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Automatic summation using
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Het vinden van een expliciete uitdrukking voor een som van de vorm

2n

∑
k=0

(−1)k

(

2n

k

)3

was tot voor kort alleen mogelijk met behulp van behoorlijk wat

menselijke slimheid en inventiviteit. Echter, computers kunnen

dergelijke uitdrukkingen nu ook vinden; het probleem wanneer een

hypergeometrische som is uit te drukken in gesloten vorm is geheel

opgelost. Andries Brouwer beschrijft het proces van de zogenaamde

automatische sommering. Het is gebaseerd op theorieën van Zeil-

berger en Wilf.

The problem of discovering whether or not a given hypergeomet-

ric sum is expressible in a simple closed form, and if so, finding

Hypergeometric sums

Informally, a hypergeometric sum has the shape

f (n) = ∑
k

F(n, k),

where F(n, k) involves factorials and binomial coefficients as

in

F(n, k) = (−1)k

(

n

k

)3

.

A precise definition is given in formula (2). Sums and series

with such summands occur in the field of special functions,

viz. hypergeometric functions.

that form, and if not, proving that the sum is not expressible in a

closed form, has now been completely automated. There is no in-

genuity or mathematician required: a computer algebra package

can do it all.

In his treatise [2], Exercise 1.2.6.63, Knuth asks: Develop comput-

er programs for simplifying sums that involve binomial coefficients, and

rates this exercise M50, the same difficulty as assigned to Fermat’s

last Theorem!

Here is the recipe for finding f (n) = ∑k F(n, k):

i. Go to http://www.cis.upenn.edu/~wilf/progs.html
and download EKHAD. (While you are there you might as well

also take hyper, WZ and gosper.m.)

ii. Start Maple (some might prefer Mathematica, but that has a

serious flaw: whenever you really need it, it turns out that

your license has expired, or the password of your computer

has changed because you exchanged your ethernet card, and it

may well take a while before it is usable again).

iii. Read EKHAD.

iv. Define the summand F(n, k).

v. Call zeil(F(n,k),k,n,N).

vi. Your problem is solved.

For example, look at the sum ∑m
k=0(−1)k(m

k )
3
. For odd m this van-

ishes since the terms for k and m − k cancel, so take m = 2n. Here

are the relevant snippets of the maple session, after reading in

EKHAD.

> F := (n,k) -> (-1)^k * binomial(2*n,k)^3;

k 3
F := (n,k) -> (-1) binomial(2 n, k)

> z := zeil(F(n,k),k,n,N);
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Maple returns two expressions:

−6(3n + 2)(3n + 1)− 2(n + 1)2 N,

and a fraction with numerator

k3(784n − 207k − 48k3 + 2084n2 − 1113nk + 147k2 − 2214n2k

+ 594nk2 + 2728n3 + 6k4 + 448n5 + 1760n4 + 116 − 1932n3k

− 624n4k + 792n2k2 + 348n3k2 − 132nk3 − 90n2k3 + 9k4n)

and denominator

(2n − k + 1)3(2n + 2 − k)3 .

What is it that we found? The function zeil will find recurrences

of the form

J

∑
j=0

a j(n)F(n + j, k) = G(n, k + 1) − G(n, k)
(1)

given the function F(n, k). Once we have such a recurrence, sum-

ming over k will yield
J

∑
j =0

a j(n) f (n + j) = 0

where f (n) = ∑k F(n, k), a recurrence relation for the sum that we

wanted to find. In the maple call, N is the forward shift operator,

which action is given by (N f )(n) = f (n + 1).The first part of the

answer says that

−6(3n + 2)(3n + 1) f (n) − 2(n + 1)2 f (n + 1) = 0,

that is, f (n + 1) = −3(3n + 1)(3n + 2) f (n)/(n + 1)2. Since

f (0) = 1 we find that

2n

∑
k=0

(−1)k

(

2n

k

)3

= (−1)n (3n)!

(n!)3
.

How can we verify that this really is true? The second part of the

answer is the certificate, a rational function R(n, k) that makes it

possible to verify all claims by straightforward checking. It de-

fines the G of (1) by G(n, k) = R(n, k)F(n, k). Now dividing both

sides of (1) by F(n, k) yields a claimed equality of two rational

functions in n and k, multiplying by the denominators yields a

claimed equality between polynomials, and this is true by inspec-

tion.

> R := (an,ak) -> subs(n=an,k=ak,z[2]):
> simplify(expand(- 6*(3*n + 2)*(3*n + 1)
> - 2*(n+1)^2*F(n+1,k)/F(n,k)
> - R(n,k+1)*F(n,k+1)/F(n,k) + R(n,k)));

0

The final 0 is what we wanted (and we could have done it by

hand, if necessary). This proves our result.

The mathematics behind automatic summation

When precisely does this work? As we saw before, the heart of

the matter is to find suitable recurrence relations. Before we for-

mulate the two results stating the existence of such recurrence re-

lations in a convenient form, we describe the exact shape of the

term F(n, k) in f (n) = ∑k F(n, k) for which the results hold.

Recurrence relations

Suitable recurrence relations for the F(n, k) and, subsequent-

ly, the f (n) = ∑k F(n, k) are the key to producing closed

forms. Solving an appropriate system of equations, one can

come up with a recurrence relation like

a(n)F(n, k) + b(n)F(n + 1, k) + c(n)F(n, k + 1)

+ d(n)F(n + 1, k + 1) = 0.

(In a given case, possibly more terms are needed in a recur-

rence relation.) For example, with F(n, k) = 2k(n
k), solving

a(n) + b(n)
n + 1

n + 1 − k
+ c(n)

2n − 2k

k + 1
+ d(n)

2n + 2

k + 1
= 0

for a(n), b(n), c(n) and d(n) leads to F(n + 1, k + 1) =

2F(n, k) + F(n, k + 1). Summing over k then gives the re-

currence f (n + 1) = 3 f (n) for f (n). It is in this step that the

dependence of a(n), b(n), c(n), d(n) on n only (in our simple

example just constants) is crucial. Of course, f (n) = 3n.

Definition. A function F(n, k) is said to be a proper hypergeometric

term if it can be written in the form

F(n, k) = P(n, k)
∏s

r=1(arn + brk + cr)!

∏t
r=1(urn + vrk + wr)!

xk (2)

in which x is an indeterminate, P a polynomial, the ar, br, ur, vr

are specific integers (i.e., do not contain additional parameters)

and s, t are finite, nonnegative, specific integers. (The cr and wr

are allowed to be arbitrary parameters that take complex values.

Also the coefficients of the polynomial P may contain additional

parameters.)

The following theorem was already discovered in the fourties.

Theorem [Mary Celine Fasenmyer]. If F(n, k) is a proper hypergeomet-

ric term, then it satisfies a recurrence relation

I

∑
i=0

J

∑
j=0

ai j(n)F(n − j, k − i) = 0
(3)

where the ai j(n) are polynomials in n, not all zero, and the equa-

tion holds for all n, k for which F(n, k) 6= 0 and all occurring

F(n − j, k − i) are defined. Furthermore, there is such a recurrence with

(I, J) = (I0 , J0), where J0 = ∑r |br|+ ∑r |vr| and I0 = 1 + deg(P) +

J0(∑r |ar|+ ∑r |ur| − 1).

Proof. The idea is to rewrite (3), for suitable I and J, as a system

of equations with more unknowns than equations.

Define (for integral nonnegative x) rf(x, y) := ∏x
j=1(y + j) and

ff(x, y) := ∏x−1
j=0 (y − j). Extend ff for integral negative x by

ff(−x, y) := rf(x, y)−1. (The abbreviations should suggest rais-

ing resp. falling factorial.) Then, if H(n, k) = (an + bk + c)! , we



310 NAW 5/3 nr. 4 december 2002 Automatic summation using Zeilberger-Wilf theory Andries Brouwer

have

H(n − j, k − i)

H(n, k)
=

1

ff(a j + bi, an + bk + c)
.

Thus xi F(n− j,k−i)
F(n,k)

is a rational function in n, k, say
νi j(n,k)
δi j(n,k)

, and

δi j(n, k) = P(n, k) ∏
ar j+br i≥0

ff(ar j + bri, arn + brk + cr)

∏
ur j+vr i<0

rf(−ur j − vri, urn + vrk + wr).

We now try to solve (3) for the coefficients ai j(n). Place the expres-

sions over a single common denominator, collect the numerator as

a polynomial in k, and equate the coefficient of each power of k to

zero. This will work when the number of unknowns is larger than

the number of equations. Put x+ := max(x, 0). Then

max{a j + bi | a j + bi ≥ 0, 0 ≤ i ≤ I, 0 ≤ j ≤ J} = a+ J + b+ I,

max{−a j − bi | a j + bi < 0, 0 ≤ i ≤ I, 0 ≤ j ≤ J}

= (−a)+ J + (−b)+ I.

The least common multiple of all δi j(n, k) divides

∆ := P(n, k) ∏
r

ff(a+
r J + b+

r I, arn + brk + cr)

∏
r

rf((−ur)
+ J + (−vr)

+ I, urn + vrk + wr).

After multiplying by xI
∆, we have to find the ai j(n) from the

polynomial equation

I

∑
i=0

J

∑
j=0

ai j(n)νi j(n, k)
∆

δi j(n, k)
xI−i = 0.

The number of unknowns ai j equals (I + 1)(J + 1). The number

of different powers of k occurring is at most

1 + deg(P) + (∑ |ar|+ ∑ |ur|)J + (∑ |br|+ ∑ |vr|)I.

For sufficiently large I, J, e.g. for the I0, J0 given in the theorem,

there are more unknowns than equations, and we find a solution

where ai j equals xi times a polynomial in n. �

Telescoped recurrences

So, we found, in a constructive way, a recurrence satisfied by

F(n, k). But it is not in a form convenient for summation.

Theorem [Doron Zeilberger]. If F(n, k) is a proper hypergeometric term,

then it satisfies a nontrivial recurrence relation of the form

J

∑
j=0

a j(n)F(n + j, k) = G(n, k + 1) − G(n, k)

in which G(n, k)/F(n, k) is a rational function of n and k.

Proof. Let N, K be the forward shift operators in n and k. Then

a recurrence ∑I
i=0 ∑J

j=0 ai j(n)F(n + j, k + i) = 0 can be written as

p(n, N, K)F(n, k) = 0 for a certain polynomial p with coefficients

in Z[x]. Take such a p that has minimal degree in K.

Write

p(n, N, K) = p(n, N, 1) + (1 − K)q(n, N, K).

Then

p(n, N, 1)F(n, k) = (K − 1)q(n, N, K)F(n, k)

= G(n, k + 1) − G(n, k),

where G(n, k) = q(n, N, K)F(n, k). This proves the claim, since

shift operators multiply F(n, k) by a rational function. But could

p(n, N, 1) be identically zero? Then G(n, k) does not depend on k

and hence is a hypergeometric term in the single variable n and

satisfies some recurrence (of order 1) r(n, N)G(n, k) = 0. Now

r(n, N)q(n, N, K)F(n, k) = 0, a recurrence of lower degree in K

than the one we started with. �

An example

As an example of the above theorems, we prove Boersma’s iden-

tity. This identity was found in 1961 by Boersma, and later shown

to Askey. Askey forgot, and many years later rediscovered and

published it (with the same proof Boersma had given). The final

version of the paper [1] contains an acknowledgement to Boers-

ma. Define the up-down factorial ud(x, y) by

ud(x, y) :=
(x + 1)(x + 3)...(x + 2y − 1)

x(x + 2)(x + 4)...(x + 2y)
.

Theorem [Boersma, 1961]. Let a, b, c be nonnegative integers such that

a + b + c is odd, and c ≤ a + b. Then

min(b,c)

∑
k=0

(2b−2k
b−k )(2c−2k

c−k )(2k
k )

(2b+2c−2k
b+c−k )

·
(b + c − 2k + 1

2 )

(b + c − k + 1
2 )

×

×
1

(a − b − c + 2k)(a + b + c + 1 − 2k)

= ud(a − b − c, c) · ud(a + b + 1 − c, c).

Note that the left-hand side is symmetric in b and c. But so is

the right-hand side: if c > b, then the zigzags from a − b − c to

a− b + c and from a + b + 1− c to a + b + 1 + c overlap, and we see

that ud(a− b− c, c).ud(a + b + 1− c, c) = ud(a− b− c, b).ud(a +

c + 1 − b, b).

> F := (a,b,c,k) -> binomial(2*(b-k),b-k)*
> binomial(2*(c-k),c-k)*binomial(2*k,k)*
> (b+c-2*k+1/2) / (binomial(2*(b+c-k),b+c-k)*
> (b+c-k+1/2)*(a-b-c+2*k)*(a+b+c+1-2*k)):
> T := (c,k) -> F(a,b,c,k):
> z := zeil(T(c,k),k,c,C);
bytes used=245350904, alloc=3276200, time=181.68
z :=

(c+2)(c+1)(a-b+c+1)(a-b-c-1)(a+b+c+2)(a+b-c)

-(c+2)(c+1)(a+b+c+3)(a+b-c-1)(a-b+c+2)

2
(a-b-c-2)C ,

...



Andries Brouwer Automatic summation using Zeilberger-Wilf theory NAW 5/3 nr. 4 december 2002 311

Thus, after 3 minutes on a Pentium with Linux (it was 7 minutes

on a Sparcstation with SunOS) we find a recurrence relation for

the sum S(a, b, c) = ∑ F(a, b, c, k) of the left-hand side. Here C is

the shift operator in c. It says

(c + 2)(c + 1)(a + b + c + 3)(a + b − c − 1)

(a − b + c + 2)(a − b − c − 2)S(a, b, c + 2) =

(c + 2)(c + 1)(a − b + c + 1)(a − b − c − 1)

(a + b + c + 2)(a + b − c)S(a, b, c).

This recurrence is valid for all integers b and c, and for arbitrary

complex a different from the integers b + c, b + c − 2, ..., b − c,

−b − c − 1, −b − c + 1, ..., −b + c − 1 (for c ≤ b). We need inte-

gers b and c to make sure that only finitely many summands are

nonzero. For negative c the sum vanishes, for nonnegative c it

is interesting, and the factor (c + 2)(c + 1) in the relation makes

sure we cannot continue the recurrence down past c = 0. Clearly,

ud(a − b − c, c).ud(a + b + 1 − c, c) satisfies this same recurrence

(for c ≥ 0). It remains to compute S(a, b, 0) = F(a, b, 0, 0) =

1/(a − b)(a + b + 1) and, as desired

S(a, b, 1) = F(a, b, 1, 0) + F(a, b, 1, 1)

= (a − b)(a + b + 1)/(a + b)(a − b + 1)(a + b + 2)(a − b − 1)

Note that we proved a slightly more general result — the integral-

ity of a (and that a + b + c is odd) does not play a role, we only

need a to be a complex number distinct from a handful of given

integers.

Another example

Aart Blokhuis asked for the value of ∑k
j=0 (−a

j )( b
k− j)(

c+ j
r ) for b =

k + a − 1 and b = k + a − 2, where a, b are nonnegative integers.

This one is much easier than the previous example. Within two

seconds we find a recurrence relation.

But let us first worry a little about the meaning of ( x
m) for

possibly negative m. For nonnegative m we have the definition

( x
m) = x(x−1)...(x−m+1)

m! = ff(x, m)/rf(0, m), valid for all x. Be-

low we shall use the convention ( x
m) = 0 for m < 0. Then

(x+1
m ) = ( x

m) + ( x
m−1) for all integers m.

[Note however, that this is not Maple’s convention. Indeed,

Maple says for negative m that ( x
m) = ff(0,−m)/rf(x,−m) and

this is zero, unless x is an integer with m ≤ x ≤ −1, in which

case ( x
m) = ff(x, x − m)/rf(0, x − m) = ( x

x−m). Thus, with this

convention we have (n
m) = ( n

n−m) for all integers m, n.]

Proposition. Let a, b be nonnegative integers.

(i) If b = k + a − 1, we have

k

∑
j=0

(

−a

j

)(

b

k − j

)(

c + j

r

)

= (−1)k

(

b

k

)(

c

r − k

)

.

(ii) If b = k + a − 2, we have

k

∑
j =0

(

−a

j

)(

b

k − j

)(

c + j

r

)

= (−1)k

((

b

k

)(

c

r − k

)

+

(

b

k − 1

)(

c + 1

r + 1 − k

))

Proof. If the sum is S(k), then in the first case we find (re-

garding a, c, r as constants) the recurrence (k − r)(k + a)S(k) =

(k + 1)(k − r + c + 1)S(k + 1) and S(0) = (c
r). The certificate is

(c + j − r) j(k + a)/(k + 1 − j).

In the second case we find the recurrence

(k − r − 1)(k + a − 1)(kc − ka + ar + 2k − r + c + 1)S(k) =

(k + 1)(k − r + c + 1)(kc − ka + ar + 2k − r + a − 1)S(k + 1).

This means that with T(k) := S(k)/(kc − ka + ar + 2k − r + a − 1)

we have T(k + 1) = (k−r−1)(k+a−1)
(k+1)(k−r+c+1)

T(k) (essentially the same re-

currence as before), so that

k

∑
j=0

(

−a

j

)(

b

k − j

)(

c + j

r

)

= (−1)k

(

b

k

)(

c + 1

r + 1 − k

)

·
k(c + 1) + (a − 1)(r + 1 − k)

(a − 1)(c + 1)
. �

Generalization and a Maple proof

Inspired by the above we conjecture that

(−1)k ∑
j

(

k − b − e − 1

j

)(

b

k − j

)(

c + j

r

)

= ∑
j

(

e

j

)(

b

k − j

)(

c + j

r − k + j

)

.

We shall give both a Maple and a traditional proof. It suffices to

prove the identity in case c = 0 (see below for the argument),

so we assume this, since it greatly simplifies the recurrences ob-

tained.

Let F(r, j) and H(r, j) be the summands on the left-hand and

right-hand side. Then we have for j ≥ 0

(k−r−e−1)(r+1)F(r+1, j) − (k−r)(k−b−r−e−1)F(r, j)

= G(r, j+1)−G(r, j)

and

(k−r−e−1)(r+1)H(r+1, j) − (k−r)(k−b−r−e−1)H(r, j)

= J(r, j+1)−J(r, j),

where G(r, j) = (k − b − j)( j − r)F(r, j) and J(r, j) = (k − b − j)

(k − r)H(r, j), as one easily checks by dividing both sides by

F(r, j) resp. H(r, j). (We need not worry about b = k − j − 1,

since both sides are polynomials in b, and if they agree for all

nonintegral b, they are identical.)

Sum over j ≥ 0, and note that G(r, 0) = J(r, 0) = 0. We see

that both sums satisfy the same recurrence relation

(k − r − e − 1)(r + 1)S(r + 1) = (k − r)(k − b − r − e − 1)S(r).

Both sums vanish for r < 0, and if we check that they agree for

r = 0 the recurrence wil show that they always agree. (Again, we

need not worry about r = k − e − 1.)
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But for r = 0 we find (this time taking b integral)

(−1)k ∑
j

(

k − b − e − 1

j

)(

b

k − j

)

= (−1)k

(

k − e − 1

k

)

=

(

e

k

)

= ∑
j

(

e

j

)(

b

k − j

)(

j

k

)

.

This proves the claimed identity.

A traditional proof

Let ∆x be the forward difference operator in x (acting on the space

of polynomials in x), that is, ∆x f (x) := f (x + 1) − f (x). Then ∆x

decreases the degree of nonzero polynomials by one (if we agree

that the zero polynomial has degree −1), and it follows that f = g

when ∆x f = ∆xg and f (c) = g(c) for some c. This operator is

useful when manipulating binomial coefficients, since ∆x(
x
m) =

( x
m−1).

Lemma. Let m, n be integers, and m ≥ 0. Then

∑
i

(−1)i

(

m

i

)(

x + i

n

)

= (−1)m

(

x

n − m

)

.

Proof. ∆x turns this equation into the same equation with n de-

creased by 1. Thus, it suffices to check this identity for x = 0.

Then both sides equal (−1)m if n = m and 0 otherwise. �

Proposition. Let k, m, n be integers. Then

∑
i

(−1)i

(

x

i

)(

x + y − i

k + m − i

)(

z + k − i

n

)

= ∑
i

(

x

k − i

)(

y

m + i

)(

z + i

n − k + i

)

.

Proof. ∆y and ∆z decrease m and n, respectively, so it suffices

to prove this for a suitable choice of y and z. Pick y = 0 and

z = n − k. We have to show that

∑
i

(−1)i

(

x

i

)(

x − i

k + m − i

)(

n − i

n

)

=

(

x

k + m

)(

n − k − m

n − k − m

)

.

But (x
i)(

x−i
k+m−i) = ( x

k+m)(k+m
i ), so it remains to show that if p ≥ 0

then

∑
i

(−1)i

(

p

i

)(

n − i

n

)

=

(

n − p

n − p

)

.

But this is the case m = p, x = −1 of the above lemma. �

Of course the identity we had is obtained by substituting

b, e, c, 0, r, j for x, y, z, m, n, i and interchanging j and k − j on the

left. k
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