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Overzichtsartikel

From bioinformatic pattern
analysis to evolutionary dynamics

Ribonucleïnezuur (RNA) vervult twee verschillende rollen binnen een

cel. Enerzijds heeft het molecuul de functie om informatie op te slaan

(net zoals desoxyribonucleïnezuur (DNA)), anderzijds dient het als ka-

talysator (op een manier zoals ook eiwit deze rol vervult). Bovendien

kan RNA optreden als katalysator voor zijn eigen reproductie. Het mo-

lecuul kan daarom worden beschouwd als een minimaal model om de

afbeelding tussen een genoom en een organisme te bestuderen. Pau-

lien Hogeweg, hoogleraar bio-informatica aan de Universiteit Utrecht,

geeft een overzicht van de theoretische inzichten die in de laatste tien

jaar over dit onderwerp zijn verkregen.

The genomes of more than 50 organisms have now been fully se-

quenced and are available in public databases, providing a wealth

of data and a great number of opportunities and challenges for fun-

damental bioinformatic research. Most people consider the release

of the human genome (incomplete as it may be) as the milestone and

since that moment the term ‘post genomic era’ has emerged, indicating

that, once we have the genome sequence, there is still a long way to

go to understand the functioning organism. The ultimate aim of bioin-

formatic research in the post genomic era is ‘to compute the organism

from its DNA sequence’, or, in more technical terms, ‘to compute the

phenotype (i.e., the set of observable characteristics as determined by

genotype and environment) from the genotype (i.e., the genetic con-

stitution of the individual)’. Lofty, and as yet far away as this aim may

be, in this paper we will try to go even one step beyond it. Beyond the

‘prediction’ of the phenotype from the genotype of existing entities, we

aim at the understanding of which type of entities are likely to evolve,

as well as which types are likely not to evolve, and the evolutionary

dynamics which determines that.

Clearly, we can only make progress towards any of these goals by

focusing on manageable subproblems. Thus, a much studied subprob-

lem is the prediction of the way an RNA or a protein molecule folds into

a functional shape, using the sequence information (see below).

Here we will focus on RNA. The reason that we focus on RNA and not

on protein is that its possible secondary structures can be calculated

relatively easily. RNA is best known for its intermediate role in pro-

ducing proteins from DNA: DNA is transcribed into RNA, which is then

translated into a protein. However, RNA has many more functions, as it

acts as enzyme, i.e., as a catalyzer as well, both on its own and as part

of RNA-protein complexes. In fact, the plethora of known functions is

still increasing daily, and it includes also defense and gene regulation.

Because of these multiple roles in very fundamental processes, it is

assumed that the so-called RNA world was a stage in pre-biotic evolu-

tion, in which RNA molecules served both for information storage and

for catalysis, while the more specialized molecules, DNA and proteins,

are later additions.

Here we will examine the properties of single RNA molecules. The

enzymatic function depends primarily on the shape of the molecule.

We will use the secondary structure as an approximation of the shape,

and therewith of the ‘phenotype’ of the RNA sequence.

Thus we can, for this biologically interesting, simple special case,

proceed to study the further questions outlined above. We will study

the general properties of the genotype-phenotype mapping, the result-

ing evolutionary dynamics when, per definition, mutations occur at the

level of the genotype (sequence) and the selection occurs at the level

of the phenotype (secondary structure).

From genotype to phenotype

The figures 1a–d illustrate the relation between an RNA sequence

and its higher order structures. The RNA sequence under consider-

ation consists of 4 nucleotides: G,C,A, and U. The secondary struc-

ture is formed by the binding of the complementary base-pairs G-C,

A-U and G-U. The figure shows three different but equivalent repre-

sentations of this two dimensional intermediate. In figure 1a the

RMA sequence is depicted as a string of parentheses and dots,

where the opening and closing parentheses indicate a nucleotide

bound to the downstream and upstream ones, respectively, and the

dots show unbound bases (Konings and Hogeweg 1989). Figure 1b

presents the conventional ‘cloverleaf’ structure, in which bound base-

pairs are drawn adjacent, and in figure 1c the so-called ‘mountain

range representation’ (Hogeweg and Hesper 1984) is shown, which

retains the linear sequence at the bottom, and which represents

the bonds by moving up when the nucleotide is bound to a nu-

cleotide downstream (to the right), and down when it is bound to

an upstream one. Unbound bases are given by plateaus. In fig-

ure 1d a possible tertiary structure is sketched. Although it is not
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Figure 1 The structure of tRNAphe of yeast. The primary structure of a molecule is simply its sequence of constituting components. The building blocks of RNA are: guanine(G),
adenine(A), cytosine(C), and uracil(U). In figure 1a an example of a primary structure is given in the top line. The string folds, creating new bondings between building blocks. The part
of the configuration of the bondings that can be represented in the plane constitutes the so called secondary structure (figure 1b). Although there are strict conditions on pair forming,
the number of possible secondary structures stemming from a given primary structure is huge, since the molecules are quite long. In figures 1a–c three ways to represent the secondary
structure are given. The tertiary structure refers to the way the secondary structure folds in three dimensional space (figure 1d). It is clear that folding in 3-D adds again a large number
of degrees of freedom to the system. Here, we consider only the step from primary to secondary structure and we assume that from the set of possible secondary structures the one with
lowest energy is the most likely to occur. Thus, energy minimisation is used as optimization criterion.

clear at first sight, the secondary structure is mostly a true part of the

tertiary structure and dominates it energetically.

Energy minimization

Our calculations are based on the observation that in nature structures

with minimal energy are most likely to be formed. We calculate the free

energy of a secondary structure from emperical stacking energies, i.e.,

the energies involved in the formation of specific base pairs.

Dynamic Programming methods

A dynamic programming (DP) algorithm for RNA secondary structure

prediction was first developed by Zuker et al. (1981). The ideas behind

DP are given in a separate frame. Hairpin loops and internal loops (i.e.,

loops with an unbound basis) — both are present in the cloverleaf of

figure‘1b — are destabilizing, and they give rise to the occurrence of

many relative minima in the free energy. However, an efficient algo-

rithm that does find the minimal energy configuration, is available. We

will use it as the basis of our exploration of the general properties of

the RNA genotype phenotype mapping. Indeed, the availability of this

algorithm spawned these investigations.

Although the secondary structures derived by the dynamic program-

ming method are pretty good, especially for relatively short sequences,

the minimal energy configuration the DP algorithm finds does not al-

ways coincide with empirically determined ones. For one thing, it does

not deal with the more complex features of secondary structures as

pseudo-knots (see for example figure 4). Dynamic programming ex-

tensions to include these features have been developed (Rivas and

Eddy,1998) but become very cumbersome in time and space require-

ments, respectively (O(N6) andO(N4)), and are therefore not very use-

ful. However, also in ‘normal’ secondary structures prediction errors

are rampant in long RNA’s. This can be due to mistakes in the stack-

ing energy data (and these have indeed been modified and improved
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Dynamic programming

Dynamic programming is a general method for sequential decision

making. It can be used for models that are dynamic in nature

or problems in which the sequential aspect is introduced in an

artificial way. An example of the latter is the shortest path in a

(road) network, with distances d(x,y) between crossings x and

y. Let V (x,n) be the shortest path from any x to the destination

z using n streets. Then V (x,n + 1) can be expressed in V (y,n) in

the following way:

V (x,n + 1) = min
y
{d(x,y) + V (y,n)}.

If we take V (x,0) = ∞ and V (z,n) = 0, then computing V (x,n) for

increasing n leads us to the shortest path.

A dynamic programming algorithm can also be used for finding

the minimal-energy secondary structure. The energy of a struc-

ture depends on the way pairs are formed in the RNA molecule.

The idea is that the minimal energy folding of a sequence can be

determined from the way its subsequences can be folded. For ex-

ample, the minimal energy for the sequence from position i to j

can be expressed in the minimal energies of subsequences such

as (i + 1, j − 1), depending on whether i and j are paired or not.

By starting the calculation with sequences of length 2 we can re-

cursively compute the minimal energy folding for sequences of

arbitrary length.

over the years), unrecognized base modifications, longer range energy

contributions, or due to the fact that secondary structures occurring in

vivo are not neccessarily minimal energy structures.

To try to amend such shortcomings in secondary structure predic-

tions a number of alternative methods are developed and used.

Comparative evolutionary methods

RNA molecules in various species which share a common evolutionary

ancestry (homologous RNA’s), especially those with conserved cat-

alytic activity, presumably fold into the same structure. Thus, when

several sequences are available, the variation among those can be

exploited for finding the functional structure. To do this one simply

determines all energetically feasible, possibly overlapping, secondary

structure elements (i.e., hairpins) of all available sequences and one

selects a subset which occurs in all sequences. Moreover, so called

compensatory base substitutions, where two bases are mutated such

that the binding is preserved, support the functionality of hairpins, and

therewith their eligibility in the consensus structure (see for example

Gutell 1993). This approach is very useful when the homologs are avail-

able, and indeed the use of homology information is the predominant

method in finding protein secondary structures, for which no simple

dynamic programming algorithms are available. For our purposes a

single sequence to secondary structure calculation is, however, need-

ed.

Simulation methods

While, from a mathematical point of view, the dynamic programming

energy minimization algorithms are far superior to stepwise stochas-

tic energy minimization, that use local structure transitions, the latter

sometimes better recover biologically functional structures. For exam-

ple, Flamm et al. (2000) developed such a simulation method, with

additions and deletions of single bonds, and single step ‘sliding’ of

bonds (involving a break and a formation of an adjacent bond) as el-

ementary steps. Using this algorithm, they have shown, for example,

that in tRNA functional structure is not the energetic minimum, but that

it is the structure with the largest probability of forming. Similarly they

showed that the RNA structure, which can be replicated in an in-vitro

evolution experiment, is not the minimal energy fold, but is the one

which is formed far more frequently than the minimal energy fold.

Conclusion

Standard methods from dynamic programming (DP) for the calculation

of RNA secondary structure are not perfect, and one should use in

addition other approaches to study particular RNA sequences. Indeed,

new methods are developed to combine, for example, comparative and

DP methods. (For an overview see Zuker 2000.) Nevertheless, the DP

algorithm captures the general properties of the relation between the

primary and secondary structure of RNA. We will use it to uncover these

general properties in the next sections.

Characterizing RNA primary to secondary structure mapping

The first thing to note about the RNA primary to secondary structure

mapping is that there are many more primary structures than there are

secondary structures. This is immediately clear from the “bracket repre-

sentation” (figure 1a) of RNA secondary structure, which consists of on-

ly three symbols, whereas there are four nucleotides. Moreover, while

there are a-priori no constraints on the ordering and frequencies of nu-

cleotides, there are constraints on the secondary structure: all opening

and closing brackets should match, stability of helices requires runs of

at least two brackets, and hairpins should have a length of at least 3

long. These constraints yield 1.4848n−3/2(1.8488)n shapes for strings

of length n (Schuster et al., 1994). Exhaustive calculation of all mini-

mal energy secondary structures of sequences of length 30, consisting

entirely of G’s and C’s, yields the numbers from the table below.

1.07 109 sequences

2.18830 105 secondary structures

2.2718 104 ‘typical structures’

93.4% seq’s in typical structure

Thus, not only do the sequences outnumber the secondary structures

by far, more than 90% of the sequences fold in about 10% of the

secondary structures. Moreover, it has been shown (using a ‘reverse’

folding algorithm) that these 10% typical shapes percolate through

the whole sequence space. Thus maximally different sequences can

fold into the same secondary structure, and there is a path between

them of sequences which do also fold into this secondary structure,

each being only 1 or 2 mutations from the next one. These properties

generalize to longer sequences and to GCAU sequences: the frequency

distribution appears to follow a Zipf law (f (x) = 1.24 (71.2 + x)1.23) ,

and the frequent ones together form a giant component (Schuster et

al. 1994).

A general way to represent the sequence to structure mapping is

to compare the difference in primary structure to the difference in sec-

ondary structure. This can be expressed for example as correlation

length. A more complete representation is the representation as ‘RNA

landscape’ (figure 2) (Fontana and Schuster 1987, Huynen et al., 1993).

Here the frequency distribution of structure differences for a given se-

quence difference is plotted in 3D.
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This landscape is obtained as follows. First, the number of point muta-

tions is fixed. An example of a point mutation is a replacement of an A

by a G base. Next, the specified number of point mutations is applied

in a random fashion and the corresponding change in secondary struc-

ture is calculated. Possible measures for such a change are discussed

in the next section. The number of times a specific change in secondary

structure is met is plotted as the local height of the landscape.

From the figure we see that (a) the correlation length is rather small:

the distribution does not change after more than ca. 10 mutations and

(b) although a single base change generally changes the secondary

structure little or not at all, it may cause the minimal energy structure

to become entirely different, as seen from the long tail of the front-most

curve, which corresponds to changing only one base. Taken together,

the RNA landscape and the percolating ‘typical’ structures indicate the

following characteristics of the primary to secondary structure map-

ping:

• A small neighborhood in sequence space maps to all regions in

structure space. Thus, given an RNA sequence, any (‘typical’) sec-

ondary structure is relatively ‘close by’ and can be reached with

relatively few mutations.

• 10% of the points in structure space map to all regions in sequence

space. Thus, any (‘typical’) RNA secondary structure, can be formed

by very different sequences, and can therefore be compatible with

other constraints (e.g., for coding a particular protein).

These properties seem to be ‘ideal’ for evolution (Schuster et al. 1994).

We will study this in the next section. Here we can already answer one

of the questions posed in the introduction: We expect to encounter

biologically functional RNA secondary structures only in the subclass

of 10% ‘typical’ secondary structures: others are hard to find, and hard

to maintain in evolving systems.

Evolutionary dynamics on RNA landscapes

It is common wisdom that optimization on so-called rugged landscapes

is difficult due to local peaks. The RNA landscapes are rugged, the
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Figure 2 RNA landscape

correlation length is small as shown above. In this section we will

study evolutionary optimization on this particular rugged landscape.

We will show that the ruggedness is not necessarily an obstacle to

optimization.

We study evolution on RNA landscapes by assuming that the ‘fit-

ness’ depends on the secondary structure. We choose a certain sec-

ondary structure as the one with the highest fitness. Note that when we

choose this secondary structure as the secondary structure in which an

arbitrary RNA sequence folds, or when we choose it from a biological

sequence database, chances are that the secondary structure is a ‘typ-

ical’ one as defined above. Fitness of other sequences is defined in

terms of distance to the optimal structure in structure space. Distance

between secondary structures can be measured in various ways, e.g.

as tree distance, possibly using course graining by omitting length of

stacks and loops, but also simply as the number of non-equal signs in

the string representation of secondary structure.

The evolutionary dynamics is defined similar to that used for opti-

mization in evolutionary computation. A population of RNA molecules

is subjected to a replication, mutation, and selection regime. Each

molecule has the same probability of replication. During replication

mutations occur in the strings with a certain probability. The proba-

bility of ‘death’ of a molecule depends on its ‘fitness’. This leads to a

variable population, which on average will increase its fitness upto a

point where selection and mutation balance. We assume chemostat

conditions (i.e., the total RNA population is kept constant). We use only

point mutations (i.e., changes of nucleotides), but similar behavior is

observed when other changes like insertions, deletions and crossing

over are used.

Epochal evolution and molecular clock

A typical evolutionary time course is shown in figure 3, which shows

the approach towards the fittest structure from an arbitrary initial pop-

ulation (Huynen et al., 1996). The time course shows a pattern of

‘punctuated equilibria’ or ‘epochal evolution’.

This implies that the system walks for some time along a so-called

‘neutral path’ on which the fitness is constant, although the sequence

continues to change at a constant rate (i.e., is ‘clocklike’).

On the neutral path the walk through the space of all possible RNA

molecules behaves as a diffusionlike pocess, with a diffusion coef-

ficient depending on the number of neutral neighbors (λ), popula-

tion size (N), replication rate (a), and the mutation rate per posi-

tion (µ), and the sequence length (l) and can be approximated by:

D = λ(5alµ/(3 + 4Nµ)) (Huynen et al., 1996). When the population on

a neutral path approaches a point where a higher fitness neutral path

is ‘near’ (i.e., 1 or 2 mutations away) it can jump to the higher neutral

path, and subsequently diffuses along the new path. This ‘scenario’

provides a unification between the concept of neutral evolution and

of adaptive evolution where the former may facilitate the latter (Huy-

nen 1996, Zuckerkandl 1997, Fontana and Schuster 1998a,b). Along

the neutral path the population will continue to encounter in its neigh-

borhood new structures, although there is a set of structures which

remains in its ‘shadow’ all along the path.

Evolution of mutational robustness

The picture sketched above: diffusion on a network of neutral paths

(also called a neutral network) and occasional shifts to higher neutral

paths, would suggest that once the highest neutral paths is reached, no

further evolution occurs, and that the population properties, at least on

average, remain constant. Early simulation studies on RNA evolution

have shown that this is not the case. In particular the ‘shape’ of the RNA

landscape (compare figure 2) around the population changes during

a long term evolutionary trajectory which remains on a certain fitness

level. The average fitness of close mutants increases and so does the

correlation length. (Huynen and Hogeweg 1994). The effect is small,

but significant, for evolution with just point mutations, but becomes

much stronger when crossovers and insertion/deletions are included.

Van Nimwegen et al. (1999) have demonstrated this effect analyt-

ically. Assuming a large fitness difference between ‘on’ and ‘off’ the

neutral path, they show that the diffusion over a neutral net accord-

ing to a mutation selection regime will lead to areas with relative high

connectivity in the neutral network.

Note that the connectivity is a global property of the landscape,

while the landscape is ‘sampled’ only locally by the population. It

is interesting to compare this result with two well-known random

walks: a blind ant, which chooses a random neighbor and only makes

a step when on the neutral net, spends equal amounts of time at

Figure 3 Punctuated evolutionary dynamics
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each node on the neutral net; on the other hand, a myopic ant, which

chooses a random neighbor on the neutral net, sees an average con-

nectivity of D = d̂ + Var (d)/d̂. The result depends on mutation rate

and population size: it holds when their product is large enough; for

very small values the connectivity ‘seen’ by the population remains av-

erage. They checked their analytical results with simulations on an RNA

landscape, constructing the connectivity matrix by exhaustive search

and showed an excellent fit.

It is a well-known experimental observation that one can obtain an

increase of fitness of a population in a new environment relatively easi-

ly, but that the mutational robustness of such newly evolved population

is low relative to the wild type. Bioinformatic analysis of viral RNA’s

reveals a larger mutational robustness than expected from random se-

quences (Wagner and Stadler, 1999). The above results demonstrate

that this is an automatic result of evolutionary dynamics and that no

explicit selection on robustness is needed (as is often assumed).

Long neutral paths and shortcuts

In a rugged fitness landscape neutral paths will ‘meander’. The ques-

tion arises which route will be chosen by the evolutionary dynamics,

the long one along the neutral path, or a much shorter one for which

a ditch should be crossed? The results mentioned above suggest that

the neutral path is followed. Van Nimwegen derived the following (sim-

plified) expression comparing the length of the neutral path which can

be transferred in the time that it takes to cross a ditch of a particular

width (i.e.,w, number of mutations) and height (σ , fitness drop), given

population size n and mutation rate µ:

V =
n

w!

(

log(σ )

µ

)w−1

.

This result was obtained by tracing the ancestry trees of mutants in the

ditch, to find the crossing probability. When the mutation rate is not

too large, the result shows the following.

• A very long neutral path can be transferred in the time it takes to

cross even a shallow and narrow ditch. Thus, we should indeed

expect that the evolutionary dynamics typically follows the neutral

path, without shortcuts.

• The width, rather than the depth of the ditch, determines the cross-

ing time. This can be understood qualitatively by the fact that the

width relates to the number of steps that the non-fit mutant should

survive, while being negatively selected with a strength proportion-

al to the depth of the ditch.

For large mutation rates the population ‘perceives’ the ditch not as a

ditch and crosses it by diffusion as on the neutral path. From this

analysis we can conclude:

• It is the structure of the neutral networks rather than the ruggedness

of the landscape which determines the evolutionary dynamics. This

result is shown directly by Barnett (1998) by including neutral path in

a family of landscapes categorized by ruggedness (Kauffman 1993),

• Evolutionary dynamics is qualitatively different from energy mini-

mization dynamics as used in many other optimization techniques

with respect to the crossing of ‘energy barriers’: in case of energy

minimization the probability depends on the height of the barrier

whereas in evolutionary dynamics it depends primarily on the width

(due to the competition with the rest of the population).

Discussion and perspectives

In this paper we used a simple, but biologically relevant example of

Figure 4 Evolved ligase (Ekland et al., 1995)

the ‘coding’ of secondary RNA structure in the RNA sequence.

In studying the evolutionary dynamics on RNA landscapes, we study

the relationship between a particular ’coding’ structure and evolution-

ary optimization. The relation between coding structure and evolu-

tionary optimization can be studied from three different perspectives,

i.e.,

• given a coding structure, how is the optimization dynamics

• given a problem, how should it be coded to obtain efficient opti-

mization

• given evolutionary dynamics what kind of coding structure will be

selected?

In this paper we took the first perspective and studied the static struc-

ture of the landscape and the evolutionary dynamics on the landscape.

The obtained insights in RNA evolution have been discussed above. In

addition, the theory of RNA evolution gives some unexpected insights

in the other perspectives.

• We have seen that a very redundant and rugged coding structure can

be beneficial for evolutionary optimization, whereas reasoning from

the second perspective it would seem that one should minimize the

size of the search space and minimize the ruggedness.

• We have seen that, although landscapes are usually characterized

by their average properties, the evolutionary dynamics exploits the

variation in the landscape and so can ‘choose’ to a certain extent the
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coding structure it encounters. We have seen that, for the evolution-

ary scenario considered here, i.e., evolution towards a fixed target

structure, it biases the coding structure towards larger mutational

robustness.

Interestingly, in-vitro evolution experiments, in which certain binding

and catalytic properties of RNA are maximized, are very successful:

almost any desired catalytic function (including many but not yet all

which are indispensable for the putative RNA world) can be obtained

easily from randomized initial sequences. In such experiments one

uses large populations (circa 1015 molecules, but this is still vanishing

small relative to all possible sequences), no mutation and only few

selection steps. The success of these experiments bears out forcefully

the redundancy of RNAs at the functional level. The complex nested

pseudo-knot secondary structure of figure 4 is an example of a selected

catalytic domain. It has 92 conserved positions, and is found in a pool

of 1015 molecules with a random stretch of 220 nucleotides. The same

experiment yielded several equally efficient catalysts, some much sim-

pler. Interestingly, the frequency of complex structures found is much

larger than expected and as compared to smaller catalytic domains:

apparently catalysis is more abundant in complex structures. (Ekland

et al., 1995, Sabeti et al., 1997).

We used the RNA sequence to secondary structure mapping in these

investigations, as the only biological mapping which can be computed

realistically. Similar results have been obtained by using rough lat-

tice models for protein folding. Moreover, the main features discussed

here, i.e., redundant genotype-phenotype mapping, neutral networks,

epochal evolution, and increase of mutational robustness during long

term evolution appear also to occur mutatis mutandis in more com-

plex situations such as in experiments on evolution of morphogenesis

through gene regulation and differential adhesion (Hogeweg 2000).

The image of evolution on a static fixed dimensional fitness land-

scape with simple neighborhood relations as considered here is an

over-simplification. Mutations other than point mutations, e.g. dupli-

cations, insertions, and deletions change the sequence length and

thus the dimensionality of the landscape, cross-overs change the

neighborhood relations and through co-evolution the landscape is al-

tered in the same time-scale as the movement of the population over

the landscape. Nevertheless, the concepts developed here are useful

for the analysis of such more complicated situations. For example,

in the case of co-evolution we have shown that instead to evolving to

‘flatter’ parts of the landscape, evolution is to more rugged parts of

the landscape and that insertion, deletions, and cross-overs make the

bias in long term evolution more pronounced (Huynen and Hogeweg,

1994).

Biological systems are multilevel systems and the ‘distance’ be-

tween genotype and phenotype is much larger than the ‘distance’ be-

tween RNA primary and secondary structure as examined here. Both

for bioinformatic pattern analysis and for bioinformatic modeling of

the function and evolution of such systems the great challenge is to

face the complexity, and to uncover the function/consequences of the

complexity and the evolutionary dynamics which leads to it. k
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