Problem Section

Solutions to the problems in this section can be sent to the editor — preferably by e-mail. The most elegant solutions will be published in a later issue. Readers are invited to submit general mathematical problems. Unless the problem is still open, a valid solution should be included.

Editor:

R.J. Fokkink Technische Universiteit Delft Faculteit Wiskunde P.O. Box 5031 2600 GA Delft The Netherlands r.j.fokkink@its.tudelft.nl Let *L* be a Latin square of order *n*. Show that any matrix $A \subset L$ of order $a \times b$ with a + b = n + 1 contains all elements 1, 2, ..., n.

Problem 28 (H. van den Berg)

For integers k, m, n and a prime number $p \ge 5$ show that if $(k^2 - mn)^p + (m^2 - kn)^p + (n^2 - km)^p = 0$, then p divides all three numbers $k^2 - mn, m^2 - kn, n^2 - km$.

Problem 29 (Lute Kamstra, open problem)

Problemen

Let $n \in \mathbf{N}$, $h \in \mathbf{N}_0$ and let A be a subset of $\{1, 2, ..., n + h\}$ of size n. Count the number of bijective maps $\pi : \{1, 2, ..., n\} \rightarrow A$ such that $k \le \pi(k) \le k + h$ for all $1 \le k \le n$.

Solutions to volume 2, number 3 (September 2001)

Problem 21

Suppose that E^n is a finite-dimensional (real) vector space of dimension > 2 and that f, g are quadratic forms on E^n such that f(x) = g(x) = 0 implies that x = 0. Show that there are real numbers a, b such that af + bg is positive definite.

Solution The solution is taken from a paper of E. Calabi. Consider the map $E^n \to \mathbb{R}^2$ defined by $x \to (f(x), g(x))$, which maps lines onto lines. Hence, this induces a map $F: P^{n-1} \to P^1$ between (real) projective spaces. The preimage of a point $(a, b) \in P^1$ is a quadric (af + bg)(x) = 0, which is a closed and connected subset of P^{n-1} . Since P^1 has fundamental group \mathbb{Z} and P^{n-1} has fundamental group \mathbb{Z}_2 , the map F can be lifted to $\tilde{F}: P^{n-1} \to \mathbb{R}$. If F were surjective, then there would be a point $(a, b) \in P^1$ such that \tilde{F} maps onto two or more preimages of (a, b), contradicting that (af + bg)(x) = 0 is connected. So there exists an $(a, b) \in P^1$ which is not in the image of F. Then either (af + bg)(x) < 0 or (af + bg)(x) > 0 for all nonzero $x \in E^n$. Replacing (a, b) by (-a, -b), if necessary, this gives a positive definite quadratic form af + bg.

The number 111001100000110101 is a square in base 5. In the following problems an *n*-binary number stands for a number that, written in base *n*, consists of digits 0 and 1 only, ending with a 1.

Problem 22

Prove that there are infinitely many 4-binary squares and 3-binary cubes with more than *N* digits equal to 1, for any natural number *N*.

Solution The following solutions were given by Aad Thoen. Observe that $a = 4^{2k+1} + 4^{k+1} + 1$ is a square for any natural number *k*. Now if *x* is a 4-binary square then so is *ax*, for sufficiently large *k*. The solution for 3-binary cubes is very neat. Consider the 3-binary numbers

$$x = \sum_{i=0}^{2^n} 3^i$$
 and $y = \sum_{i=1}^n 3^{2i}$.

Then $x = \frac{1}{2}(3^{2n+1} - 1)$ and $y = \frac{1}{8}(3^{2n+2} - 3^2)$. One verifies that $x^3 = 1 + (3^{4n+1} + 1)y$, which is a 3-binary number with 2n + 1 digits equal to 1.

Problem 23 (Open problem)

Are there 3-binary squares with more than *N* digits equal to 1, for any natural number *N*?

Solution This problem remains open.