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Overzichtsartikel

Bubble geometry

Droge schuim in rust evolueert naar een toestand waar de totale

oppervlakte van de schuimbellen is geminimaliseerd. Dit proces ver-

oorzaakt groei bij enkele luchtbellen en inkrimping bij andere. Vijftig

jaar geleden toonde John von Neumann aan dat in tweedimensionaal

schuim de groeiratio enkel afhangt van het aantal zijden van de po-

lygonale schuimbel. Sascha Hilgenfeldt laat zien dat een goede indi-

cator van de groeiratio in drie dimensies het aantal zijvlakken van de

polyhedrale schuimbel is. De analytische theorie en de numerieke

simulaties komen bovendien goed overeen.

Foams are of interest to a large and very diverse community of

scientists, for a variety of different reasons. Engineers use foams

in many applications of great economical impact, from firefight-

ing to mineral processing and from oil recovery to the food sci-

ences (Note that many of the processed foods we eat are foams,

such as bread, cake, ice cream, chocolate bars, beer and soda

foams, etc.). Overviews can be found in books such as Bikerman’s

[1] and Prud’homme’s [2]. In relation to recent gruesome events,

it is worth noting that special detergent foams are the means

of choice for the decontamination of areas exposed to biological

weapons. Foams are also a prime example of soft condensed mat-

ter with viscoelastic properties and complex flow behavior (rhe-

ology) similar to emulsions [3–4]. The flow through liquid foams

has been the subject of extensive studies by physicists (see [2, 5–7]

Figure 1 a (left): A view of a dry aqeuous foam, from [12]; the bubbles are polyhedral.
b (right): Geometry of a single foam polyhedron with typical edge length L. Almost all liq-
uid is concentrated in the channels. This particular bubble is a simulation of a wet Kelvin
cell (cf. figure 10 for the ideally dry version).

for more information). As stable foams demand a good surface-

active agent (surfactant), surface chemistry is another field that

widely uses foams and single surfactant films [8–9]. And finally,

mathematicians have been fascinated by the shape and structure

of soap films and bubbles for centuries, largely because their ten-

dency to minimize surface area makes them experimental models

for minimal surfaces and tilings of space [10–11].

Modern foam research starts with the Belgian mathematician

and scientist Joseph Antoine Ferdinand Plateau, who in the 1870s

formulated the basic rules of foam geometry that bear his name

today and will be discussed later in this article. Incredibly, Plateau

did most of this groundbreaking research when he was almost

completely blind, with his assistants carrying out the experimen-

tal procedures.

The geometrical properties of foam structures in turn have di-

rect bearing on other cellular matter. Instead of delineating the

structure of a dry foam, figure 1a could as well be a faithful repre-

sentation of grains in a polycrystalline metal or cells in the epider-

mis of a plant. Nor is this relation only superficial: the problem

of filling space with minimal expenditure of energy (i.e., surface

area) is common to all of these structures, so that their geometri-

cal similarity has functional reasons. How to describe the cellular

structure and its potentially universal characteristics is, however,

not at all clear today. The recent work described here has eluci-

dated some aspects of the evolution of this structure, and may be

instrumental to its eventual detailed description.

By way of introduction, let us take a closer look at the geometry

of one bubble forming part of a liquid foam. Figure 1 shows that,

for low liquid content, the bubbles are not at all spherical, but they

are polyhedra with slightly curved edges and faces. Physically,

the faces are two parallel surfactant layers between which a thin

film of liquid is enclosed. That amount of liquid is, however, neg-

ligible compared to the liquid residing in the channel-like struc-

tures that delineate the edges of the polyhedron (figure 1). The

resistance to liquid flow is therefore lowest in these channels (also

known as Plateau borders), and this is where foam drainage occurs.

While drainage is an intensely discussed topic in its own right at

the moment [7, 13–16], we will disregard it here, assuming that

the foam is so dry that the channels degenerate into line edges,
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and we can treat the bubble as an ideal polyhedron with no liq-

uid present, but the complete edge and face structure intact (cf.

figure 7 below). In other words: both the films and the edges

are now assumed of vanishing thickness, making them two- and

one-dimensional structures, respectively. The typical length L of

an edge serves as a measure of linear bubble size.

Any polyhedron (whose closed surface is topologically equiv-

alent to that of a sphere) in 3-D space has to obey Euler’s theorem,

U − E + F = 2 ,

where U, E, and F are, respectively, the number of vertices, edges,

and faces of the polyhedron. For dry foam bubbles, the polyhe-

dral geometry is further restricted: Plateau’s rules are valid, which

require faces to meet in threes under tangential angles of 2π/3,

and edges to meet in fours under tetrahedral angles (figure 2).

Empirically formulated in 1873 by Plateau, it took more than 100

years to prove [17] that these are the only stable conformations of

polyhedra in a foam of uniform surface tension. The coordination

numbers of Plateau’s laws enforce 2E = 3U, and therefore

E = 3F − 6 (1)

follows for any foam polyhedron. In other words, for polyhe-

dra in a foam either of the three quantities U, E, F determines the

other two. We will make use of this later.

Coarsening

Foam drainage is not the only process of dynamical evolution in

a liquid foam. Because the films are thin, gas can readily diffuse

through them from one bubble to another. This leads to increased

volume of some bubbles that grow at the expense of others. Even-

tually, some of the bubbles shrink to zero volume (disappear),

and — if we assume that the total foam volume is conserved —

the average bubble size (or edge length L) increases over time.

This process is called coarsening and is a direct consequence of the

metastability of a foam: as the creation of a surface area element

dA costs surface energy dEs = γdA (with the surface tension γ),

a foam with its many interfaces is in an energetically undesirable

state. Ideally, all the bubbles would merge into a single gas vol-

ume, which is the actual stable state.

Well-separated grains

The same process is at work wherever phase separation has gen-

erated grains, droplets, or bubbles of a dispersed phase in a con-

Figure 2 (a) An edge of a foam polyhedron is always a junction of three faces. Even though
the faces can be curved in various ways, stability of the configuration demands that the tan-
gential angle at the edge must be 2π/3 (Plateau’s rule). The figure also illustrates the di-
rection of coarsening, which depends on the face curvature: gas is lost through convex faces
and gained through concave faces (arrows). (b) Mean curvature is concentrated at an edge
with tangential angle τi. As the radius r goes to zero, the mean curvature integral over the
cylindrical section (dashed) reduces to (π − τi)Li/2.

Figure 3 (a) Sketch of Ostwald ripening in 2-D: small grains with higher curvature shrink
and dissolve, feeding the growth of larger grains (solid outlines indicate a later time than
dashed outlines). (b) A two-dimensional dry foam or other cellular material where the dis-
persed phase has almost completely invaded the continuous phase. The grains are now
polygonal instead of round.

tinuous medium in which the solubility of the dispersed phase

is nonzero, so that diffusive exchange of molecules between the

‘islands’ is possible. For isolated grains of roughly spherical size

(figure 3), this process has been known for a long time as Ostwald

ripening, and it is theoretically well understood (see e.g. [18]). If

the limiting time step is diffusion (and not the kinetics of the ac-

tual adsorption to a grain), the field of dispersed-phase concen-

tration around a grain decreases as 1/(distance)2 [19], and the

average radius of grains grows as 〈Rg〉 ∝ t1/3. The situation is

different for kinetically limited exchange of material: the concen-

tration field can then be assumed constant with distance, and the

growth accelerates to 〈Rg〉 ∝ t1/2 [18–19]. It should be stressed

that the prefactors of these growth laws are also known. Likewise,

analytical results were derived for denser systems of still-isolated,

spherical grains [20].

The question here arises if such a coarsening material has a

universal distribution of grain sizes: if one rescaled figure 3 by

the average grain size 〈Rg〉(t), would it look — statistically — the

same for all times t? Lifshitz and Slyozov [21] and Wagner [22]

first showed that the size distribution in this system indeed tends

towards statistical self-similarity. The formalism, now known as

LSW theory, is very valuable in particular for metallurgy, where

grains in polycrystalline metal melts grow due to Ostwald ripen-

ing.

Cellular structures

Given a sufficient total amount of dispersed-phase material com-

ing out of solution from the continuous phase, the grains will

grow until they touch each other, and must then lose their spheric-

ity. When almost all the dispersed phase has been expelled, what

remains is a cellular structure (figure 3) that is equivalent to a dry

foam. But for the reasons outlined above, this is not the end point

of evolution, as the total interfacial area can be reduced further

by the growth of some polyhedral grains at the expense of others.

This stage of Ostwald ripening is not well-understood at all, be-

cause the complex geometry of the emerging cellular structure

begins to play a huge role for the rates of the coarsening. The

power law of growth is still easily derived: as the distance be-

tween grains is now negligible compared to the grain size, even

a diffusion-controlled process now yields a linear-scale growth of

L ∝ t1/2. Then, LL̇ must be a constant (where L̇ = dL/dt). Di-

mensional analysis shows it to be a diffusion coefficient. How-

ever, the prefactor also contains information about the structure

of the foam which can not be normalized out as a mere material
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Figure 4 From left to right, Schwarz P surface, cluster of five bubbles, shape of a
droplet on a spinning rod. Images available under [32].

The Surface Evolver

The Surface Evolver is a software developed by Ken Brakke

at University of Minnesota since the early 1990s. It is spe-

cifically designed to find minimal energy configurations of

interfaces under almost arbitrary constraints, and to find the

evolution path towards those optimal states. The Evolver can

handle interfaces of arbitrary topology and almost arbitrary

dimension. Interactive modifications of the computed sur-

face are also possible. The software has been used to study

many problems in mathematics and the physical sciences,

such as minimal surfaces, sphere eversion, or lipid vesicle

shapes. See figures 1, 4, 7, and 10 in this article for a few

examples.

Maybe the best feature of the Surface Evolver is that it is

freely available to everyone, for a variety of computer plat-

forms. Downloads, documentation, and more information

can be found in [32].

parameter. More precisely, we can write

L̇L = D∗
effF(geometry) , (2)

where the effective diffusion coefficient D∗
eff ≡ DfHeγvm/df in-

corporates all the material parameters, i.e., film diffusion coeffi-

cient Df, solubility constant from Henry’s law He, surface ten-

sion γ, molar volume vm and film width df. The dimensionless

function F depends only on the bubble geometry, i.e., the angles

and edge lengths of the polyhedron, along with the curvature of

its faces.

It is possible to be more specific about the function F by re-

visiting the physical force that drives the gas exchange through

the films. The biased diffusion is the consequence of a pressure

difference between the two bubbles separated by a particular face.

By the Young–Laplace law, this pressure difference ∆p is directly

connected to the mean curvature H of the film,

∆p = 4γH = 2γ
(

r−1
1 + r−1

2

)

,

where r1,2 are the principle radii of curvature of the polyhedral

face and H = (r−1
1 + r−1

2 )/2 must be constant over the face (other-

wise its shape would change). The additional factor of 2 comes

from the existence of two parallel faces enclosing the thin film be-

tween neighboring bubbles.

We can now conclude that F ∝ ∫

faces HdA, where the integral is

evaluated over all interfaces of the bubble. Figure 2 illustrates this

dependence of pressure difference, and therefore gas flow, on the

curvature of the interface: if curved outward, gas is lost through

the face, if curved inward, gas is gained through it. Still, with all

the different possible shapes of bubbles this seems an impractical

ansatz to determine the coarsening rates of a foam as a whole, or

deduce self-similar size distributions. Indeed, the grain volume

distribution of a coarsened three-dimensional cellular material is

still unknown. However, great progress was made for the two-

dimensional analog.

Von Neumann’s law (2-D)

A two-dimensional dry foam can be envisaged as a single layer of

bubbles confined between parallel glass plates whose distance is

smaller than the bubble size. Then, as seen from above, the bub-

bles are polygons with curved edges. They are still separated by

(one-dimensional) films and will still exchange gas and undergo

coarsening. In 1952, John von Neumann, while attending a lecture

by C. S. Smith on metal grains and coarsening, noticed that for this

case the mean curvature of the interface was very easy to deter-

mine. For every curved edge i of the polygon, H = 1/Ri, with

a fixed radius of curvature Ri (see figure 5), the rate of growth of

Figure 5 Sketch of a polygonal bubble with curved edges, illustrating the proof of von Neu-
mann’s 2-D law of bubble coarsening. Details are given in the text.

the area of a polygon ȧ is then proportional to
∫

s Hds. The integra-

tion runs over all n edges indexed with i, whose length is given

by αiRi (the angles αi are defined in figure 5). So we obtain

ȧ ∝
∫

s
Hds = ∑

i

1

Ri
αiRi = ∑

i

αi .

The sum over the angles αi is easily obtained, as αi is one-half

of the difference between the tangential angle under which the

edges meet in a vertex (this tangential angle is 2π/3, by Plateau’s

law) and the angle βi under which the edges would meet if they

were straight (see figure 5). From elementary geometry, ∑i βi =

(n − 2)π , and therefore ∑i αi = − π
6 (n − 6).

Thus, von Neumann arrived at the remarkable result that the

growth or shrinkage rate of a 2-D bubble in a dry foam does not

depend on its shape or size, but the only geometrical quantity that

matters is the number of edges n. Absorbing all other (material)

parameters in an effective diffusion coefficent D2, von Neumann’s

law is

ȧ = D2(n − n0) , (3)

which is an exact formula for every individual bubble, and the

edge number of neutral growth is exactly n0 = 6. Bubbles with

fewer edges shrink, those with more edges grow. Note that the
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population of bubbles with n edges may stay constant neverthe-

less: For instance, when a small triangular bubble disappears

(shrinks to a point), its three neighbors all lose one edge, so that

even a bubble that starts out growing may be ‘downgraded’ to a

shrinking bubble, replenishing the small-n population.

A conjecture about 3-D coarsening

Von Neumann published this result as a written discussion to C. S.

Smith’s talk [23]. Smith was very excited about the result and

hoped for a generalization to the case of three-dimensional, poly-

hedral foams [23], where the edge number n would be replaced

by the number of faces F. Unfortunately, this problem is not as

benign. Just by constructing counterexamples, it is easy to veri-

fy that a direct analog of (3) in three dimensions does not exist:

it is possible to have valid foam polyhedra with the same F, but

different integral mean curvatures, and therefore different growth

rates. While there is no 3-D von Neumann law in the strict sense,

another question was asked soon after von Neumann’s discov-

ery: is there an analog to (3) which is valid for the average bubble

with F faces? Upon averaging over all bubble geometries with the

same F using the average 〈·〉F, a statistical growth law looks like

this:

V−1/3
F V̇F = Deff G(F) ≡ −Deff V−1/3

F

〈

∫

faces
HdA

〉

F

, (4)

where VF = 〈V〉F is the averaged volume of all bubbles with F

faces in the foam, and Deff another effective diffusion coefficient.

Note that the combination V̇FV−1/3
F is, up to a constant, just the

term L̇L from (2). Lumping all material parameters into Deff , the

problem is tantamount to determining the dimensionless growth

function G(F).

Many arguments and numerical simulations were introduced

[24–27] to suggest that a linear growth law of the form G ∝
(F − F0) should exist, i.e., again a linear dependence of growth

rate on F, with a face number F0 for neutral growth. We will show

here that this conjecture turns out to be false.

Experiments and simulations

Attempts at an experimental verification of this conjecture met

with great difficulties: While the existence of a neutral growth

face number F0 could be verified [28] (it was found that F0 was

between 13 and 14), the experiments were confined to values

F ≈ F0, and so could not verify the functional form of the ge-

ometry dependence. Also, the statistics of the measurements only

Figure 6 Growth function G(F) of a random foam. Circles show simulations with the Surface Evolver, for (left) 512 monodisperse and (right) 512 strongly polydisperse bubbles. Dashed and
dot-dashed lines result from the analytical expressions (11) and (12). The solid line is from a refined theory [34] incorporating the disorder of the simulated foam, characterized by ση = 0.73
(see text).

Figure 7 Random polydisperse foam generated with the help of the Surface Evolver pro-
gram. This example simulation comprises 64 bubbles, while up to 1000 cells per run have
been calculated. (Figure courtesy of Andy Kraynik)

comprise a handful of bubbles [29–30].

The main problem in these experiments is the long coarsening

time scale that does not allow for long-time data of the coarsening

dynamics. Another possibility to derive growth and shrinkage

rates is to determine the curvature of interfaces between bubbles

directly, which (see above) is proportional to the rate of gas ex-

change. Even static foams can thus give information about coars-

ening rates. The curvature of the tenuous films is very hard to vi-

sualize in experiment, but numerical simulations can determine it

easily using the Surface Evolver, a program specifically designed

to minimize surface areas under geometrical constraints [31].

Kraynik [33] has conducted Surface Evolver simulations of ran-

dom 3-D foams with up to 1000 bubbles, either monodisperse

or polydisperse in volume (see figure 7 for a smaller example).

While no actual gas diffusion is simulated, the interface curva-

tures supply the growth data for G(F) shown as circles in figure 6.
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Figure 8 Sketch of two adjacent polygonal faces on a polyhedral foam bubble with centroid
O. Indicated are the angle between face normals χ , edge length L , and planar angle π/η

for a regular face with η edges. The two planes illustrate the definition of the caliper radius
C(θ,ϕ) (see text).

Note the much wider range of F accessible in polydisperse foams.

The statistical error of these averages is on the order of the sym-

bol size for most data points, while the spread of growth rates

between individual bubbles with the same F is larger (typical-

ly ±0.2). The simulations show that indeed bubbles with large

F tend to grow and those with small F tend to shrink, but they

also give evidence that G(F) might not be linear in F as conjec-

tured. Is it possible to find an analytical approximation to the

actual growth function, i.e., can we really find an analog to what

von Neumann did 50 years ago?

Von Neumann’s law in three dimensions

To determine which bubbles in a 3-D foam grow and which ones

shrink, we have to understand how the integral mean curvature

over the bubble faces depends on its other geometrical proper-

ties. Fortunately, there are classical studies on this subject by Her-

mann Minkowski. In 1903 [35], he related mean curvature over

the surface of a convex body to a quantity we call the caliper radius

C(θ,φ) here, whose definition is illustrated in figure 8. Choos-

ing a coordinate origin O in, e.g., the center of mass of the body,

we draw a plane through O perpendicular to the spatial direc-

tion (θ,φ). A second, parallel plane is then moved as far away

as possible while still touching the body. The distance between

the planes (the ‘extent’ of the body in the direction (θ,φ)) is the

caliper radius C(θ,φ). Minkowski proved that
∫

4π
C(θ,ϕ)dω =

∫

SK

HdA (5)

for any convex body K, where the integrals are over all solid an-

gles (dω = sinθdθdϕ) and the total surface area SK of K, respec-

tively. Following the proof of this theorem as outlined e.g. in [36],

one can verify that it remains valid for a body that is not convex,

but piecewise convex or concave (such as a faceted foam polyhe-

dron), if the definition of C(θ,φ) is suitably generalized. Note also

that the integral mean curvature over the surface of a faceted body

consists of two contributions: the mean curvature of the faces, and

the concentrated mean curvature in the edges, which depends on

the tangential angle under which the faces meet in the edge. Fig-

ure 2 illustrates that this curvature contribution is simply

∫

edges
HdA =

E

∑
i=1

1

2
(π − τi)Li , (6)

where τi is the tangential angle and Li the length of edge i

(i = 1, . . . , E).

We will now apply (5) to two different bodies: a foam poly-

hedron K, whose edges are curved, and its skeleton polyhedron K0,

i.e., a polyhedron with the same vertex positions where the faces

have been replaced by (piecewise) flat faces. In complete analogy

to von Neumann’s 2-D argument, we can then evaluate the differ-

ence between the edge curvatures (6) of K and K0: as τi = 2π/3

by Plateaus law for foam polyhedra, the edge curvature is just
π
6 ∑i Li for K, while it is ∑i

1
2 χi Li for K0, where χi = π − τi are

the angles between adjacent face normals (figure 8). Now we can

write Minkowski’s theorem as
∫

4π
C(θ,ϕ)dω =

∫

faces
HdA +

E

∑
i=1

π

6
Li (7)

for K, and

∫

4π
C0(θ,ϕ)dω =

∫

SK0

HdA =
E

∑
i=1

1

2
χi Li (8)

for K0, as the integral over the flat faces vanishes. The importance

of Minkowski’s theorem is that the left-hand sides of (7) and (8)

can be directly evaluated by expanding C around C0 in a series

over the small parameter ǫ = L/R, where L is a typical edge

length and R a typical radius of curvature of the bubble. By in-

spection of bubbles in real foams, we know that ǫ ≪ 1. The result

of this computation gives
∫

4π
C(θ,ϕ)dω −

∫

4π
C0(θ,ϕ)dω = L O(ǫ3) ,

i.e., the difference between the left hand sides of (7) and (8) is of

third order. Consequently, by setting the right-hand sides equal to

each other, we find an expression for the integral curvature over

the faces, which is precisely the quantity that we need to evaluate

the growth rate (cf. (4)). We obtain

∫

faces
HdA =

E

∑
i=1

1

2

(

χi −
π

3

)

Li , (9)

valid to order ǫ2. This formula tells us the growth rate for every

individual bubble, but it also shows that we need much more

information about a 3-D polyhedron than about a 2-D polygon

to evaluate it: while the edge number E is directly given by F

(see (1)), all the angles and edge lengths have to be known. To

obtain a formula such as (4), we have to average over all configu-

rations.

This averaging seems like a daunting task, and so let us try

to start with the most simplistic of assumptions, namely, that all

bubbles of face number F have the same geometry, and that they

are maximally symmetric and isotropic, i.e., all faces have the

same number of edges and all edge lengths are the same. Note

that for a given F, these conditions do not prescribe an actually

existing bubble; it is easy to see that each of the faces must have

ηF = 6 − 12/F edges, which is a fractional number for all F but 4

(tetrahedron), 6 (cube), and 12 (pentagonal dodecahedron). As we

are looking for statistically averaged formulas, we will go along
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with this, interpreting the idealized polyhedra as reasonable in-

terpolations.

The idealized F-faced bubbles have equal face normal an-

gles χF (figure 8), which are found to be

χF = 2 arctan[(4 sin2(π/ηF) − 1)1/2] . (10)

Here, we can already determine the value of F0. A neutrally grow-

ing bubble must, by (9), have χF = π/3, so that F0 ≡ F∗
0 =

12/(6 − π/ arcsin
√

1/3) = 13.397 . . ., a well-known value con-

jectured to be the average face number in a minimal-area foam

with equal pressure bubbles [11, 37]. This number also compares

well with the available experimental evidence [28, 30] and the nu-

merical simulations of figure 6.

Encouraged, we now go on to compute G(F), inserting χF for

χi in (9) and normalizing the result by V−1/3
F . For the latter, the

volume VF is assumed equal to the volume of the skeleton poly-

hedron (the volume contributions due to the curved interfaces are

neglected). Thus, we obtain [34]

G(F) =
3

[

(F − 2) tan π
ηF

]2/3
tan1/3

(

χF
2

)

21/3

(π

3
− χF

)

. (11)

Together with (10) and the definition of ηF, this is a completely

parameter-free, analytical expression for G, which compares ex-

tremely well with the numerical simulations for both monodis-

perse and polydisperse foams (figure 6). The simulations —

which themselves are also parameter-free — obtain F0 ≈ 13.82

for the monodisperse and F0 ≈ 14.00 for the polydisperse case,

but more striking is the excellent agreement over the whole range

of F, even in the polydisperse case. Note that the theory pre-

sented here does not contain any correlation between bubble size

and face number, even though there is a strong correlation in real

foams (smaller bubbles have smaller F). Therefore, the predic-

tions from (11) are the same for both simulations.

The success of the simplistic picture of equal, maximally sym-

metric bubbles shows that the average over the shapes of foam-

bubbles in a random foam must lie very close to the most com-

pact, least distorted shape possible, so that the characterization

by face number alone is a very good indication of the growth or

shrinkage rate of the bubbles.

If only evaluated in the vicinity of F0, Eq. (11) necessarily re-

Figure 9 Solid lines: dependence of neutral growth face number F0 on the foam disorder
ση (width of the edge number distribution). The inset and main figure show the same curve
on linear and log-log scales, respectively. The dashed line indicates a quadratic power law
for small F0 − F∗0 .

Figure 10 a (left): Kelvin’s 1887 conjecture for the unit cell of the optimal tiling of space.
This 14-faced cell looks much like the Wigner–Seitz cell of a bcc crystal, but its edges and
faces are slightly curved. b (right): Weaire and Phelan’s 1994 counterexample unit cell con-
sisting of eight polyhedra (six 14-faced, two 12-faced). It is not known if this cell is indeed
optimal.

sembles a linear function, but an expansion for large F shows that

its asymptote is

G(F ≫ 1) =
π7/6

21/635/12
F1/2 − 61/32π2/3 + O(1/F1/2) , (12)

a square-root function of F. The dot-dashed line in figure 6 shows

that approximation, which works very well even for relatively

small F.

One can try to improve further on this result by relaxing the

condition of uniform bubble shape, introducing variations in edge

number, edge length, etc. This is rather cumbersome, and the

interested reader is referred to [34] for the details of the actual

procedure. As a measure for disorder, we use the width ση of

the distribution of edge numbers η, which we take to be univer-

sal for all face numbers F, centered around the idealized values

ηF. The parameter ση does change from random foam to ran-

dom foam: for Kraynik’s simulations [34], we find ση ≈ 0.73.

Plugged into this formalism, it leads to the solid G(F) curve in

figure 6, which is now extremely close to the numerical result,

with F0 ≈ 13.85, agreeing with simulation to three significant fig-

ures. The static experimental random foams from the remarkable

paper by Matzke [38] have σ ≈ 0.59; they would yield a slightly

different growth curve, and also a slightly different F0. Further

analysis shows (figure 9) that with growing disorder parameter

ση, F0 departs quadratically from the idealized value F∗
0 . How-

ever, realistic foams never seem to stray very far from this figure.

Conclusion and outlook

We have derived a three-dimensional analog to von Neumann’s

law for the coarsening growth rate of bubbles in a foam. While

not valid for individual bubbles, the 3-D version does a very good

job capturing the behavior of averaged polyhedral bubbles with

a given number of faces, and can thus be said to describe the

coarsening of the whole ensemble of foam polyhedra. The ana-

lytical 3-D von Neumann’s law (11) depends on the number of

faces alone, and demonstrates that F is the most important pa-

rameter determining growth or shrinkage of coarsening bubbles,

much like the number of edges in two dimensions. However, the

growth rate does not increase linearly with the number of faces,

but asymptotically as the square root.

Work is currently underway to put the 3-D von Neumann law

to similar good use as the 2-D law. The latter has been instru-

mental to help predict the size and shape distributions in two-
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dimensional cellular matter that is well-coarsened (e.g. [39–40]).

As mentioned in the introduction, the properties of these func-

tions are largely unknown for the 3-D case, with the exception of

some necessary conditions they must fulfill, cf. [19]. The relative-

ly simple form of (11), and in particular of the approximation (12),

gives hope as to the existence of simple analytical predictions for

the structure of 3-D foams, polycrystalline metals, living cells, and

other similar materials.

It is also tempting to speculate about the impact of this work

on the long-standing and still unsolved question of the optimal

tiling of space, known as the Kelvin problem [11]. The problem

is often posed like this: if you want to tile a 3-D space complete-

ly with objects of unit volume, what is the tiling for which the

total interfacial area is minimized? Lord Kelvin conjectured a so-

lution, namely a tetrakaidecahedron (F = 14, eight hexagonal,

four square faces) with slightly curved faces that tiles space (fig-

ure 10). The conjecture survived for more than a century, but in

1994 Weaire and Phelan [41] found a counterexample (using the

Surface Evolver), a periodic foam with a more complicated unit

cell consisting of six tetrakaidecahedra (of another kind, with 12

pentagons and two hexagons) and two pentagonal dodecahedra

(figure 10). This structure is also known as A15 in crystallography,

where it occurs for various minerals and metal alloys [11]. The

differences in surface/volume efficiency for these two structures

is minute (they differ by fractions of a percent), but the Weaire–

Phelan structure seems more realistic for a foam, in particular as it

contains many pentagonal faces. Pentagons are abundant in real

foams [38], while a foam made from Kelvin cells does not con-

tain any of them. Not surprisingly, Kelvin cell configurations are

found rarely [33] or not at all [38] in realistic foams.

The space-filling structures described in the previous para-

graph are monodisperse foams, for which it can be shown that

their average face number F̄ should be equal to the neutral growth

face number F0 (cf. [42]). With the correlation between F0 and

foam disorder, this establishes a correlation between surface/vol-

ume ratio and disorder, suggesting that less disordered foams

could attain lower surface/volume ratios. Maybe mathematicians

could profit from this in their attempt to solve the Kelvin prob-

lem, applying a formula found because of the desire to explain the

physical process of coarsening in foams, something every reader

can readily observe in a glass of beer. k
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