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Letters to the editor

Oscillations of the Taylor
polynomials of the sine function

In Nieuw Archief voor Wiskunde, december

2000, F. Rothe gives a first-order estimation

of the number of zeros Nω of a Taylorpolyno-

mial Pω of the sine function of high order ω,

i.e. Nω ∽

2
πe
· ω. The asymptotic formu-

la is proved by joining to the common upper

bound of the remainder a sufficiently close

lower bound. The bound and its derivation

are clearly ad-hoc.

It seems to me that the result is a straight-

forward corollary to two general formulae for

remainders of Taylor expansions I derived in

[1, Proposition 3.2, Theorem 3.5] and [2, The-

orem 3.11 and Chapter 3.4]. The formulae be-

long to nonstandard analysis, which makes

them somewhat particular. However, the for-

mulae contain two parameters, index and

place. It is not natural to let one of the pa-

rameters go to infinity, or to couple them, so

the formulae cannot be translated directly to

standard formulae.

The formulae were derived within Internal

Set Theory (IST) of E. Nelson. In this ax-

iomatic system, which is consistent with clas-

sical set theory, the set R contains infinites-

imals and infinitely large or unlimited num-

bers. Below I use some symbols of nonstan-

dard asymptotics: ∅, the ‘unknown’ infinites-

imal, £ the ‘unknown’ limited number, @ the

‘unknown’ appreciable number, analogous to

respectively o(1), O(1) and Os (1). An up-to-

date introduction to IST is given in [3].

In the case of the sine function, the first

formula is the following. Let Rω−2(x) be the

remainder

sinx −
(ω−3)/2
∑

n =0

(−1)n
x2n+1

(2n + 1)!
,

such that the first neglected term (−1)ω
xω

ω! is

of (odd) degreeω. Then, for all realx, limited

or unlimited

Rω−2(x) =
(1 +∅)

1 + (x/ω)2
· (−1)ω

xω

ω!
. (1)

The second formula gives the remainder for

the special values x = ω′ +u with ω′ =
ω
e

+
1
2e logω and u limited. Then

Rω−2(ω′ +u) ≃ (−1)ω
eeu√

2π (1 +
1

e2 )
. (2)

Applied to the cosine function, the formulae

are identical, for evenω.

We consider only positivex and claim that

the distance between the last zero of the Tay-

lor polynomialPω−2 andω′ is limited. Notice

that, firstly,

F (x) ≡ 1

1 + (x/ω)2
· (−1)ω

xω

ω!

is monotonous in x, and, secondly that for-

mula (2) implies that if u passes through all

limited values, F (ω′ + u) passes through all

appreciable values. Hence it follows from the

monotony of F (x) that F (x) is infinitesimal

for x = ω′ + u with u negative unlimited,

appreciable for x = ω′ + u with u limited,

and unlimited for x = ω′ + u with u positive

unlimited. The same partition holds for the

remainder, since Rω−2(x) = (1 + ∅)F (x).

As long as the remainder of the sine func-

tion is infinitesimal, the Taylor polynomial has

a zero infinitely close to every zero of the sine

function kπ , with integer k. In fact, there

is only one zero, for the polynomial Pω−2 is

transversal to thex-axis: the derivative of the

polynomial is the Taylor polynomial of degree

ω − 3 of the cosine function, and because

formula (1) is also valid for the cosine func-

tion, one has P ′ω−2(x) ≃ cos(x) ≃ ±1 for all

x ≃ kπ . If the remainder of the sine function

is unlimited, the distance between Pω−2 and

the x-axis is also unlimited, and no more ze-

ros can occur. We conclude that the last zero

is of the form ω′ + u with u limited. It could

be determined individually for most ω up to

an infinitesimal, using formula (2).

We see that the number of positive zeros

is (ω′ + £) /π , and by symmetry

Nω−2 =
2

πe
·ω +

1

πe
· logω + £.

The same expression holds for Nω.

The problem in question is somewhat

anecdotical, but the formulae behind are not.

Formulae (1) and (2) hold under very general

conditions, implying that the remainder as a

function of the distance to the origine is lo-

cally exponential such as in (2), and that the

series is locally exponential (geometric) as a

function of the index; indeed, we recognize in

(1) the remainder of a geometric series with

ratio−
(

x
ω

)2
. Finally we mention that that the

crucial values x = ω′ + £ may be determined

from (1), by solving the external equation

(1 +∅)

1 + (x/ω)2
.
xω

ω!
= @,

which can be effectuated using systematic, al-

gebraic methods based on the external num-

bers of [3] and [4]. k

The sine function approximated by the polynomials
of its Taylor series.
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