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Boekbespreking The collected works of P.A.M. Dirac, 1924–1948

On the verge of
new mathematics

Het is honderd jaar geleden dat Paul Dirac werd geboren. Hij was een

van de meest begaafde theoretische fysici die de twintigste eeuw ge-

kend heeft. Dirac gaf een geheel relativistische beschrijving van het

electron en voorspelde het bestaan van een positron. In 1933 won-

nen Schrödinger en hij de Nobelprijs voor de fysica. Ook heeft hij

wezenlijke bijdragen geleverd aan diverse gebieden binnen de wis-

kunde zoals de distributietheorie, spectraaltheorie en de theorie van

partiële differentiaalvergelijkingen. Het eerste deel van zijn verzamel-

de werken is in 1995 verschenen en wordt besproken door Leo van

Hemmen, hoogleraar in de theoretische (bio)fysica aan de Technische

Universiteit München.

Paul Adrien Maurice Dirac was one of the most prominent theoretical

physicists of the 20th century and had at the same time a deep and

lasting influence on mathematics. He was born in Bristol on August 8,

1902. In 1918 he entered the University of Bristol and became a student

of electrical engineering. A year later his father and the children gave

up their Swiss nationality and became British citizens by naturalization.

He graduated as an electrical engineer at Bristol in 1921 and two years

later in mathematics, both times with 1st class honors. In October 1923

he became a postgraduate student at St. John’s College, Cambridge,

and began research in theoretical physics under the supervision of the

widely respected R.H. Fowler at the Cavendish Laboratory.

Commutation relations

In May 1926 Dirac submitted a dissertation entitled Quantum Me-

chanics after Fowler in August 1925 had shown him galley proofs of

Heisenberg’s breakthrough in quantum mechanics [1]; see van der

Waerden [2] for a translation of Heisenberg’s paper and an excellent

short account of the historical developments. December 1st of the

same year Dirac published his first paper on the subject. Here he intro-

duced the notion of ‘commutator’ [q,p] = qp − pq for two operators

q and p defined, as we would now say, on a suitable domain. The

commutator has been a mainstay of quantum mechanics ever since.

Furthermore, he coined the problem of how to represent commutation

relations [3] such as [qi, pj ] = i~δij where the qi and pj are finitely

many self-adjoint operators with the p’s and q’s commuting among

each other, δij is the Kronecker delta, and ~ > 0 is Planck’s constanth

divided by 2π . There is a simple solution in the one-dimensional case

where q := x is a coordinate, p := (~/i)d/dx the momentum (oper-

ator) belonging to it, and, evidently, [q,p] = i~. In more than one

dimension, its analogue directly gives an explicit representation of the

commutation relations [qi, pj ] = i~δij . One may then ask: what is it

good for and is it the only one?

It is good for quantum mechanics, but what is quantum mechanics?

Let us quote Dirac himself [4]: “We now make the further assumption

that linear operators correspond to the dynamical variables at a cer-
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tain time. By dynamical variables are meant quantities such as the

coordinates and the components of velocity, momentum and angular

momentum of particles, and functions of these quantities — in fact the

variables in terms of which classical mechanics is built up. The new

assumption requires that these quantities shall occur also in quantum

mechanics, but with the striking difference that they are now subject to

an algebra in which the commutative axiom of multiplication does not

hold.” Instead the algebra is determined by prescribing commutators,

for example, as indicated above. The next step consists of introducing

a dynamics based on the classical Hamiltonian; an example will be giv-

en below. Once the dynamical variables and their dynamics have been

specified, the dynamical system as such is fully determined. Until now

quantum mechanics has successfully explained all phenomena at the

atomic level.

Dirac simply posed the representation problem and indicated a so-

lution. He never bothered about uniqueness and other intrinsically

mathematical questions. It was von Neumann who showed as early as

1931 that finitely many Ui(s) = exp(isqi), Vj (t) = exp(itpj ), satisfy-

ing Ui(s)Vj (t) = exp(i~stδij )Vj (t)Ui(s), are essentially unique in that

they are the ones given above or a direct sum thereof. (Years later Rel-

lich and Dixmier brought p and q back to the ‘floor’ where they came

from [3].)

The idea behind the problem of finding a commutator representa-

tion is that quantum-mechanical commutators ought to be derivable

from their classical counterparts, the Poisson brackets, by multiplying

the latter by i~; this rule proposed by Dirac is physically deep — and

very elegant. Finally, in the very same 1926 paper referred to above,

he indicated how time-dependent perturbation theory for a self-adjoint

operator and Fermi-Dirac statistics are to be treated.

The Dirac equation

In 1928 he introduced the ‘Dirac equation’, the first relativistic formula-

tion of the quantum mechanics of the electron. The paper introducing it

makes for fascinating reading and utmost elegance [5]. Dirac eliminat-

ed his equation’s drawback of having negative energies without lower

bound by a solution that led to the ‘anti-electron’, i.e., the positron,

which should have the same mass as the electron but opposite charge;

it was discovered by Anderson in 1933. The year before he was elect-

ed Fellow of the Royal Society — a bit late, if one realizes that our

present formulation of quantum mechanics and Dirac’s unification of

two different approaches, namely, the matrix mechanics due to Born,

Heisenberg and Jordan and the Schrödinger equation with its wave

function, was completely finished by then. Dirac and Schrödinger were

jointly awarded the Nobel Prize for physics in 1933. A year earlier, in

1932, Dirac had been elected Lucasian Professor of Mathematics at the

University of Cambridge. One of his predecessors in the chair was New-

ton. He held the position until his retirement in 1969, when he moved

to Tallahassee, Florida. Here he died on October 20, 1984. He was also

buried there. He was survived by his wife Margit Wigner, whom he had

married in 1937; she was a sister of Eugene P. Wigner, a master of group

theory [6] and another physics Nobel Prize winner. There is the rumor

that, when a friend was visiting them shortly after their marriage, Dirac

introduced his wife by saying “This is Wigner’s sister.”

Distribution theory

The influence of Dirac on the development of both physics and math-

ematics is immense. In addition to his research papers, his book The

principles of quantum mechanics [4] had an impact that is hard to over-

estimate; its second edition published in 1935 was the most influential.

I now list a few of his main ideas. The Dirac delta function δ, which is

not a function but a distribution, was the key theme in the prelude to

the theory of distributions developed by Laurent Schwartz in the late

forties [8]. Dirac defined his delta function δ(x − a) to have support

{a} and, for any continuous function f , satisfy the equality
∫∞

−∞
dx f (x)δ(x − a) = f (a) . (1)

Furthermore, he noticed (see [4]) that it ‘appears whenever one differ-

entiates a discontinuous function.’ One might argue that Heaviside

also played a role but, in fact, it is a negligible one since he did his,

no doubt innovative, work half a century earlier (1893–94) without

anybody really worrying about its mathematical meaning [7]. Dirac’s

masterful usage of the delta function changed the scene completely

and established the need for a rigorous justification.

Spectral theory

The delta function also played a dominant role in Dirac’s spectral the-

ory of ‘generalized’ eigenfunctions. Let us consider, for instance, the

coordinate q := x and the momentum p := (~/i) d/dx on the real

line, two self-adjoint operators obeying [q,p] = i~ on a suitable dense

domain [3, 10] in L2(R). It is plain that q has been given its spectral

representation where it is ‘diagonal’. Its counterpartp, however, is not

but its Fourier transform is. To wit, Dirac observed that plane waves

exp(ikx) are its eigenfunctions, p exp(ikx) = ~k exp(ikx). Mathe-

matically, they are not since the Hilbert space L2(R) is too small to

contain them. They are generalized eigenfunctions, a notion that can

be made precise in terms of a Gelfand triple [9] consisting of a smaller

space V in the self-dual Hilbert space H contained in a larger dual

space V⋆ : V ⊂H = H
⋆
⊂ V⋆. It is the space V⋆ that contains gener-

alized eigenfunctions such as exp(ikx). The argument that now comes

is a specimen of Dirac’s mathematical elegance. The original idea was

published as a two-page argument just before the second world war.

A complex Hilbert space H is a linear vector space that is complete

with respect to the norm induced by the inner product 〈·|·〉. It is taken

to be linear in the right-hand side. We will soon see that there is a

good reason for doing so. Dirac called 〈 a ‘bra’ and 〉 a ‘ket’ since

the inner product 〈·|·〉 looks like a bracket. A good notation leads

half the distance to a good result. Let then H be finite-dimensional

and let Λ be a self-adjoint operator in H. Its eigenvalues are called λ,

the corresponding eigenvectors |λ〉 satisfy Λ|λ〉 = λ|λ〉, and they are

normalized so that 〈λ|λ′〉 = δλλ′ . The key question Dirac wanted to

answer was: what does the spectral representation of Λ look like?

Using his bracket notation we readily see

Λ =
∑
λ
|λ〉λ 〈λ| (2)

where the sum is over all eigenvalues λ. The corresponding decompo-

sition of unity, which is running under the name ‘completeness of the

eigenfunctions’, is 1 =
∑
λ
|λ〉〈λ| . (3)

The proof of the pudding consists in noting (|λ〉〈λ|)|x〉 = 〈λ|x〉|λ〉. To

verify (2) it suffices to let it operate on each of the eigenvectors; the

result is evidently true. Moreover, we have obtained a suggestive way

of writing projection operators. For what follows we observe that 1 is a

matrix with elements 1ij = δij .

We now return to L2(R) and ask the same question as in (2) for the

operator p = (~/i) d/dx. Let

(Ff )(k) =

∫
exp(ikx)f (x) dx/

√
2π
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be the Fourier transform with inverse F so that FF is the identity

operator. Dirac wrote

f (y) = (FFf )(y) =

∫
dxf (x)

{∫
dk

2π
exp[ik(x −y)]

}
(4)

and concluded
∫

dk

2π
exp ik(x −y) = δ(x −y) (5)

so as to obtain the analogue of (3) — a relation that is evident in the

context of distribution theory [8]. What do we gain? A lot, if, following

Dirac, we consider a delta function as the ‘unit’ for multiplying functions

in (a dense subset of) L1(R)∩L2(R), which with the benefit of hindsight

is taken to be a convolution algebra, interpret (5) as the analogue of (3),

use Dirac’s notation,

1 =

∫
dk

2π
| exp(ikx)〉〈exp(iky)| , (6)

write |k〉 := | exp(ikx)〉, and note

p = p1 =

∫
dk

2π
|k〉~k 〈k| (7)

since p exp(ikx) = ~k exp(ikx). That is to say, exp(ikx) is now a gen-

eralized eigenfunction and (7) corresponds to (2). Mathematically [3],

one could say that the Fourier transform is a diagonalizing transforma-

tion in that FpF = ~k but Eq. (7) is far more suggestive. It was Dirac’s

genius that wrote down a suggestive notation and derived spectral rep-

resentations that were given their mathematical justification [9] years

later. Since Dirac was right, why complain?

Feynman-Kac formula

Also for what is now called the Feynman-Kac formula, Dirac laid the

foundations. We sketch the idea and refer to the literature [10–12] for

technical details. Let us consider a particle with massm = 1 in a regular

external potential V defined on R3. The particle’s Hamilton function

(‘energy’) is (p2
x+p2

y +p2
z )/2+V . Its quantum-mechanical equivalent is

the Hamilton operatorH = −~
2△/2+V with the negative Laplacian−△

stemming from the substitution px 7→ (~/i)∂x , etc. The time evolution

of the particle’s wave function, belonging to H = L2(R3), is given by

the unitary operator exp(−itH/~). The Trotter product formula [13]

then tells us

exp(−itH/~) = lim
n→∞

[
ei(~t/2n)△ e−(it/n~)V

]n
. (8)

For the three-dimensional Laplacian there exists an explicit represen-

tation of the time evolution as an integral operator,
[
ei(~t/2n)△f

]
(x) =

(
n

2πi~t

)3/2 ∫
dy exp

(
in‖x −y‖2

2~t

)
f (y) . (9)
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Paul Dirac in the thirties, explaining ‘exchange interaction’ in the quantum mechanics of the hydrogen molecule H2 as a consequence of its two electrons being identical particles obeying Fermi-
Dirac statistics; cf. §58 of the 4th edition of his classic [4] on quantum mechanics. The equation on the blackboard is to be Eq. (32) of the book, viz., V = V0−(1/2)

∑
r<s Vrs{1+(σr , σs )}

with σ representing either particle’s spin, a vector, and (σr , σs ) standing for their inner product. As it behooves a good theoretician, the prefactor 1/2 is missing on the blackboard.
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Combining (8) and (9) we find

[exp(−itH/~)f ](x0) = lim
n→∞

{(
n

2πi~t

)3n/2 ∫
. . .

∫
dx1 . . .dxn

}

exp[iSn(x0, x1, . . . , xn; t)/~]f (xn)

(10)

where the xk are taken at times tk = kt/n and

Sn(x0, x1, . . . , xn; t) :=

n∑

i=1

t

n

[
1

2

(
‖xi − xi−1‖

t/n

)2

− V (xi)

]
. (11)

In view of the choice of the xk and the limit n → ∞, it is tempting to

interpret [‖xi − xi−1‖/(t/n)]2 as the velocity v(ti)
2 squared, so that

we are left with the classical kinetic energy T = v2/2 and, hence, with

the Lagrangian L = T − V in the sum appearing in (11). As n → ∞ we

put xn := y and allow the sum to formally converge to the so-called

action
S(x,y ; t) =

∫ t

0
ds L(x,y ; s) (12)

for a path {x(s); 0 ≤ s ≤ t} starting in x0 := x and ending in y.

Returning to (10) it is now even more tempting to interpret the ex-

pression between the curly brackets as a measure, to be called ‘dω’

for the moment, write

[exp(−itH/~)f ](x) =

∫
dy K(x,y ; t)f (y) (13)

with the kernel K being given by

K(x,y ; t) =

∫
‘dω’ exp[

i

~

∫ t

0
ds L(x,y,ω; s)] (14)

for paths ω starting at x at time t = 0 and ending at y at time t.

This, in fact, is what Dirac wrote down as early as 1933 in a paper

on The Lagrangian in quantum mechanics [14], long before Feynman

published the results of his 1942 Ph.D. thesis in 1948 [15].

Feynman, who was aware of Dirac’s work, took the representa-

tion (14) serious and observed that in the classical limit, when quantum

mechanics has to reduce to classical mechanics by taking ~ → 0, the

principle of stationary phase leads to paths that are extrema of the ac-

tion appearing in (14) and, hence, satisfy the Euler-Lagrange equations

for this variational problem — as should be the case. In fact, though

Feynman has been credited for this, Dirac [14] already said so . . .

The consequences of the above circle of ideas have been very rich.

Mark Kac wrote a fundamental paper [16] in 1951 showing that, if the

Schrödinger equation is replaced by the diffusion equation, which sim-

ply means that it in (10) is replaced by t, then the heuristic ‘mea-

sure’ dω as postulated in (14) can be interpreted as a proper one, the

Wiener measure. To be precise, the Wiener paths are continuous but

nowhere differentiable so that the classical, time-integrated, kinetic

energy
∫ t
0 ds T (x0, xn; s) makes no sense as such. Only the combi-

nation with the sum over paths leads to a Wiener measure µx over

paths starting at x at time t = 0. What is then left from (13) is the

Feynman-Kac formula

[exp(−tH/~)f ](x) =

∫
dµx (ω) exp[−

1

~

∫ t

0
ds V (ω(s))]f (ω(t)) . (15)

Its impact on mathematical physics as well as probability theory has

been huge [11–12] and it is good to realize where it stems from: a

short paper of Dirac in the Physikalische Zeitschrift der Sovjetunion —

a consequence of his close relationship with Russian physicists, first

and foremost Peter Kapitza, who was Royal Society Professor at Cam-

bridge’s Trinity College but was not allowed by Stalin to return to Eng-

land from a visit to Moscow in 1935. Also (14) is still as ‘Feynman path

integral’ a focus of intense mathematical research [17] so as to make

it mathematically well-defined. Once this goal would be achieved, the

classical limit ~ → 0 of quantum time evolution, such as in (14), would

be an interesting corollary.

Conclusion and outlook

Dirac’s ideas have been a steady source of inspiration. Not only have

they led to new physics but also to novel mathematical research. A nice

example is the question of whether an electron is to be considered as

a point source or as a charge distribution of finite extent. His paper

Classical theory of radiating electrons [18] was long considered to have

“spectacular deficiencies” (editor Dalitz’ original statement) because

of run-away solutions and the supposedly ad hoc asymptotic condition.

Recent research [19] has shown that it can all be understood and makes

good sense in the context of singular perturbation theory.

As for the collected works, more than half of them stemming from

the ‘golden years’ 1925–1939, the printing is as it behooves Cambridge

University Press. The price, however, is not. The editor has interpreted

his task in a minimal way and provided hardly more than the six pages

chronology of Dirac’s life. There is no comment, no evaluation, nothing

— except for the tables of contents of the different editions of Dirac’s

extraordinary book on quantum mechanics [4], the English versions

of the prefaces to the Russian editions, a printed version of Dirac’s

hand-written original of what became Chapter XI-a of the first (1932)
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Russian edition, and a copy of Fowler’s 1925 note to Dirac written on

Heisenberg’s galley proof [1]: “What do you think of this? I shall be glad

to hear.” In view of the results his invitation triggered, Fowler should

have been more than glad. In passing I note that about 15 percent

of Dirac’s early papers have been published in the Proceedings of the

Royal Society (London) through Fowler: the time between submission

and publication was hardly ever more than a month. Who said that

present-day letter journals were fast?

To compensate the defect of missing background information [20],

Dirac’s wonderful style often leads to unsurpassed clarity. Though

he considered himself a theoretical physicist, his style is reminiscent

of a mathematician’s. Despite their clarity, both his mathematics and

his physics would, in my opinion, have profited greatly from expert

explanation and interpretation putting them into a perspective that in-

corporates present-day insight; Spohn’s work [19] is just an indicative

example.

In summary, I have touched upon a few of the main contribu-

tions of Dirac to mathematics: distributions, spectral theory, and the

Feynman-Kac formula. In so doing, I have left aside, among other

things, his impact on our present understanding of quantum mechan-

ics, the vast mathematical domain devoted to ‘Dirac operators’ [21],

that may [22–24] but need not be restricted to a manifold, and his nov-

el idea of a ‘magnetic monopole’, which is closely related to the Chern

class c1 [25]. It is fair to expect that Dirac’s collected works (1924–

1948) will remain a source of inspiration for both mathematicians and

physicists, be they active researchers or historians of science.
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