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From chaos to early warnings

Een van de grondleggers van het moderne vakgebied ’dynamische

systemen’, Floris Takens, werd onlangs zestig jaar. Tegelijkertijd ging

hij met emeritaat. Ter ere van zijn bijdragen aan de internationale

ontwikkeling van de dynamische systemen, werd in Groningen van

25–29 juni een workshop ‘Global analysis of dynamical systems’

georganiseerd.

Op 30 juni werd deze viering besloten met een publiek evenement

in de Senaatszaal van de Universiteit Groningen. Jacob Palis, presi-

dent van de International Mathematical Union, vriend en collega met

wie Takens veel heeft samengewerkt, sprak in de eerste lezing zijn

lof uit over het werk en de persoon van Floris Takens. De tweede

lezing die dag was van Floris Takens zelf.

Het onderstaande artikel is een bewerkte versie van die rede. Ta-

kens bespreekt hoe de theorie van de niet-lineaire dynamische sys-

temen wordt toegepast om bij een chemisch proces vroegtijdig voor

klontering te waarschuwen, daar waar gewone lineaire tijdreeks-

analyse faalt.

We first need to say a few words about chaos. I do not mean chaos

here in the theological sense of ‘the disorder of formless matter

and infinite space which is supposed to have existed before the

creation’, but rather in the mathematical sense, which refers to

a situation where the time evolution is strictly deterministic, but

still, to some extent, unpredictable. I will illustrate this somewhat

paradoxical state with an example: the game of billiards.

Billiards

This game is played on a table of approximately 250 cm by 125

cm, usually with 3 balls (although there are variants with 2 to 22

balls); when a ball hits a side of the table it is reflected back. The

general idea is to hit one of the balls, giving it an initial veloci-

ty, such that it collides with other balls. The rules of the game

give prescriptions about which balls should collide and in which

order. With some experimentation one finds that it is not hard

to hit a ball in such a way that it collides with a prescribed ball.

What happens after this first collision, however, is harder to con-

trol. This is due to the fact that small differences in the direction

of the initial velocity of the first ball lead to big differences after

the first collision. This can be understood in the following way: if

the distance between the first ball (which we hit directly) and the

second ball, with which the first collision is to be made, is denot-

ed by ℓ and if the diameter of the balls is denoted by d, then, in

order to realize this first collision, we need to give the first ball an

initial velocity whose direction is in a sector with opening angle

approximately 2d/ℓ (radians). This is illustrated in figure 1. So a

deviation in the initial direction up to d/ℓ can cause the ball to go,

after the first collision, anywhere; this means that ℓ/d is a mea-

sure of the amplification of small deviations in the velocity which

occurs at the first collision. We shall call this amplification factor

the scattering factor. Note that the value ℓ/d is only a rough esti-

mate, since, among other things, we neglected the strength of the

initial velocity and took only its direction into account.

The above argument can be repeated: after the second collision

the effect of a deviation of the initial velocity is multiplied by the

square of the scattering factor. Et cetera. This growth of the effect

of a small deviation is the reason that skill is required to play this

game, and that it could become a sport.

We can imagine a frictionless game of billiards where much

more collisions are possible. After the n-th collision the effect of a

deviation of the initial velocity, if sufficiently small, is multiplied

by the scattering factor to the n-th power; this is called exponential

growth. It turns out that exponential growth rapidly leads to un-

believable results.2 For example, if one wants to hit a ball so that

it collides with nine balls in a given order, then one has to take

into account even the effect of the gravitational force between the

player and the balls!3 In a situation like this, where the effect of

small deviations in an initial state grow exponentially with time,

one speaks of sensitive dependence on initial states. Systems with

sensitive dependence on initial states are called chaotic.

The same arguments can be appied to the molucular motion

in a gas. Even without quantum mechanics, this rapidly leads to

complete unpredictability.

General description

The fact that isolated systems, which are reasonably predictable

over short periods, may be completely unpredictable over longer

periods is known in other situations too. One may think of the

weather. However, in the case of the weather we have a system,
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Figure 1 The game of billiards

the state of which has a much greater complexity (or dimension).

With this we mean the following. The state of a game of bil-

liards is given by the positions of, say, three balls (that is, by six

numbers) and their velocities (another, by six numbers), at least

if we neglect the spinning of the balls; so the state of the game of

billiards is 12 dimensional (given by 12 numbers). The state of the

meteorological system, as it is represented in present day comput-

er models, has a dimension of the order of 5,000,000. In principle,

and this was the standard opinion up to a few decades ago, the

unpredictability of the weather is related to the fact that its states

have such a high complexity.

Around 1970, within the framework of the mathematical theo-

ry of dynamical systems, Stephen Smale and co-workers had de-

veloped a geometric theory of abstract dynamical systems with

both low dimension states and with sensitive dependence on ini-

tial states.4 On the other hand, already in 1963 the meteorologist

Edward N. Lorenz had experimentally found sensitive depen-

dence on initial states in an extremely simplified model of the me-

teorological system.5 (In this model the states had only dimension

three.) Years later it became known that these investations were

dealing with the same phenomenon, only by different means. It

has now become clear that the unpredictability of the weather, at

least over longer intervals than a few days, is related to sensitive

dependence on initial states. This effect is known as the Butterfly

effect after the title of a paper by Lorenz: ‘Can the flap of a butterfly’s

wing stir up a tornado in Texas?’. Apart from this, it is question-

able whether the meteorological system should be considered as

strictly deterministic.

Deterministic processes with sensitive dependence on initial

states were produced as laboratory experiments. For example, in

nonlinear electronic devices, chemical reactions, and also in me-

chanical experiments involving resonances. Also, one is now con-

vinced that this sensitive dependence plays a role in the dynam-

ics of our solar system, but that is on a much longer time scale.6

In general however, deterministic systems with low dimensional

states are rare, especially outside the laboratory. Still one may ex-

pect that there are situations which can be realistically described

in terms of a combination of sensitive dependence on initial states

and some randomness.

Chaos, determinism, and predictability

The notions of determinism, chaos, and predictability can be illus-

trated in a schematic way by following the future development of

an initial state or a set of initial states for a short time (say one

unit of time) and also for a longer time interval, here denoted by

T ≫ 1. In figure 2 we compare the deterministic case with the

stochastic case: that is the case where the state at time t + 1 is not

completely determined by the state at time t. The indeterminacy

is supposed to be completely random. These diagrams suggest

that, if we cannot distinguish between nearby states, the differ-

ence between the stochastic case and the chaotic case is only small,

except that in the chaotic case the short term predictability is bet-

ter. This short term predictability can still be somewhat extensive:

for the meteorological system it is this better predictability on the

short term that makes weather forecasts better than statistical pre-

dictions such as ‘the weather of tomorrow will be like the weather

of today with some correction in the direction of the climatologi-

cal averages for the time of the year’.

In situations where it is interesting to know how predictable

the future is, one may think for instance of the financial mar-

kets, one might want to know whether one deals with random-

ness or with sensitive dependence on initial states. As mentioned

before, pure determinism is rare, so we expect no pure sensitive

dependence on initial states. However, we should be able to de-

tect the difference between the extreme cases: ‘purely random’7

and ‘purely deterministic but with sensitive dependence on initial

states’. This is a question in time series analysis.

A time series is a, usually long, sequence of measurements

{x1 , x2 , . . .}. In terms of the game of billiards without friction

mentioned earlier one may think of the position of one of the balls

measured at each of the successive collisions. The question is how

to decide whether such a time series is generated by a determin-

istic process. (In the case of such a time series from the game of

billiards it will be very hard to detect the deterministic principle.)

Consider the following two examples shown in figure 3. In this

case one can find out, by an hoc method, that time series (a) is pre-

dictable: Plotting for each n the point with coordinates (xn , xn+1),

one sees that xn+1, for the first time series, is completely deter-

mined by xn (within the accuracy of the figure) so that the system

must be deterministic. One can even conclude that the scattering

factor equals 5. Time series (b) in figure 3, on the other hand, does

not reveal any dependence of xn+1 on xn. In this way we detected

the difference between the two time series very clearly. However,

it is easy to produce examples where this ad hoc method does not

work.

Linear time series

There is a systematic statistical theory dealing with time series.8

It describes such series in terms of autocovariances (and average

values). This is what one usually calls linear time series analy-

sis. These autocovariances contain information about the average

dependence between successive elements of the time series, but

these autocovariances are absolutely unable to give information

about the question whether the time series is generated by a de-

terministic process or not. In fact, whatever the autocovariances

are, one can make a deterministic process generating time series

with the same autocovariances. When the original time series was

generated by a stochastic process, the corresponding determinis-

tic process has sensitive dependence on initial states. For exam-
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ple, the two time series in figure 3 have equal autocovariances,

the first being generated by a deterministic process with sensitive

dependence on initial states, while the second is purely random.

This means that additional methods for the analysis of time

series are needed if one wants to get an indication whether a given

time series is generated by a deterministic process or not; such

methods can be expected to also give information about the short

term predictability of the time series.

Nonlinear time series and predictability

The main systematic way to analyse a time series from the deter-

ministic point of view makes use of the so called correlation inte-

grals Ck(ε), with k a positive integer and ε a positive real number.

The number Ck(ε) is the probability that two randomly chosen

segment of length k differ by at most ε. Alhough this definition

was motivated by the problem of analysing deterministic systems

by the time series which they produce, one can see directly that

these quantities should give information in general about the pre-

dictability of a time series in the following way:

Suppose we recorded a quantity during a (long) period so as to

obtain a time series {x1 , . . . , xN}. The question is ‘how to predict

the next value?’ and ‘how reliable is our prediction?’. We try to

predict by analogy: we search for a segment in the past which

equals, up to a small error, the final segment xN−k+1 , . . . , xN .

We have to fix here the length k of the segment and the error

ε which we are willing to allow; these quatities are to be chosen

by a trial and error method. If we have found such a segment

xm , . . . , xm+k−1 in the past, we base our prediction on the assump-

tion that: ‘what happened (approximately) in the past will hap-

pen (approximately) again’. This is why we predict that xN+1 will

be close to xm+k. Now the question is: how reliable is such a pre-

diction? An indication can be obtained from the correlation inte-

grals Ck(ε). Namely, in making the prediction we assume that two

segments of length k, which were close, say within distance ε, will

stay close if they are both prolongated to length k + 1. The prob-

ability that this will indeed happen is equal to Ck+1(ε)/Ck(ε). So

if this quantity is close to 1 then the prediction has a high proba-

bility to be correct within an error of ε, but if this quantity is close

to zero, the prediction has only a very small probability of being

correct within an error of ε.

The above method of prediction is rather primitive and can

be improved. Still the quantities Ck+1(ε)/Ck(ε) give a good in-

dication of the predictability. In fact it turns out that very often

Ck+1(ε)/Ck(ε) becomes practically constant for increasing values

of k (and ε fixed). So one defines the ε-entropy H(ε) as

H(ε) = − log(Ck+1(ε)/Ck(ε)).

The effect of ‘− log’ is that H(ε) ≥ 0 and that the smaller H(ε)

is, the more reliable the predictions are. So H(ε) is a measure for

the unpredictability. For a time series generated by a deterministic

system H(ε) stays finite for decreasing ε, whereas for a time series

generated by a random system, H(ε) tends to infinity as ε goes to

zero.

So the unpredictability, or entropy, can be estimated in terms

of the way Ck(ε) decreases as k increases.

Similarly, the dimension D(k) of the states can be estimated in

terms of the way Ck(ε) decreases as ε tends to zero: if

Ck(ε) ∼ ε
D(k)

for fixed k, then D(k) is an indication for the dimension of the

states of the system. For a time series generated by a deterministic

system D(k) stays bounded for increasing k and approaches the

‘real dimension’; for a time series generated by a random system,

the values of D(k) increase in an unbounded way. The values of

D(k) are also related to unpredictability: if D(k) is big then Ck(ε)

decreases very fast with decreasingε, which means that one needs

an extremely long time series in order to find segments in the past

which are sufficiently close to the ‘final segment’.

Although the question of predictability was central in the

above discussion, and also played an important role in the de-

velopment of the theory of nonlinear time series analysis, it now

seems that the more important applications go in a somewhat

different direction. There were no cases outside the laboratory

where unexpected predictability was found. There have been

some claims that the financial markets allowed better short term

predictions with these ‘nonlinear’ methods, but these claims were

not really substantiated. And that was to be expected one way or

the other: if the method would have worked, it would have be-

come known, many people would have used it, and that would

have changed the dynamics of the markets. But in turn this would

have ruined the method since it is based on the assumption of sta-

tionarity (what happened in the past will happen again).

Figure 2 The behaviour of deterministic and stochastic systems
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Figure 3 On top, on the left a deterministic time series, and on the right a chaotic one.
Down, xn+1 plotted against xn , for both cases.

Early warnings

The general goal of a system for early warnings is to detect from

the recordings of a dynamical process whether some undesirable

change is to be expected. We first consider the case of a chemi-

cal reactor of which a characteristic variable, like the pressure, is

measured. This refers especially to so called fluid bed reactors as

studied for example by the group of Van den Bleek at the Techni-

cal University of Delft. Such chemical reactors can sometimes get

stuck, due to agglomeration of the reacting particles. If such an

event is not avoided, then, especially in the case of big industrial

reactors, it may be a big job to clean the reactor and the finantial

consequences can be considerable. So one is interested in a sys-

tem that produces a warning, as early as possible, whenever the

process shows a tendency of going wrong. False alarms should

be reduced to a minimum at the same time. The obvious strategy

is to analyse whether the general characteristics of the measured

signal change. It turned out that the analysis in terms of autoco-

variances, and related quantities, do not lead to reliable results.

Also these pressure signals are not predictable over time intervals

which are sufficiently long for the predictions to be used directly

for a warning system. What, however, turns out to be a much bet-

ter characteristic of the signal is the predictability itself: a change

in the entropy is a good indication that the size of the particles

changes (due to agglomeration), at least for reactors of laboratory

size which were used for the investigations so far.

Another situation where these correlation integral methods are

used is that of the analysis of the electro encephalogram (EEG)

recordings of epileptic patients. One of the objectives there is to

be able to give an early warning prior to a seizure, i.e. an epileptic

attack. In the last decade groups in both Germany and France

have made considerable progress in predicting these seizures by

applying methods based on correlation integrals.9 In this case,

however, it is not the entropy but the dimension which serves as

the most important indicator.

In both these cases, and possibly in other such applications,

these correlation integral methods are applied to time series from

systems which can certainly not be considered as both determinis-

tic and having low dimensional states. This means that the math-

ematical theory of correlation integrals for time series from deter-

ministic but chaotic systems is not valid. Still, it is not unreason-

able to expect that these quantities, like entropy and dimension,

are meaningful beyond the domain of validity of the mathemat-

ical theory; of course, this needs experimental validation in each

case. The reason why in one case (chemical reactions) one has to

use the entropy and in another (epilepsy) the dimension is essen-

tially unknown but should have its origin in the dynamical struc-

ture of these processes. This means that the construction of these

early warning systems is, to a large extent, a matter of experimen-

tation. The main mathematical contribution is the construction of

quantities which are relevant in special and simple, but relevant,

situations and, hence, are candidates for useful indicators in the

context of these more complicated dynamical processes.

Epilogue

After this exposé related to my own mathematical investigations

in the last decades, I want to say a few words about some prob-

lems which seem to threaten the mathematical profession. I am

thinking of the dramatic decrease of the number of students over

the last fifteen years. This is a development which is not only re-

stricted to mathematics, neither is it restricted to the Netherlands.

There are some general reasons for this decline which cannot be

influenced by the mathematical (or general scientific) community,

such as:

− research in mathematics, and other exact sciences, involves a

lot of painstaking work, or, as we call this in Dutch, monkish

work; this does not seem to fit well with the spirit of the age.

− since the end of the cold war, the urge of being ahead in high

technology and basic research does not exist any more — de-

sign has become more important.

Recently, there have been many initiatives to promote the interest

in mathematics of future students, which led to fruitful coopera-

tion between universities and the institutions for secondary edu-

cation. Alhough these initiatives are very worthwile, and should

certainly be continued, the effect does not seem to be sufficiently

strong. In my opinion there are reasons to look also at other as-

pects of this problem. Without giving concrete solutions I want to

point to two events in the recent years which, I think, one should

keep in mind when thinking about the image of mathematics.

Secondary education

The first event I am thinking of is the discussion about the reform

of the program of secondary schools in the Dutch parlement in

1997. In the law implementing this reform so-called profiles were

introduced defining the different types of final examinations giv-

ing entrance to the university. These profiles were, and are, in

order of increasing emphasis on mathematics:

1. society and culture,

2. society and economics,

3. nature and health, and

4. nature and technology.

In this discussion one of the members of parlement expressed the

concern that the first profile would be too easy and, hence, would

attract many students looking for an easy way out. In the an-

swer from the goverment a suggestion was proposed: an amount

of mathematics could be added to this first profile and, in order

not to expand the number of mathematics teachers needed, this

amount would be subtracted from the fourth profile. This led to a

discussion in the newspapers. The representatives of professions,
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for which this first profile was intended, protested on the basis

that mathematics was not needed for making this profile more

serious and that mathematics could be easily replaced by more

relevant subjects, such as Latin. The representatives from mathe-

matics and the exact sciences protested because they did not want

to see mathematics diminished. So the whole idea disappeared.

Still the story shows something. Even the responsible politi-

cians seem to have the idea that one of the main purposes of

mathematics is to make a curriculum heavier. Given this fact it

is no surprise to see that people are often proud not to know any

mathematics: they were smart enough not to become a victim of

such artificial obstacles.

This event shows in my opinion that many hours of mathemat-

ics in the secondary school curriculum is not necessarily a good

thing, neither for the students nor for the mathematical profes-

sion.

Quiz master problem

Another event is the public discussion in newspapers, not only

in the Netherlands, but also in the United States and Germany,

about the so called Quiz Master Problem. I am grateful to Niels

Kalma for providing copies of a substantial part of the newspaper

discussion. The problem can be stated as follows:

In a quiz a candidate is confronted with three identically looking doors;

behind one of the doors there is a prize. The candidate is invited to select

one of the doors, which however is not yet opened. Then the quiz mas-

ter opens one of the two doors which were not selected by the candidate,

showing that behind that door there is no prize. Now the canditate is al-

lowed to change the door of his preference. Then that door is opened, and

if the prize is behind that door, the candidate will win it. The question

is: what is the better stategy, to change or not to change ones door of

preference after the quiz master has opened one door behind which there

was no prize.

A correct solution of the problem as given in the German weekly

Die Zeit is the following.

There are three possibilities with equal probablity:

− the prize is behind the selected door;

− the prize is behind non-selected door number one. In this case the

quiz master has to open the non-selected door number two;

− the prize is behind non-selected door number two. In this case the

quiz master has to open the non-selected door number one.

It follows that in two of these three cases changing door leads to success;

not changing door is only successful in one case. Hence changing door

gives a greater probability to win.

Main sources of confusion in the discussion were arguments such

as:

‘Due to the quiz master opening one door, the probability of the prize

being behind that door drops from 1/3 to 0; this probability moves to

the door that is not opened and not selected.’

This is an unclear argument, which happens to give the right an-

swer. It was countered by an equally unclear argument, which

happens to give a wrong answer:

‘Why doesn’t the probability move to the selected door? By symmetry

one would expect that half of this probability goes to each of the closed

doors, so that for both the new probability is 1/2.’

What is missing in such arguments is a clear investigation of the

notion of ‘probabilities moving due to extra information’ and the

rules according to which these probabilities move. Such a dis-

cussion can be given, but it needs great care, since the notion of

probability itself is aready not free of problems. In the solution as

given in Die Zeit such unclear notions are avoided.

Both in the discussion in Germany and in the Netherlands the

general confusion was comparable. A difference was that the Ger-

man Die Zeit resolved the discussion with a good explanation, not

only of the right solution, but also explaining the reason of the

confusion. In the Dutch daily newspaper NRC Handelsblad, which

is considered to be a ‘quality paper’, this was beyond the avail-

able intellectual level and there the discussion was closed with

the observation:

‘The misunderstanding between common sense and mathematicians is

clearly unbridgeable.’

This remark makes it clear that the journalist in question seems

to have no idea that the essence of a mathematical argument is

not that it deviates from common sense, but that it is absolutely

conclusive, and hence does not make use of notions like ‘prob-

ability changing due to extra information’ without such notions

being fully understood. Such conclusive arguments, sometimes

called proofs, play a role in mathematics similar to experiments

in the natural sciences. Though it seems much more solid to build

on experiments than on arguments, it is a fact that the arguments

used by Euclid, some 2500 years ago, are still essentially consid-

ered valid.

It shows that even those who are not proud of knowing no

mathematics may not really care about the arguments they use

and, hence, convey a disdain for mathematical reasoning. k
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