}

Moreover,

Kτ =

{

V : [0, 30] × Ω → [0, Rt] | Vadapted,

V ≡ 0 on

(

20
⋃

i=1

[τi , τi + 1)

)c

∩ [0, 30],

C ≤ M,
∫

τi+1

τi

Vsds ≤ D, i = 1, . . . , 20

}

.

With this notation, the value of the swing contract can be de-

scribed as

sup
τ∈T

sup
V∈Kτ

EQ

[

∫ 30

0
(St − F)+ Vte

−rtdt − (m − C)+Fme−30r

]

.

The latter formula, and indeed the underlying spot market, are

a far cry from their originators (1), (11) and (10). The mathematical

theory however needed for the pricing of swing options is avail-

able. What is much less understood are for instance the properties

of the spot market (St) and the appropriate choice of Q, to name

just two.

These, and many more derivative products will be engineered

further in the future. Besides the intrinsic modelling of the un-

derlying markets, at the end of the day risks taken will have to

be aggregated and managed. This is where integrated risk man-

agement enters; see Crouhy et al. [7] for an excellent account. In

a banking context, at the close of trading each day, a so-called

P&L (Profit-and-Loss) is determined and projected (estimated) as

an unknown distribution function F, a specific number of days

(typically 10) in the future. Based on this F, risk measures are cal-

culated, like the famous VaR (Value-at-Risk) which, for a given

level 0 < α < 1, is ‘just’ the quantile:

VaR(α) = −F−1(α)
(16)
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where α is typically small (corresponding to losses), α = 0.05,

0.01. Mathematicians have contributed in a fundamental way to

questioning and understanding the rationale behind the choice

of (16) (see for instance Artzner et al. [2]). For Dutch scientists,

the discussion around using (16) as a risk measure is a déjà-

vu. Indeed, following the dyke disaster of February 2, 1953,

the Delta project demanded as a safety margin (α) for the dyke

heights a 1/4000-year level for the delta region and the north

and a 1/10000-year level for the ‘Randstad’. Recall that the storm

causing the 1953 flood was a 1/300-year event! Also in this case,

the estimation of risk measures (dyke heights) given an α level

(1/t-year) is one issue, equally important and much harder to set-

tle is the choice of α, respectively t.

I very much hope that my paper will contribute in making

mathematicians also interested in the latter problem. Financial

derivatives are here to stay. They form an integral part of our so-

cial welfare society/system and hence should be understood and

risk managed in a scientifically sound way. If mathematicians can

really contribute to the global understanding of modern financial

markets, then these Wizards of Wall Street will no doubt have an

impact. To what extend mathematics has changed (or is changing)

finance will to a large extend depend on how deeply mathemati-

cians are prepared to get involved with the wider issues.
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