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Analysis of survival data

Jaarlijks organiseert het Centrum voor Wiskunde en Informatica (CWI)

onder auspicien van de Nederlandse Vereniging van Wiskundelera-

ren een vakantiecursus voor wiskundeleraren en andere belangstel-

lenden. Bij deze gelegenheid verschijnt steeds een syllabus met tek-

sten bij de voordrachten. Die syllabi zijn ook afzonderlijk bij het CWI

verkrijgbaar. Het NAW heeft een serie gestart waarin geselecteerde

teksten uit recente syllabi worden geplaatst. Het tweede artikel is

afkomstig uit de syllabus bij de Vakantiecursus 2002, die als the-

ma had: ‘Wiskunde en Gezondheid’. Het onderwerp is het schatten

van de tijdsduur die nodig is voor het plaatsvinden van een gebeur-

tenis. Svetlana Borovkova is wetenschappelijk onderzoeker bij de

sectie Control, Risk, Optimization, Systems and Stochastics van de

faculteit Informatietechnologie en Systemen van de Technische Uni-

versiteit Delft.

In many biomedical applications the primary endpoint of interest

is the time it takes for a certain event to occur (‘time to event’). Ex-

amples are the time it takes for an organism to die, the time it takes

for a patient to respond to a therapy, or the time from response

until disease relapse. We may be interested in characterizing the

distribution of ‘time to event’ for a given population as well as

comparing this ‘time to event’ among different groups (e.g., treat-

ment vs. control), or modelling the relationship of ‘time to event’

to other covariates (prognostic factors or predictors). Typically, in

biomedical applications the data are collected over a finite period

of time and consequently the ‘time to event’ may not be observed

for all the individuals in our study population (sample). This re-

sults in what is called censored data. It is also common that the

amount of follow-up for the individuals in a sample vary from

subject to subject. The combination of censoring and differen-

tial follow-up creates some unusual difficulties in the analysis of

such data that cannot be handled properly by the standard sta-

tistical methods. Because of this, a new research area in statistics

has emerged which is called Survival Analysis or Censored Survival

Analysis.

To study it, we must introduce some notation and concepts for

describing the distribution of ‘time to event’ for a population of

individuals. Let the random variable T denote the time to the

event of our interest. Of course, T is a positive random variable

which has to be unambiguously defined; that is, we must be very

specific about the start and end with the length of the time period

in-between corresponding to T.

Some examples:

− Survival time (in general): measured from birth to death for an

individual.

− Survival time of a treatment for a population with certain dis-

ease: measured from the time of treatment initiation until death.
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− Survival time due to heart disease (the event is death from

heart disease): measured from birth (or other time point such

as treatment initiation for heart disease patients) to death caused

by heart disease. (This may be a bit tricky if individuals die from

other causes. In this case the survival time of interest is cen-

sored.)

The time of interest may be the time to something ‘good’ hap-

pening. For example, we may be interested in how long it takes

to eradicate an infection after treatment with antibiotics, or how

long it takes for a woman to get pregnant from the moment of

‘start trying’.

Describing the distribution of time to an event

In routine data analysis, we may first present some summary

statistics such as mean, standard error for the mean, etc. In ana-

lyzing survival data, however, because of possible censoring, the

summary statistics may not have the desired statistical properties,

such as unbiasedness. For example, the sample mean is no longer

an unbiased estimator of the population mean (of survival time).

So we need to use other methods to present our data. One way is

to estimate the underlying true distribution. When this distribu-

tion is estimated, we can then estimate other quantities of interest

such as mean, median, et cetera.

The distribution of the random variable T can be described in

a number of equivalent ways. There is of course the usual (cumu-

lative) distribution function

F(t) = P[T ≤ t], t ≥ 0,

which is right continuous, i.e., limu−→t+ F(u) = F(t). When T is

a survival time, F(t) is the probability that a randomly selected

subject from the population will die before time t. If T is a contin-

uous random variable, then it has a density function f (t), which

is related to F(t) through following equations

f (t) =
dF(t)

dt
, F(t) =

∫

∞

0
f (u)du.

In biomedical applications, it is often common to use the survival

function

S(t) = P[T ≥ t] = 1 − F(t−),

where F(t−) = limu−→t− F(u). When T is a survival time, S(t) is

the probability that a randomly selected individual will survive

to time t or beyond. (So S(t) has the name of survival function.)

Some authors use the following definition of a survival function

S(t) = P[T > t] = 1 − F(t). This definition will be identical to the

above one if T is a continuous random variable, which is the case

we will focus on in this article.

The survival function S(t) is a non-increasing function over

time taking on the value 1 at t = 0, i.e., S(0) = 1. For a proper

random variable T, S(∞) = 0. However, we will also allow the

possibility that S(∞) > 0. This corresponds to a situation where

there is a positive probability of not ‘dying’. For example, if the

event of interest is the time from response until disease relapse

and the disease has a cure for some proportion of individuals in

the population, then we have S(∞) > 0.

Figure 1 The survival function for a hypothetical population.

If T is a continuous random variable, we have

S(t) =
∫

∞

t
f (u)du, f (t) = −

dS(t)

dt
.

For example, in the hypothetical population shown in Figure 1,

we have a population where 70% will survive approximately five

years and the median survival time is approximately six years

(i.e., 50% of the population will survive at least 6 years).

We say that the survival distribution for group 1 is stochastical-

ly larger than the survival distribution for group 2 if S1(t) ≥ S2(t)

for all t ≥ 0, where Si(t) is the survival function for group i. If

Ti is the corresponding survival time for group i, we also say that

T1 is stochastically larger than T2. Note that T1 being stochastical-

ly larger than T2 does NOT necessarily imply that T1 ≥ T2. But

at any time point a greater proportion of group 1 will survive as

compared to group 2.

Hazard rate

The hazard rate is a useful way of describing the distribution of

‘time to event’ because it has a natural interpretation that relates

to the aging of a population. We motivate the definition of hazard

rate by first defining the mortality rate, which is a discrete version

of the hazard rate.

The mortality rate at time t, where t is generally taken to be an

integer in terms of some unit of time (e.g., years, months, days, et

cetera), is the proportion of the population who fail (die) between

times t and t + 1 among individuals alive at time t, i.e.,

m(t) = P[t ≤ T < t + 1|T ≥ t].

The hazard rate λ(t) is the limit of the mortality rate if the interval

of time is taken to be small (rather than one unit). The hazard rate

is the instantaneous rate of failure at time t given that an individ-

ual is alive at time t. Specifically, λ(t) is defined by the following

equation

λ(t) = lim
h−→0

P[t ≤ T < t + h|T ≥ t]

h
.
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Figure 2 Three hazard patterns.

This can be expressed as

λ(t) =
limh−→0

P[t≤T<t+h]
h

P[T ≥ t]
=

f (t)

S(t)
= −

S′(t)

S(t)
= −

d log(S(t))

dt
.

From this, we can integrate both sides to get

(t) =
∫ t

0
λ(u)du = − log(S(t)),

where (t) is referred to as the cumulative hazard function. Here we

used the fact that S(0) = 1. Hence,

S(t) = exp(−(t)) = exp(−
∫ t

o
λ(u)du).

We like to remark that there is a one-to-one relationship between

the hazard rate λ(t), t ≥ 0 and the survival function S(t), given

by the formulas above. Notice that the hazard rate is not a proba-

bility, it is a probability rate. Therefore it is possible that a hazard

rate can exceed one in the same fashion as a density function f (t)

may exceed one.

If we have a constant hazard, i.e., λ(t) = λ for all t ≥ 0, then

S(t) = e−λt. This distribution is the exponential distribution with

hazard equal to λ.

Another class of distributions widely used in survival analysis

is the Weibull model, where the survival function is given by

S(t) = exp(−λta), a, λ > 0.

The Weibull model has hazard function

λ(t) = aλta−1 .

This model allows for constant hazard (a = 1), increasing hazard

(a > 1) and decreasing hazard (a < 1). The corresponding hazard

patterns are shown in Figure 2.

Censoring

As we already said above, censored data are those observations

whose times to event we do not get to observe completely. In

biomedical applications, especially in clinical trials, two impor-

tant issues arise when studying ‘time to event’ data (we will as-

sume the event to be death, but it can be any event of interest):

− Some individuals are still alive at the end of the study or anal-

ysis so the event of interest, namely death, has not occurred.

In this case we only know that ‘time to event’ is greater than a

certain value, namely the time from entry to the end of study.

Therefore we have right censored data.

− Length of follow-up varies due to staggered entry. So we can-

not observe the event for those individuals with insufficient

follow-up time.

In addition to censoring because of insufficient follow-up (i.e.,

end of study censoring due to staggered entry), other reasons for

censoring include:

− loss to follow-up: patients stop coming to clinic or move away.

− deaths from other causes: competing risks.

Censoring from these types of causes may be inherently different

from censoring due to staggered entry.

There is an important assumption in Survival Analysis that in-

dividuals who are censored are at the same risk of subsequent

failure as those who are still alive and uncensored. The risk set at

any time point (the individuals still alive and uncensored) should

be representative of the entire population alive at the same time.

Statistically, this assumption is equivalent to the one that the cen-

soring process is independent of the survival time. If censoring

only occurs because of staggered entry, then the assumption of

independent censoring seems plausible. However, when censor-

ing results from loss to follow-up or death from a competing risk,

then this assumption is more suspect. If at all possible, censoring

from these later situations should be kept to a minimum.

Other types of censoring are:

− Left censoring, where for some individuals the time of entry

into the ‘control group’ it is not known. For example, if the

‘time to event’ is the time from contraction of HIV until death

of AIDS, then we have a typical left-censoring situation, since

the time of contracting HIV is unknown in many cases.

− Interval censoring, where neither the time of entry nor the

event time are known for some individuals in the study.

Statistical Inference for Survival Data

Survival analysis methods are tailored to work well with the spe-

cific characteristics of the data and the specific objectives that arise

in survival studies. Often, survival data are distinguished from

other types of data because they are censored. Censored data pre-

vent the use of standard methods of statistical summarization and

inference. In particular, right censored data are reported as lower

bounds for the actual unobserved event times. Survival times fre-

quently have a distribution in the population that is very different

from a Gaussian (Normal) distribution. Many standard approx-

imate statistical methods are not accurate for such data. It may

happen that we are interested in the whole distribution of survival

times. Many standard statistical methods are instead oriented to-

wards inference for the mean survival time and its standard devi-

ation. The extremes of the distribution of times to event (extreme
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quantiles) are often of interest in survival analysis. For example,

many people hope that they will live to the 95th percentile, rather

than the 50th percentile. The rate of occurrence of events per unit

time (i.e., hazard or mortality rate) is often of interest in survival

analysis.

Estimation of the survival function

If we have a dataset where no censored observations are present,

estimation of the survival function is straightforward and similar

to the estimation of the distribution function. Namely, we can use

the empirical survival function:

Ŝ(t) =
number of individuals still alive at time t

total number of individuals in the study
.

This is a nonparametric estimate of the survival function (i.e., in ob-

taining it we did not assume any parametric form of the distribu-

tion of ‘time to event’ T).

Alternatively, one can assume that the data come from e.g., Ex-

ponential or Weibull distributions. Then estimation of the sur-

vival function boils down to estimating the unknown parameters

of these distributions. (This is the so-called parametric approach).

The parameters can be estimated by e.g., the method of maximum

likelihood.

In practice it is difficult to make reasonable parametric as-

sumptions about the distribution of the survival time. Hence, we

shall not go into details of the parametric approach here and shall

concentrate on the nonparametric approach.

Censoring and differential follow-up create certain difficulties

in the above nonparametric approach as is illustrated by the fol-

lowing example taken from a clinical trial of 148 patients treated

after they had a myocardial infarction (MI). The data have been

grouped into one year intervals and all time is measured in terms

of patient time (table 1).

The question is to estimate the 5 year survival probability, i.e.,

S(5) = P[T ≥ 5].

Year

since en-

try into

study

Number alive and

under observation at

beginning of interval

Number dy-

ing during

interval

Number

censored or

withdrawn

[0, 1) 146 27 3

[1, 2) 116 18 10

[2, 3) 88 21 10

[3, 4) 57 9 3

[4, 5) 45 1 3

[5, 6) 41 2 11

[6, 7) 28 3 5

[7, 8) 20 1 8

[8, 9) 11 2 1

[9, 10) 8 2 6

Table 1 Data from a clinical trial on myocardial infarction (MI)

duration [ti−1 , ti) n(x) d(x) w(x) m̂(x) 1 − m̂(x) ŜR(ti)

[0, 1) 146 27 3 0.185 0.815 0.815

[1, 2) 116 18 10 0.155 0.845 0.689

[2, 3) 88 21 10 0.239 0.761 0.524

[3, 4) 57 9 3 0.158 0.842 0.441

[4, 5) 45 1 3 0.022 0.972 0.432

Table 2 Life-table estimate of S(5) assuming censoring occurred at the end of interval. The

estimated mortality rate m(x) equals
d(x)
n(x)

.

duration [ti−1 , ti) n(x) d(x) w(x) m̂(x) 1 − m̂(x) ŜL(ti)

[0, 1) 146 27 3 0.189 0.811 0.811

[1, 2) 116 18 10 0.170 0.830 0.673

[2, 3) 88 21 10 0.269 0.731 0.492

[3, 4) 57 9 3 0.167 0.833 0.410

[4, 5) 45 1 3 0.024 0.976 0.400

Table 3 Life-table estimate of S(5) assuming censoring occurred at the beginning of inter-

val. The estimated mortality rate m(x) equals
d(x)

n(x)−w(x)
.

Two naive and incorrect answers are

F̂(5) = P[T ≤ 5] =
76 deaths in 5 years

146 individuals
= 52.1%,

Ŝ(5) = 1 − F̂(5) = 47.9%

and

F̂(5) = P[T ≤ 5] =
76 deaths in 5 years

146-29 (withdrawn in 5 years)
= 65%,

Ŝ(5) = 35%.

The first estimate would be correct if all censoring occurred after

5 years. Of course, this was not the case, leading to overly opti-

mistic estimate (i.e., we overestimated S(5)). The second estimate

would be correct if all individuals censored in the 5 years were

censored immediately upon entering the study. This was not the

case either, leading to overly pessimistic estimate (i.e., we under-

estimated S(5)).

Our clinical colleagues have suggested eliminating all individ-

uals who are censored and use the remaining ‘complete’ data.

This would lead to the following estimate:

F̂(5) = P[T ≤ 5] =
76 deaths in 5 years

146 -46 (censored)
= 88.4%, Ŝ(5) = 11.6%.

This is even more pessimistic than the estimate given by (2).

Life-table or actuarial method

More appropriate method is the so-called life-table or actuarial

method.
First note that S(5) can be expressed as S(5) = q1 × q2 × q3 ×

q4 × q5, where qi = 1 − P[i − 1 ≤ T < i|T ≥ i − 1], i = 1, . . . , 5.

So we just need to estimate qi in order to estimate S(5). Note that

1− qi is the mortality rate m(x) at year x = i− 1 by our definition.
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duration [ti−1 , ti) n(x) d(x) w(x) m̂(x) 1 − m̂(x) Ŝ(ti)

[0, 1) 146 27 3 0.187 0.813 0.813

[1, 2) 116 18 10 0.162 0.838 0.681

[2, 3) 88 21 10 0.253 0.747 0.509

[3, 4) 57 9 3 0.162 0.838 0.426

[4, 5) 45 1 3 0.023 0.977 0.417

Table 4 Life-table estimate of S(5) assuming censoring occurred during the interval.

The estimated mortality rate m(x) equals
d(x)

n(x)−(w(x)/2)
.

[ti−1 , ti) n(x) d(x) m̂(x) 1 − m̂(x) Ŝ(ti) S.E.

0 10 0 0 1.0 1.0

[0, 3) 9 1 1/9 8/9 ≈ 0.89 0.89 0.10

[3, 5) 7 2 2/7 5/7 ≈ 0.71 0.63 0.15

[5, 7) 4 2 2/4 2/4 = 0.5 0.32 0.13

Table 5 Kaplan-Meier estimate computations. The estimated mortality rate m(x)

equals
d(x)
n(x)

.

From the estimates m̂(x) of the mortality rates we get the estimate

for the survival function as Ŝ(ti) = ∏x≤ti
(1 − m̂(x)).

Above we denoted the number of subjects still under obser-

vation at time x as n(x). The number of subjects with an event

(death) at this time is d(x) and the number of censored observa-

tions is denoted as w(x).

Case 1: Let us first assume that anyone censored in an interval

of time is censored at the end of that interval. Then the life table

estimate would be computed as shown in table 2. So the 5 year

survival probability estimate is 0.432. (In this case, the estimator

ŜR(5) is unbiased to S(5).)

Case 2: Let us assume that anyone censored in an interval of

time is censored right at the beginning of that interval. Then the

life table estimate would be computed as shown in table 3. Here

the 5 year survival probability estimate is 0.400. (In this case, the

estimator ŜL(5) is also unbiased to S(5).)

The naive estimates range from 35% to 47.9% for the five year

survival probability, while the ‘complete case’ (i.e., eliminating

anyone censored) estimator giving an estimate of 11.6%. The life-

table estimate ranges from 40% to 43.2% depending on whether

we assume censoring occurred at the left (i.e., the beginning) or

right (i.e., the end) of each interval.

More than likely censoring occurs during the interval. A com-

promise is to use the modification in table 4. The 5 year survival

probability estimate is now 0.417, which is between the two esti-

mates above. The quantity n(x) − w(x)/2 is often referred to as

the effective sample size.

The Kaplan-Meier estimator

The Kaplan-Meier or product limit estimator is the limit of the life-

table estimator when intervals are taken so small that only at most

one observation occurs within an interval. Kaplan and Meier

demonstrated in a paper in JASA (1958) that this estimator is the

maximum likelihood estimate.

Let d(x) denote the number of deaths at time x. Generally d(x)

is either zero or one, but we allow the possibility of tied survival

times in which case d(x) may be greater than one. Let n(x) de-

note the number of individuals at risk just prior to time x, i.e., the

number of individuals in the sample who neither died nor were

censored prior to time x. Then the Kaplan-Meier estimate can be

expressed as

KM(t) = ∏
x≤t

(1 −
d(x)

n(x)
).

Note that in the notation above, the product changes only at

times x where d(x) ≥ 1, i.e., only at times where we observed

deaths or, in general, events.

We illustrate the computation of the Kaplan-Meier estimator

here on a simple example. Let us have the dataset of 10 individ-

uals observed during 8 years; 5 of them died during the study

and 5 were censored.

The calculations for the Kaplan-Meier survival function esti-

mate correspond to the following steps.

The first step is to list all of the observed times, both censored

and uncensored, from smallest to largest. If there are censored

times equal to complete times, list the complete times first. Dis-

tinguish the censored and uncensored observations in some way.

The ordered data of our example are listed below.

1+; 3; 4+; 5; 5; 6+; 7; 7; 7+; 8+

Censored observations are denoted with a plus sign.

Next, we form a table similar to those in the actuarial table

method (table 5). Each distinct uncensored time in the ordered

list forms one row in the table. The first line serves to start the

computations with all subjects under observation at time 0.

No subject was observed to die before 3 years. Although one

subject was censored at year 1, we estimate that the probability

of survival equals 1.0 up until 3 years. If T is the time to death

for a random subject, we estimate that Ŝ(t) = P̂[T > t] = 1 for

0 < t < 3. Note that there is no reason to believe that the subject

lost to follow-up at 1 year died before 3 years.

Of the nine subjects still being observed at 3 years, one died at

that time. Thus,

P̂[T = 3|T ≥ 3] = 1/9.

The natural estimate for being alive past year 3 is P̂[T > 3] = 8/9.

The estimated death probability at each time is based on those

subjects who are still being followed in the study at that time.

Note that we are not assuming that the person lost to follow-up

at year 1 did not die, which would have led to an estimate of

9/10 for the fraction alive after 3 years. Instead, we also give

that person a 1/9 chance of dying at year 3. Conceptually, of the

original 10 subjects, the expected number of people that die at

year 3 is thus hypothesized to be 1 + 1/9 (one observed and 1/9

hypothesized for the censored subject). The resulting hypotheti-

cal estimate for the probability of dying at year 3 would thus be

(1 + 1/9)/10 = 1/9. This method assigns the same death prob-

abilities to subjects who were previously censored as we observe

among those who remain in the study.

No more deaths were observed between years 3 and 5, so the
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natural estimate for P[T > t] is 8/9 for 3 < t < 5.

Of the 7 subjects still alive and under observation just before

year 5, two died at year 5. Among those still alive just before

year 5, the natural estimate for dying at year 5 is 2/7. That is,

P̂[T = 5|T ≥ 5] = 2/7. Among those still alive at the beginning

of year 5, the natural estimate for survival during that year is 5/7.

That is, P̂[T > 5|T ≥ 5] = 5/7. The cumulative probability of

surviving through year 5 is equal to the probability of surviving

until the beginning of year 5 multiplied by the probability of sur-

viving through year 5 for subjects who survive until year 5. The

product is 8/9 × 5/7 = 40/63. That is,

P̂[T > 5] = P̂[T ≥ 5]× P̂[T > 5|T ≥ 5].

Note that this multiplication of probabilities is the essential fea-

ture of the actuarial and Kaplan-Meier approaches. The condi-

tional probability is estimated on the basis of subjects who are

still being followed and who have not yet died.

The standard error (S.E.) of the Kaplan-Meier estimator for sur-

vival curve can be approximated using the Peto equation S.E. =

Ŝ(t)
√

(1 − Ŝ(t))/n. We like to point out that the so-called Green-

wood’s formula yields a more accurate estimate of the standard er-

ror than does the formula presented above.

Note that if the subject with the longest follow-up has an event

(i.e., has died and has not been censored), then the Kaplan-Meier

survival curve drops to 0 at the time of that event. If the subject

with the longest follow-up is censored, then the Kaplan-Meier es-

timate is undefined after that time.

Advanced statistical packages, such as Splus or SPSS, have

procedures for computing the Kaplan-Meier estimator of the sur-

vival curve, together with the confidence intervals. Other quan-

tities, such as the hazard and cumulative hazard functions, are

usually estimated via formulas that relate them to the survival

function, given above. Other relevant information, such as mean

survival time, can also easily be extracted from the estimated sur-

vival curve (see figure 3).

Further issues

Here we presented a clever and powerful nonparametric method

for estimating the survival function from a dataset possibly con-

taining censored observations: the Kaplan-Meier estimator. Of

course, the subject of survival analysis is a lot more broad and

complex and addresses a variety of other issues. For example,

given two groups of individuals (e.g., males and females, smok-

ers and non-smokers or people treated with different drugs), one

Figure 3 The estimated survival curve is a step function, i.e., it is plotted as a series
of horizontal lines based on the computed values of the Kaplan-Meier estimator.

can test whether one group has better chances of survival than the

other group. A number of tests, such as the log-rank test (based

on, e.g., the Kaplan-Meier estimator), were developed to give a

statistically significant answer to this question.

Another very important issue is modelling the dependence of

the hazard rate or survival function on external factors, such as

blood pressure, dosage of a certain drug or sex or age of an indi-

vidual. A celebrated method, called Cox’ proportional hazard model,

addresses this issue. This very general method was introduced in

1972 by Sir David Cox, a professor of statistics in Oxford, and

since then has enjoyed wide recognition and was applied in thou-

sands of studies and clinical trials. In fact, the original paper Cox

published in the Journal of the Royal Statistical Society[2], where

he introduced and studied this method, remains until today the

most cited mathematical paper in the world.

For those who are interested in knowing more about survival

analysis, there are plenty of books and monographs available. A

good introduction into survival analysis is the book by Miller[4].

A good treatment of statistical methods of survival analysis can be

found in the book by Kalbfleisch and Prentice[3]. Mathematically

more advanced is the book by Andersen et al[1]. The study of

this book requires sound knowledge of counting processes and of

martingale theory. k
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