
126 NAW 5/3 nr. 2 juni 2002 The most powerful computing in the universe? Agoston E. Eiben

Agoston E. Eiben
Faculteit der Exacte Wetenschappen, Vrije Universiteit

De Boelelaan 1081a, 1081 HV Amsterdam

gusz@cs.vu.nl

Overzichtsartikel

The most powerful compu

De handelsreiziger die de kortste route wil bepalen om N steden

te bezoeken, is een bekend voorbeeld van een probleem dat voor

grotere waarden van N op geen enkele een computer is uit te reke-

nen. Een alternatieve, in dit artikel beschreven manier om een

dergelijk probleem aan te pakken is het aanleggen van een grote

verzameling van ‘oplossingen’, waar de beste de andere oplossin-

gen zal verdringen. De wetenschap die de beginselen van Darwin

van natuurlijke selectie toepast bij het ontwerpen van automatische

probleemoplossers, waartoe bovenstaande methode ook behoort,

heet evolutionary computing. Guszti Eiben, sinds augustus 1999

hoogleraar computational intelligence, geeft een overzicht van het

vakgebied.

Developing automated problem solvers (that is, algorithms) is

one of the central themes of mathematics and computer science.

Similarly to engineering, where looking at Nature’s solutions has

always been a source of inspiration, copying ‘natural problem

solvers’ is a stream within these disciplines. When looking for the

most powerful problem solver of the universe, two candidates are

rather straightforward:

− the human brain;

− the evolutionary process that created the human brain.

Trying to design problem solvers based on these answers leads

to the fields of neurocomputing, and evolutionary computing, re-

spectively. The fundamental metaphor of evolutionary comput-

ing relates natural evolution to problem solving in a trial-and-

error (also known as generate-and-test) fashion.

In natural evolution, a given environment is filled with a pop-

ulation of individuals that strive for survival and reproduction.

Their fitness – determined by the environment – tells how well

they succeed in achieving these goals, that is to say, it represents

their chances to live and multiply. In the context of a stochastic

generate-and-test style problem solving process we have a col-

lection of candidate solutions. Their quality – determined by the

given problem – determines the chance that they will be kept and

used as seeds for constructing further candidate solutions.

Surprisingly enough, this idea of applying Darwinian prin-

ciples to automated problem solving dates back to the forties,

long before the breakthrough of computers [14]. As early as in

1948 Turing proposed ‘genetical or evolutionary search’ and al-

ready in 1962 Bremermann actually executed computer exper-

iments on optimization through evolution and recombination.

During the sixties three different implementations of the basic

idea have been developed at three different places. In the USA Fo-

gel introduced evolutionary programming [13, 15], while Holland

called his method a genetic algorithm [16–17, 21]. In Germany

Rechenberg and Schwefel invented evolution strategies [22–23].

For about 15 years these areas developed separately; it is since

the early nineties that they are envisioned as different representa-

tives (‘dialects’) of one technology that was termed evolutionary

computing [1–3, 10, 20]. It was also in the early nineties that a

fourth stream following the general ideas has emerged: Koza’s

genetic programming [4, 18]. The contemporary terminology de-

notes the whole field by evolutionary computing, or evolutionary

algorithms, and considers evolutionary programming, evolution

strategies, genetic algorithms, and genetic programming as sub-

areas.

EVOLUTION PROBLEM SOLVING

environment ←→ problem

individual ←→ candidate solution

fitness ←→ quality

Table 1 The basic evolutionary computing metaphor linking natural evolution to problem
solving



Agoston E. Eiben The most powerful computing in the universe? NAW 5/3 nr. 2 juni 2002 127

ting in the universe?

What is an evolutionary algorithm?

As the history of the field suggests there are many different vari-

ants of evolutionary algorithms. The common underlying idea

behind all these techniques is the same: given a population of

individuals the environmental pressure causes natural selection

(survival of the fittest) and hereby the fitness of the population is

growing. It is easy to see such a process as optimization. Given

an objective function to be maximized we can randomly create a

set of candidate solutions, that is to say, elements of the domain of

the objective function, and apply the objective function as an ab-

stract fitness measure – the higher the better. Based on this fitness,

some of the better candidates are chosen to seed the next gener-

ation by applying recombination and mutation to them. Recom-

bination is a binary operator applied to two selected candidates

(the so-called parents) and results one or two new candidates (the

children). Mutation is a unary operator, it is applied to one candi-

date and results in one new candidate. Executing recombination

and mutation leads to a set of new candidates (the offspring) that

compete – based on their fitness – with the old ones for a place in

the next generation. This process can be iterated until a solution

is found or a previously set computational limit is reached. In

this process selection acts as a force pushing quality, while varia-

tion operators (recombination and mutation) create the necessary

diversity. Their combined application leads to improving fitness

values in consecutive populations, that is, the evolution is opti-

mizing. (Actually, evolution is not ‘optimizing’ as there are no

general guarentees for finding an optimum, it is rather ‘approxi-

mizing’, by approaching optimal values closer and closer over its

course.)

Let us note that many components of such an evolutionary pro-

cess are stochastic. So is selection, where fitter individuals have a

higher chance to be selected than less fit ones, but typically even

the weak individuals have a chance to become a parent or to sur-

vive. For recombination of two individuals the choice on which

pieces will be recombined is random. Similarly for mutation, the

pieces that will be mutated within a candidate solution and the

new pieces replacing the old ones are chosen randomly. The gen-

eral scheme of an evolutionary algorithm is given in figure 1.

For the sake of completeness, let us note that the replace-

ment step is often called survivor selection. It is easy to see that

the above scheme falls in the category of generate-and-test algo-

rithms. The fitness function represents a heuristic estimation of

solution quality and the search process is driven by the varia-

tion and the selection operators. Evolutionary algorithms poss-

es a number of features that can help to position them within in

the family of generate-and-test methods. For example, they are

population based, that is to say, they process a whole collection of

candidate solutions simultaneously, they mostly use recombina-

tion to mix information of two candidate solutions into a new one

and they are stochastic.

The aforementioned dialects of evolutionary computing follow

the above general outlines and differ only in technical details. For

instance, the representation of a candidate solution is often used

to characterize different streams. Traditionally, the candidates are

represented by (that is to say, the data structure encoding a solu-

INITIALIZE population with random candidate solutions
COMPUTE FITNESS of each candidate

while not STOP-CRITERION do
SELECT parents
RECOMBINE pairs of parents
MUTATE the resulting offspring
COMPUTE FITNESS of new candidates
REPLACE some parents by some offspring

od

Figure 1 General scheme of an evolutionary algorithm



128 NAW 5/3 nr. 2 juni 2002 The most powerful computing in the universe? Agoston E. Eiben

Figure 2 A result of the Escher machine

tion has the form of) bit-strings in genetic algorithms, real-valued

vectors in evolution strategies, finite state machines in evolution-

ary programming and trees in genetic programming. These dif-

ferences have a mainly historical origin. Technically, a given rep-

resentation might be preferable over others if it matches the given

problem better, that is, it makes the encoding of candidate solu-

tions easier or more natural. For instance, for solving a satisfia-

bility problem the straightforward choice is to use bit-strings of

length n, where n is the number of logical variables, hence the ap-

propriate evolutionary algorithm would be a genetic algorithm.

For evolving a computer program that can play checkers trees are

well-suited (namely, the parse trees of the syntactic expressions

forming the programs), thus a genetic programming approach is

likely. It is important to note that the recombination and mutation

operators working on candidates must match the given represen-

tation. That is, for instance in genetic programming the recom-

bination operator works on trees, while in genetic algorithms it

operates on bit-strings. As opposed to variation operators, se-

lection takes only the fitness information into account, hence it

works independently from the actual representation. Differences

in the commonly applied selection mechanisms in each stream are

therefore rather a tradition than a technical necessity.

It is worth to note that the borders between the four main evo-

lutionary computing streams are diminishing in the last decade.

This ‘unionism’ has a technical and a psychological aspect. On

the one hand, many evolutionary algorithms have been proposed

that are hard to classify along the traditional lines. On the oth-

er hand, more and more evolutionary computing researchers

and practitioners follow a pragmatic attitude choosing whichev-

er type of representation, variation operators, or selection pro-

cedures are appropriate, without bothering much about whether

the resulting combination fits in one of the traditional categories.

Representation bit-strings

Recombination 1-point crossover

Mutation bit-flip

Selection fitness-proportional

Replacement generational

Table 2 Sketch of the simple genetic algorithm

Genetic algorithms

In this section we go into more details and illustrate the work-

ing of evolutionary algorithms by discussing a well-known type:

genetic algorithms.

The simple genetic algorithm

During the last two decades several GA variants have been in-

troduced. Here we will discuss the oldest version, named simple

GA, that can be easily specified by the particular instantiations of

the EA components as shown in table 2.

In the sequel we will consider these components one by one.

The first step in handling a problem by an evolutionary algorithm

is to define the representation. In evolutionary terms, one needs

to specify which genotypes, also called chromosomes, represent

(encode) the given phenotypes, the candidate solutions. To illus-

trate this matter let us take an extremely simple problem: max-

imizing f (x) = x2 on N between 0 en 31. The simple genetic

algorithm representation would use bit-strings of length 5 with

the obvious encoding, for example 11000 denoting 24. This de-

fines the genotype space {0, 1}5, where the genetic search will

take place. The fitness value of a given genotype (bit-string) is the

square of the uniquely defined phenotype (integer) it represents.

Figure 3 Example of 2-point crossover

Fitness proportional selection assigns selection probabilities to

chromosomes proportionally with their fitness:

Prob(ci) = f (x(ci))/
m

∑
j=1

f ((x(c j)),

where m is the population size, c j ∈ {1, . . . , m} denote the chro-

mosomes, and x(ci) stands for the integer encoded by ci. Then

m independent drawings with replacement, based on these selec-

tion probabilities, are performed to select m chromosomes that

will undergo crossover and mutation. The selected chromosomes

form the mating pool. Note that this mechanism is biased, in the

sense that chromosomes with a higher fitness get a higher selec-

tion probability and expectedly deliver more copies into the mat-

ing pool. After the mating pool has been established recombina-

tion, implemented by 1-point crossover, and mutation are execut-

ed.

For recombination, the mating pool is divided into randomly

selected pairs and 1-point crossover is applied to each pair. An

algorithm parameter called crossover rate pc prescribes the prob-

ability of actually executing the operator on a given pair — with a

chance of 1− pc it will not be performed and the two children are

simply identical copies of the parents. When executing 1-point

crossover, first a crossover point is selected randomly, telling after

which bit position the strings will be crossed. Then the two strings

are broken at this point and the tails are exchanged. A straight-



Agoston E. Eiben The most powerful computing in the universe? NAW 5/3 nr. 2 juni 2002 129

forward generalization of this operator is the n-point crossover

that uses n crossover points and combines the resulting segments

from the parents in an alternating fashion. Figure 3 illustrates this

operator for n = 2.

The mutation operator traverses a given genotype to be mutat-

ed from left to right and at each position it flips the bit with prob-

ability pm, the so-called mutation rate. Note that by the stochastic

character of crossover and mutation four types of offspring can be

generated: offspring that ‘escaped’ both operators and are iden-

tical to old chromosomes, offspring that result from application

of one of the operators only, and offspring that is obtained by

crossover and mutation. The last steps to execute in a simple

genetic algorithm cycle are to determine the fitness of the new-

born offspring and, based on the fitness values, to decide which

of them can enter the population. Since the population size is

kept constant, allowing a new chromosome is always at the cost

of removing an old one. In this, the simple genetic algorithm is

indeed very simple: the whole old population is deleted and each

newly generated chromosome is allowed into the new one. This

mechanism is called generational replacement. The Darwinian

survival-of-the-fittest is thus somewhat implicit here, the simple

genetic algorithm rather features mating-of-the-fittest.

Maximizing the function f (x) = x2

Here we show the details of one selection-reproduction cycle on

a simple (thus traceable) problem after Goldberg [16]. Table 3

shows a random initial population of four genotypes, the cor-

responding phenotypes, their fitness values and figures corre-

sponding to fitness proportional selection. Table 4 exhibits the

results of crossover on the given mating pool, together with the

corresponding fitness values. In the table Probi = fi/ ∑ f j, the ex-

pected count after selection is fi/ f̄ (displayed values are rounded

up), and the actual count stands for the number of copies in the

mating pool, that is to say, it shows the simulated outcomes of the

drawings. Although manually engineered, this example shows a

typical progress: the average fitness grows from 293 to 439 and

the best fitness in the population from 576 to 729.

Other genetic algorithms

As mentioned earlier, there are many variants of the simple ge-

netic algorithm, usually intended to fix one of its shortcomings.

Various representations have been introduced to circumvent the

limitations of using bit-strings. A natural extension is using

real-valued vectors – an obvious choice for multi-dimensional

(Rn → R) optimization problems. Another commonly used op-

tion is using integer vectors, allowing a finite number of possible

values at each position in the chromosomes. A specific case of this

is the so called order-based representation, where chromosomes

are permutations over a finite alphabet. Obviously, crossover and

mutation operators must be adopted to new representations. For

instance, in case of order-based representation, the operators must

create permutations from permutations.

Another line of extending the simple genetic algorithm is to

change the parent selection mechanism. A popular one is k-

tournament selection, where k candidates are drawn randomly

from the population with a uniform distribution, their fitness val-

ues are compared, and the best one winning the tournament gets

selected. A clear advantage of this mechanism is that the selective

pressure is scalable by the parameter k.

string initial x value fitness Probi expected actual

nr. population f (x) = x2 count count

1 0 1 1 0 1 13 169 0.14 0.58 1

2 1 1 0 0 0 24 576 0.49 1.97 2

3 0 1 0 0 0 8 64 0.06 0.22 0

4 1 0 0 1 1 19 361 0.31 1.23 1

Sum 1170 1.00 4.00 4

Average 293 0.25 1.00 1

Max 576 0.49 1.97 2

Table 3 The x2 example 1: initialization, evaluation, and selection.

string mating crossover offspring x value fitness

nr. pool point after xover f (x) = x2

1 0 1 1 0 | 1 4 0 1 1 0 0 12 144

2 1 1 0 0 | 0 4 1 1 0 0 1 25 625

2 1 1 | 0 0 0 2 1 1 0 1 1 27 729

4 1 0 | 0 1 1 2 1 0 0 0 0 16 256

Sum 1754

Average 439

Max 729

Table 4 The x2 example 2: crossover and offspring evaluation. Mutation is omitted for the
sake of simplicity.

There are also variations of the replacement (survivor selection)

mechanism. In the so-called steady-state genetic algorithms on-

ly a part of the whole population is replaced in one cycle. For

instance, 2 new chromosomes are created after parent selection,

crossover and mutation, and they are immediately reinserted in

the population removing two old solutions. To choose the old

ones to be replaced there are several options again.

Evolution strategies and self-adaptation

In this section we sketch evolution strategies. Hereby we present

a second member of the evolutionary algorithm family and il-

lustrate a very useful feature in evolutionary computing: self-

adaptation. In general, self-adaptivity means that some param-

eters of the evolutionary algorithm are varied during a run in a

specific manner: the parameters are included in the chromosomes

and co-evolve with the solutions. This feature is inherent for evo-

lution strategies, that is to say, from the earliest versions ESs are

self-adaptive. During the last couple of years also other EAs are

adopting self-adaptivity. The one glance summary of evolution

strategie is given in table 5, detailed explanation is given in the

text below.

Evolution strategies are typically used for continuous param-

eter optimization problems, that is to say, functions of the type

f : R
n → R, using real-valued vectors as candidate solutions (no

Representation real-valued vectors

Recombination discrete or intermediary

Mutation Gaussian perturbation

Selection uniform random

Replacement (µ, λ) or (µ + λ)

Speciality self-adaptation of mutation step sizes

Table 5 Sketch of evolution strategie



130 NAW 5/3 nr. 2 juni 2002 The most powerful computing in the universe? Agoston E. Eiben

encoding step needed). Parent selection is done by drawing in-

dividuals with a uniform distribution from the population of µ.

Thus, unlike in GAs, there is no bias for quality here. Selective

pressure comes from creating λ > µ offspring (very often µ/λ is

about 1/7). After creating λ offspring and calculating their fit-

ness the best µ of them is chosen deterministically either from the

offspring only, called (µ, λ) selection, or from the union of parents

and offspring, called (µ + λ) selection. Recombination in evolu-

tion strategies is rather straightforward, two parent vectors ū and

v̄ create one child w̄, where:

wi =



















(ui + vi)/2 in case of intermediary

recombination,

ui or vi chosen randomly in case of discrete

recombination.

The so-called global variant of recombination is performed for an

arbitrary number of parents. The mutation operator is based on a

Gaussian distribution requiring two parameters: the mean, which

is always set at zero, and the standard deviation σ , which is inter-

preted as the mutation step size. Mutations then are realized by

replacing components of the vector ~x by

x′i = xi + N(0,σ),

where N(0,σ) denotes a random number drawn from a Gaussian

distribution with zero mean and standard deviation σ . By us-

ing a Gaussian distribution here, small mutations are more like-

ly then large ones. The particular feature of mutation in evo-

lution strategies is that the step-sizes are also included in the

chromosomes, in the most general case one for each position

i ∈ {1, . . . , n}. A typical candidate is thus 〈x1 , . . . , xn ,σ1 , . . . ,σn〉

and mutations are realized by replacing 〈x1 , . . . , xn ,σ1 , . . . ,σn〉 by

〈x′1 , . . . , x′n ,σ ′1 , . . . ,σ ′n〉, where

σ ′i = σi · e
N(0,∆σ) , x′i = xi + N(0,σ ′i ),

and ∆σ is a parameter of the method.

By this mechanism the mutation step sizes are not set by the

user, they (the σ̄ part) are co-evolving with the solutions (the x̄

part). To this feature it is essential to modify the σ ’s first and mu-

tate the x’s with the new σ values. The rationale behind it is that

an individual 〈x̄, σ̄〉 is evaluated twice. Primarily, it is evaluated

directly for its viability during survivor selection based on f (x̄).

Secondarily, it is evaluated for its ability to create good offspring.

This happens indirectly: a σ value evaluates favourably if the off-

spring generated by using it turns viable (in the first sense). Thus,

an individual 〈x̄, σ̄〉 represents a good x̄ that survived (µ, λ) or

(µ + λ) selection and a good σ̄ that proved successful in generat-

ing this good x̄.

In general, modifying algorithm parameters during a run is

motivated by the fact that the search process has different phas-

es and a fixed parameter value might not be appropriate for each

phase [9]. For instance, in the beginning of the search an explo-

ration takes place, where the population is wide spread, locat-

ing promising areas in the search space. In this phase large leaps

are appropriate. Later on the search becomes more focused, ex-

ploiting information gained by exploration. During this phase

the population is concentrated around peaks on the fitness land-

scape and small variations are desirable. Self-adaptivity is a spe-

cific on-line parameter calibration technique, where the param-

eters (mutation step sizes in evolution strategies) are changed by

the algorithm itself with only minimal influence from the user (for

example, the value of ∆σ). In fact, the algorithm is performing

two tasks simultaneously, it is solving a given problem and it is

calibrating itself for solving that problem. A particularly nice fea-

ture of evolutionary algorithms is their robustness – the evolution

of the evolution works not only in carbon, but also in computer

simulations.

What are evolutionary algorithms good for?

Evolutionary algorithms form a metaheuristic, applicable to a

wide range of problems. They are not developed with a specif-

ic problem domain in mind and are also not particularly tailored

for some application area. Therefore, it is hard to give a list of

problems or problem types where they provably outperform al-

ternative techniques. However, there is a widely shared view that

in general evolutionary algorithms are very good on complex, ill-

understood problems without an adequate analytical model or

problems that do not have an optimal, analytical solution algo-

rithm. In particular, an evolutionary algorithm is likely to suc-

ceed in comparison with other approaches if one or more of the

following hold:

− the given problem has many parameters leading to a large

search space,

− the problem has parameters of different types (for example, re-

als and integers),

− there are complex non-linear interactions between the param-

eters leading to a complex non-linear objective function,

− the objective function has many local optima,

− the objective function is changing over time,

− there is noise in the data hindering exact calculations.

Common wisdom within evolutionary computing also states that

evolutionary algorithms are seldomly superior on problems that

have been subjects of intensive study and have sophisticated solu-

tion methods, possibly with theoretical guarantees for an optimal

solution. The same common wisdom says, however, that it costs

only little effort (in comparison with those sophisticated methods:

much less effort) to develop an evolutionary algorithm delivering

an acceptable solution in acceptable running time. This is an of-

ten mentioned trade-off and it is widely believed that evolution-

ary algorithm solutions are very often very good, making them a

serious alternative to other approaches. Citing an unknown evo-

lutionary algorithm researcher: “An evolutionary algorithm is the

second best algorithm for any problem”.

Systematic and thorough comparisons between evolutionary

algorithms and other methods on (academic) benchmarks are

scarce, but there are reported good results ranging from combi-

natorial problems, for example, graph coloring [12], to data min-

ing, see [7], for instance. On the other hand, there are a lot of

reports on successful applications, typically spread over journals

and conference proceedings related to specific areas. A query on

web page [24] in the subject area Computer Science using “genet-

ic” as search term, restricting the search to the journal section and

the year 2001 resulted in 366 hits (October 2001 figure). A very in-

teresting account of the power of evolutionary computing is given

in [19]. The authors set eight criteria to establish whether a com-

puter program (an evolutionary algorithm, in this case) delivers



Agoston E. Eiben The most powerful computing in the universe? NAW 5/3 nr. 2 juni 2002 131

human-competitive results. These criteria include:

1. The result was patented as an invention in the past, is an im-

provement over a patented invention, or would qualify today

as a patentable new invention.

2. The result is equal to or better than a result that was accepted

as a new scientific result at the time when it was published in

a peer-reviewed scientific journal.

Using these criteria the authors show numerous instances where

evolutionary computing has produced a result that is competi-

tive with, and often better than, human performance, for instance

in design of electrical circuits, computational molecular biology,

quantum computing, or the automated creation of a checker play-

er playing as well as ‘class A’ humans.

It is often claimed that an evolutionary algorithm is not an op-

timizer in the strict sense [8]. Rather, evolutionary computing –

similarly to natural evolution – is a very good designer of com-

plex structures that are well adapted to a given environment or

task. The examples from [19] fit into this view and evolutionary

design is forming a rapidly growing, successful application area

[5–6]. One particular form of design is represented by evolution-

ary art, where the user interactively breeds pieces of art (pictures

or music, for instance). In this creative symbiosis the evolutionary

system is generating pieces of art and the user executes subjective

selection. The selected pieces are then randomly recombined and

mutated thus forming the next generation. A popular example,

the Escher Evolver, has been on exhibition in the Gemeentemuse-

um in the Hague between May and October 2000 [11], see figure 2

for an image evolved during this exhibition.

Finally, let us mention that evolutionary systems are also fre-

quently used for simulation purposes. In such applications

the evolutionary process is not supposed to solve a problem,

but serves as an underlying mechanism behind a certain phe-

nomenon. Simulations are then ran in a what-if mode, where the

emphasis lies on the emerging behavior and its dependencies on

system parameters. Artificial life and evolutionary economy (at

least certain branches of them) are two well-known example ar-

eas, sharing the view that survival-of-the-fittest is a major driving

force in the animal world as well as in the arena of economic play-

ers.

Concluding remarks

We explained the basics of evolutionary computing providing the

metaphor linking natural evolution to problem solving and illus-

trating the matter with two specific evolutionary algorithms. Evo-

lutionary computing can be seen in a broader perspective of nat-

ural computing, an emerging discipline uniting various develop-

ments concerned with algorithms mimicking natural processes.

Well-known other members of this family are neural networks,

simulated annealing, and DNA computing. The power of this

movement is rooted in the power of certain natural processes that

can be envisioned as problem solving. With some exaggeration

it can be said that Nature is the best general problem solver we

know. It is thus nothing but natural (sic!) to try to adapt Nature’s

tricks for solving problems by computers. Therefore, it’s safe to

state that this movement is viable, and to expect that it will bring

along further interesting developments. k

References

1 T. Bäck, Evolutionary Algorithms in Theory
and Practice, Oxford University Press, New
York, 1996.

2 T. Bäck, D.B. Fogel, and Z. Michalewicz, ed-
itors, Evolutionary Computation 1: Basic Al-
gorithms and Operators, Institute of Physics
Publishing, 2000.

3 T. Bäck, D.B. Fogel, and Z. Michalewicz,
editors, Evolutionary Computation 2: Ad-
vanced Algorithms and Operators, Institute of
Physics Publishing, 2000.

4 W. Banzhaf, P. Nordin, R.E. Keller, and F.D.
Francone, Genetic Porgramming: An Intro-
duction, Morgan Kaufmann, 1998.

5 P.J. Bentley, editor, Evolutionary Design by
Computers, Morgan Kaufmann, 1999.

6 P.J. Bentley and D.W. Corne, editors, Cre-
ative Evolutionary Systems, Academic Press,
2002.

7 M. Brameier and W. Banzhaf, ‘A compar-
ison of linear genetic programming and
neural networks in medical data mining’,
IEEE Transactions on Evolutionary Computa-
tion, 5(1), 17–26, 2001.

8 K. A. DeJong, ‘Are genetic algorithms
function optimizers?’, In R. Männer and
B. Manderick, editors, Proceedings of the 2nd

Conference on Parallel Problem Solving from
Nature, 3–13, North-Holland, 1992.

9 A.E. Eiben, R. Hinterding, and Z. Michale-
wicz, ‘Parameter control in evolutionary al-
gorithmsm’, IEEE Transactions on Evolution-
ary Computation, 3(2), 124–141, 1999.

10 A.E. Eiben and Z. Michalewicz, editors,
Evolutionary Computation, IOS Press, 1998.

11 A.E. Eiben, R. Nabuurs, and I. Booij, ‘The
Escher evolver: Evolution to the people’,
In P.J. Bentley and D.W. Corne, editors,
Creative Evolutionary Systems, 425–439, Aca-
demic Press, 2001.

12 A.E. Eiben, J.K. van der Hauw, and J.I.
van Hemert, ‘Graph coloring with adaptive
evolutionary algorithms’, Journal of Heuris-
tics, 4(1), 25–46, 1998.

13 D.B. Fogel, Evolutionary Computation, IEEE
Press, 1995.

14 D.B. Fogel, editor, Evolutionary Computa-
tion: the Fossile Record, IEEE Press, 1998.

15 L.J. Fogel, A.J. Owens, and M.J. Walsh, Arti-
ficial Intelligence through Simulated Evolution,
John Wiley, 1966.

16 D.E. Goldberg, Genetic Algorithms in Search,
Optimization and Machine Learning, Addi-
son-Wesley, 1989.

17 J.H. Holland, Adaption in natural and artifi-
cial systems, MIT Press, 1992, First edition:
1975, The University of Michigan.

18 J.R. Koza, Genetic Programming, MIT Press,
1992.

19 J.R. Koza, M.A. Keane, J. Yu, F.H. Ben-
nett, W. Mydlowec, ‘Automatic creation
of human-competitive programs and con-
trollers by means of genetic program-
ming’, Genetic Programming and Evolvable
Machines, 1(1/2):121–164, 2000.

20 Z. Michalewicz, Genetic Algorithms + Da-
ta structures = Evolution programs. Springer,
Berlin, 3rd edition, 1996.

21 M. Mitchell, An Introduction to Genetic Algo-
rithms. MIT Press, 1996.

22 I. Rechenberg, Evolutionstrategie: Optimie-
rung Technisher Systeme nach Prinzipien des
Biologischen Evolution, Fromman-Hozlboog
Verlag, Stuttgart, 1973.

23 H.-P. Schwefel, Evolution and Optimum Seek-
ing, Wiley, New York, 1995.

24 http://www.sciencedirect.com/science


