
220 NAW 5/2 nr. 3 september 2001 Elliptic curve cryptosystems; too good to be true? Henk van Tilborg

Henk van Tilborg
Department of Mathematics and Computing Science

Eindhoven University of Technology

P.O. Box 513, 5600 MB Eindhoven

H.C.A.v.Tilborg@tue.nl

Overzichtsartikel

Elliptic curve cryptosystems;

Er bestaan vele publieke-sleutel cryptosystemen. Het vakgebied is

sterk in beweging en wordt gekenmerkt door hevige controverses.

Dat is logisch, want met het beveiligen van gegevens zijn grote com-

merciële belangen gemoeid. Op het Mathematisch Congres 2001 in

Amsterdam presenteerde Eric Verheul (Pricewaterhouse Coopers) in

een van de hoofdvoordrachten het cryptosysteem gebaseerd op de

discrete logarithme. Hij beweerde ondermeer dat cryptosystemen

gebaseerd op elliptische krommen trager zijn en eigenlijk achter-

haald. Henk van Tilborg geeft hier een andere visie.

An exponentiation, say the computation of 3i , can be performed

pretty efficiently by using the binary expansion of the exponent i.

For instance, the binary expansion of i = 2185 is given by

100010001001 and results in:

32185 =

(

((

((

324
)

3
)24)

3

)23)

3.

Also modular exponentiation, say the computation of 32185

(mod 3583), can be done efficiently: after each squaring or after

each multiplication by 3 reduce the result modulo 3583 and then

continue. (The answer is 220.)

To solve 3i ≡ 2217 (mod 3583), i.e., to determine log3 2217

in Z3583 , no method is known with a similar low complexity. This

observation forms the basis of a modern public key cryptosystem:

the discrete logarithm system (see [2]). The reason why it is easy

to take a logarithm but not a modular/discrete logarithm may

become clear by comparing the two pictures in Figure 1.

For the sake of completeness we mention that it is easy to solve

g2185 ≡ 2217 (mod 3583). Indeed, 3583 is a prime number and

so we know by a theorem of Fermat that g3582 ≡ 1 (mod 3583).

It follows that if we raise both hands to the power 1741 (the

multiplicative inverse of 2185 modulo 3582) we find the solution

g = 22171741 = 68. However, if the modulus is the product of

two primes, finding the solution becomes, in general, again infea-

sible for large moduli, simply because the factorization of large

numbers is infeasible. The RSA cryptosystem makes use of this

observation (see [11]).

Here, we shall discuss the Discrete Logarithm system. In the

next section, we shall explain how this system can be used by two

parties who can only communicate over a public channel (radio,

telephone, internet; all with potential eavesdroppers), to agree on

some secret number. This method is called the Diffie-Hellman key

exchange [2]. The common, secret number can be used by them

as a key in a conventional cryptosystem. In the same section, we

shall give an idea what kind of techniques are available to take

discrete logarithms. More importantly, the computational com-

plexities of these methods will be given. This is relevant for the

choice of the field Zp. If we take p sufficient large, even the fastest

method to take discrete logarithms is no threat to the security of

the Diffie-Hellman key exchange.

In 1985, Victor Miller (IBM, [9]) and Neil Koblitz (University

of Washington) realized that the additive group associated with

an elliptic curve can be used for a similar ‘public’ key-exchange

method. In the same year, Scott Vanstone together with other re-

Figure 1 The function log2 x over R and the discrete logarithm function log2 x in Z541

Henk van Tilborg Elliptic curve cryptosystems; too good to be true? NAW 5/2 nr. 3 september 2001 221

too good to be true?

searchers of the University of Waterloo in Ontario, Canada, start-

ed a company called Mobius, later renamed into Certicom, to

commercialize this idea. Now, about three hundred people are

employed by Certicom. Apparently, the people around Vanstone

realized that the invention by Miller and Koblitz was not just

an interesting mathematical generalization of the original Diffie-

Hellman idea, but that some aspects of it could lead to a very

promising practical (read: commercial) alternative. We shall ex-

plain their idea in greater detail in the section Elliptic curve sys-

tems below. The crux of their observation is that the only methods

to take discrete logarithms with subexponential complexity (time

and memory) can not be generalized to the elliptic curve setting.

So, only algorithms remain with exponential complexity. This al-

lows the choice of much smaller prime numbers and thus more

manageable parameters with the same level of security.

The discrete logarithm cryptosystem

Two people, say Alice and Bob, want to communicate privately

over a connection that is not secure. They can use a symmetric or

secret key cryptosystem to tackle this problem. In such a system,

both parties need to know a common secret, called the key. In the

Enigma, which was used by the Germans in WW-II, the key con-

sisted of the choice and the starting positions of three rotors [5].

In modern secret key cryptosystems the key is a string of 128, 192

or even more bits. The problem is that Alice and Bob have nev-

er met before and do not have a common secret key. They use

the Diffie-Hellman key exchange protocol to agree on this key.

Note that their communication takes place over a public channel,

where eavesdroppers may listen in.

Alice and Bob use a very large prime number p and an ele-

ment g in Zp of sufficiently large multiplicative order q (think of

128 bits long). In the sequel, we shall assume that q is prime (note

that q divides p− 1). Alice can choose the parameters p and g and

tell them to Bob or they can use standard parameters given by the

communication network. In all cases, an eavesdropper will also

know these parameters.

Next, Alice and Bob each choose a random exponent less

than q, say sA and sB. They compute kA = gsA , resp. kB = gsB

in Zp and exchange these values over the public channel. They

keep their exponent sA resp. sB secret. The common, secret value

of Alice and Bob is given by

gsAsB in Zp ,

which Alice can compute from (kB)sA and Bob from (kA)sB .

There is a practical complication with this system. How does

Alice know for sure that sB is indeed Bob’s public value? You

can think of a public directory (like a telephone book) in which

all these values are listed, but that is not a very practical solution.

More likely, you want some trustworthy authority to sign each

public value as authentic.

Clearly, the key exchange system, described above, is broken

as soon as an eavesdropper can determine sA from the known kA

(or sB from kB). This forces us to look at various techniques to

solve gs ≡ k (mod p), (1)

where g, k, and p are known and s needs to be determined. The

problem of how to solve (1) is called the discrete logarithm problem.

For further reading on the techniques described below, we refer

the reader to [8], an excellent handbook, or [14], a textbook with

interactive cd-rom.

Ways to determine a discrete logarithm

A brute-force way to find s would be to try s = 0, 1, 2, . . . until a

solution is found or, alternately, to put g0 , g1 , g2 , . . . in a table and

222 NAW 5/2 nr. 3 september 2001 Elliptic curve cryptosystems; too good to be true? Henk van Tilborg

9 (4,6) (5,5) (1,7) (7,5) (0,0) (5,3) (1,8) (3,5) (8,4) (7,9)

8 (1,8) (2,2) (6,5) (9,9) (9,6) (2,0) (4,4) (6,1) (2,3) (9,1)

7 (7,9) (1,0) (2,4) (2,3) (4,8) (0,3) (3,7) (8,2) (4,2) (6,5)

6 (9,9) (0,6) (1,5) (8,5) (7,3) (8,4) (9,5) (4,3) (3,8) (1,3)

5 (4,2) (9,9) (7,8) (4,8) (3,1) (5,1) (9,7) (1,9) (3,7) (6,9)

4 (1,2) (0,4) (7,6) (6,4) (0,5) (1,6) (8,7) (5,7) (1,7) (5,8)

3 (0,2) (5,0) (0,9) (4,9) (2,6) (3,3) (7,3) (5,0) (8,7) (6,9)

2 (3,9) (1,8) (5,5) (4,7) (0,1) (4,7) (0,1) (4,8) (3,7) (0,6)

1 (1,1) (2,2) (7,9) (8,5) (5,1) (4,6) (8,7) (5,2) (1,6) (5,3)

0 (3,1) (3,2) (0,6) (4,3) (0,2) (1,7) (5,4) (7,9) (0,1) (9,5)

0 1 2 3 4 5 6 7 8 9

Table 1 A random mapping f from {0, 1, . . . , 9}2 to itself.

look for k. Either way, the complexity is p. If p consists of t bits,

we can say that the complexity is given by 2t , so the complexity

grows exponentially in t.

A nice way to balance the time complexity with the available

memory is the baby-step giant-step method. Suppose that one has

enough memory available to store m elements of Zp. Compute

g0 , g1 , g2 , . . . , gm−1 , sort these elements to facilitate an easy look-

up and put them in a table. Note that the exponents increase by 1,

the baby-steps. Next one checks if k is in the table, if not one

checks if k/gm is in the table, if not check k/g2m, etcetera (the

giant-steps). When k/g jm is in the table, say it equals gi , 0 ≤ i ≤
m − 1, one has found the unknown exponent: s = jm + i. The

time complexity of the baby-step giant-step method is p/m, so

the product of memory requirement and time complexity is still

p ≈ 2t.

Two related techniques to determine the solution s of (1) are

called the Pollard-ρ and the Pollard-λ method [10]. We shall only

explain the first method. We still assume that g generates a sub-

group of prime order q. We start with the following observation

about random functions.

Let f be a random mapping from a finite set A to itself. Se-

lect a random element a0 in S and define the sequence {ai}i≥0

recursively by ai+1 = f (ai). The sequence {ai}i≥0 will eventu-

ally cycle, because A is finite. The expected length of this cycle

and the expected length of the beginning segment until the cy-

cle starts are both given by
√

π |A|/8 (see [3]). This situation is

depicted graphically by the ρ in Figure 2, where we have taken

A = {0, 1, . . . , 9} × {0, 1, . . . , 9} and where f (i, j) is given by the

entry at place (i, j) in the rectangle given in Table 1.

Returning to the problem of finding the solution of (1) the idea

now is to define a recursion on Zp. It turns out that we need to

keep track of two additional parameters. We define the mapping

F : Zp × Zq × Zq → Zp × Zq × Zq by

F(x, u, v) =











(x2 , 2u, 2v), if x ≡ 0 (mod 3),

(kx, u, v + 1), if x ≡ 1 (mod 3),

(gx, u + 1, v), if x ≡ 2 (mod 3).

The sequence {(xi , ui , vi)}i≥0 is defined recursively by

{

(x0 , u0 , v0) = (1, 0, 0),

(xi+1 , ui+1 , vi+1) = F(xi , ui , vi).

It is easy to verify with an induction argument that xi = gui kvi

for all i ≥ 0. For instance, if x ≡ 0 (mod 3), one has gui+1 kvi+1 =

g2ui k2vi = (gui kvi)2 = (xi)
2 = xi+1.

We need to find indices 0 ≤ i < j with xi = x j

but we want to avoid having to store all intermediate values

x0 , x1 , To this end, we only compare the first coordinates of

(xi , ui , vi) and (x2i , u2i , v2i) for i > 0. If xi 6= x2i , we calcu-

late (xi+1 , ui+1 , vi+1) = F(xi , ui , vi) and (x2i+2 , u2i+2 , v2i+2) =

F(F(x2i , u2i , v2i)) and compare their first coordinates again.

When xi = x2i , i > 0, we have gui kvi = gu2i kv2i , i.e., gui gs.vi =

gu2i gs.v2i . From this almost always the unknown exponent s can

be calculated: s = (u2i − ui)/(vi − v2i) (mod q − 1). (In case that

gcd(vi − v2i , p − 1) 6= 1, one can solve kgl ≡ gs+l (mod p) with

Pollard’s method for l = 1, 2, . . . until a solution is found.)

It follows from the ρ shape of the {xi}i≥0-walk that the expect-

ed running time of this algorithm is
√

π p/2 ≈ 2t/2 , while the

memory requirements are a very small constant.

As an example, we try to solve 121s ≡ 3435 (mod 4679).

Note that 121 has multiplicative order q = 2339. Starting with

(x0 , u0 , v0) = (1, 0, 0), we find that x76 = x152 with a76 =

84, b76 = 2191, a152 = 286, b152 = 915. From this one can ob-

tain s ≡ (286 − 84)/(2191 − 915) ≡ 1111 (mod 2339).

Figure 2 The ρ-shaped walk in {0, 1, . . . , 9}2 starting in (0, 0).

Index-calculus

We shall only give a typical example of this method. Suppose that

one needs to solve:

11k ≡ 3333 (mod 4679).

We start with a precalculation that is independent of the right-

hand side 3333. We consider the set {2, 3, 5, 7, 11}, consisting of

the first five prime numbers (this set is called a factor base) and try

to solve the logarithm problem for all elements in the factor bases.

In order words, we want to solve

11k1 ≡ 2 (mod 4679),

11k2 ≡ 3 (mod 4679),

11k3 ≡ 5 (mod 4679),

11k4 ≡ 7 (mod 4679),

11k5 ≡ 11 (mod 4679).

Henk van Tilborg Elliptic curve cryptosystems; too good to be true? NAW 5/2 nr. 3 september 2001 223

At first glance, it may look like we have made the situation worse

instead of better, but that is not true. Select a random expo-

nent r, compute 11r (mod 4679), and check if the remainder can

be factored completely by means of the factor base. For instance,

112208 ≡ 4182 (mod 4679) but 4182 = 21 × 31 × 697 and 697 can

not be factored further over {2, 3, 5, 7, 11}.

Note that we do not need to factor the righthand side, we only

have to divide it by the elements in the factor base. Note also

that the larger the factor base, the easier we find righthand sides

that do completely factor with respect to the factor base, but the

price we pay is having more unknowns ki to determine. As soon

as a right hand side does completely factor with respect to the

factor base, we get a linear relation between the unknown ki’s.

For instance,

111006 ≡ 315 = 32 .5.7 (mod 4679)

gives the relation

1006 ≡ 2 ∗ m2 + m3 + m4 (mod 4678).

Collect enough linear relations to solve the unknown ki’s. For

instance, from

11104 ≡ 1280 = 28 .5 (mod 4679),

11208 ≡ 750 = 2.3.53 (mod 4679),

111006 ≡ 315 = 32 .5.7 (mod 4679),

112303 ≡ 198 = 2.32 .11 (mod 4679),

113506 ≡ 4050 = 2.34 .52 (mod 4679),

we get the linear relations

104 ≡ 8k1 + k3 , (mod 4678),

208 ≡ k1 + k2 + 3k3 (mod 4678),

1006 ≡ 2k2 + k3 + k4 (mod 4678),

2303 ≡ k1 + 2k2 + k5 (mod 4678),

3506 ≡ k1 + 4k2 + 2k3 (mod 4678).

The solution is given by k1 ≡ 352, k2 ≡ 3314, k3 ≡ 1966, k4 ≡
1768, and k5 ≡ 1, all modulo 4678.

We are now ready to solve the original problem: 11k ≡ 3333

(mod 4679). Pick a random exponent r and check if 3333 × 11r

(mod 4679) completely factors over the factor base. After a few

tries we find that

3333 × 11573 ≡ 540 = 22 .33 .5 (mod 4679).

From this we get

k + 573 ≡ 2k1 + 3k2 + k3 (mod 4678).

Since the ki’s are now known, it is easy to determine k. One ob-

tains the solution k ≡ 2× 352 + 3× 3314 + 1× 1966− 573 ≡ 2683

(mod 4678). Indeed, 112683 ≡ 3333 (mod 4679).

The time complexity of the above method is given by

e1.923 t1/3(ln t)2/3
(see [4]). The memory requirement typically

equals the square root of this number. This makes the index cal-

culus algorithm and its variations the only method for taking dis-

crete logarithms with a subexponential complexity (see also Ta-

ble 2).

time memory

Exhaustive key search 2t 1

Baby-step Giant-step 2t/m m

Pollard 2t/2 1

Index calculus e1.923 t1/3(ln t)2/3
e1.923 t1/3(ln t)2/3/2

Table 2 The complexity of different methods to take discrete logarithms for p ≈ 2t.

Elliptic curve cryptosystems

Although it is very natural to use the multiplicative group of a fi-

nite field to set up the discrete logarithm system, one may equally

well use a (sufficient large) subgroup of it or even any other cyclic

group. Victor Miller and Neil Koblitz proposed in 1985 a variation

that makes use of the additive group associated with an elliptic

curve. In our explanation, we restrict ourselves again to Zp with

p prime.

Definition 1. Let a, b, c ∈ Zp. The elliptic curve E over Zp is the set of

points (x, y) satisfying

y2 = x3 + ax2 + bx + c, (2)

together with a point O, called the point at infinity.

Two examples of elliptic curves over R are depicted in Figure 3.

The point O can be best viewed as the intersection point at infinity

of all vertical lines. Clearly, if the right hand side in (2) is positive

for some value of x there will be two points on E with that x co-

ordinate, one with a positive y-coordinate and its mirror image.

If the right hand side is zero there is only a single value (being

y = 0) and there is no solution if the right hand side is negative.

Figure 3 The EC-curves y2 = x3 − 5x + 3 and y2 = x3 − 3x + 3 over R.

Over Zp the situation is exactly the same: two solutions if x3 +

ax + bx + c is a quadratic residue modulo p, one solution if it is

zero and no solution otherwise. There is no exact formula for the

number of points on a EC-curve over Zp. In [13] one can find the

following bound.

Theorem (Hasse) The number of points N on an elliptic curve over Zp

satisfies:
|N − (p + 1)| ≤ 2

√
p.

Algorithms exist to count the number of points on a EC-curve

precisely, e.g. [12]. However, these methods are not as efficient as

one would like them to be and much research remains to be done

in this area.

224 NAW 5/2 nr. 3 september 2001 Elliptic curve cryptosystems; too good to be true? Henk van Tilborg

Figure 4 Addition over EC-curves

Elliptic curves have the nice property that any line through two

points on E will intersect E in a third point (for a vertical line the

point O plays that role). The same statement is true for a (double)

tangent on E. It will intersect E in a third point. The reason for this

is simple. Let y = mx + n be the equation of the line l through

(x1 , y1) and (x2 , y2) both on E. Substitution of y = mx + n in (2)

gives the third degree equation (mx + n)2 = x3 + ax2 + bx + c.

Since x1 and x2 are two of its roots, there must be a third one:

x3. The point (x3 , y3), with y3 = mx3 + n, is the third point of

intersection of l with E. Other cases can be verified similarly.

We are now ready to define the group operation.

Definition 2. Addition on E is defined by:

1. O+P = P+O = P,

2. if P = (x, y) then −P = (x,−y),

3. otherwise P+Q = −R, where R is the third of intersection of the

line through P and Q.

In Figure 4, typical cases for this addition are depicted over R. The

reader should realize that the addition formulas do not involve

complicated functions. Indeed, in the general case, x1 + x2 + x3

is equal to minus the coefficient of x2 in the third degree equation

above.

Since addition on E is easy, it is also simple to compute a scalar

multiple sP. Again, the binary expansion of the scalar s helps. For

instance, for s = 2185 with binary expansion 100010001001, one

gets:

2185P = 2(2(2(2(2(2(2(2(2(2(2P))) + P)))) + P))) + P.

When the order of P is sufficiently high, the opposite problem, i.e.

to determine s such that sP = Q for given P and Q on E is again,

as with the discrete logarithm, intractable in general.

As an example, we consider the elliptic curve E given by y2 =

x3 + 100x2 + 10x + 1 over Z863. The point P = (121, 517) on E
has order 432. Computing 300P from P is straightforward, but to

solve sP = Q for Q = (101, 496) on E one can not do a lot better

than to try s = 1, 2, 3, . . .

It is now easy to set up a Diffie-Hellman-like key exchange system

on an elliptic curve (or to copy all later generalizations). Start

with an elliptic curve E (not all are suitable, just like not all prime

numbers are suitable in the original scheme) and a point P on E of

sufficiently high (additive) order. Let this order be denoted by v.

Alice and Bob (and every other participant) choose a random

coefficient, say sA and sB, respectively, both less than v. Alice

and Bob compute the scalar multiples KA = sAP and KB = sBP,

respectively, and make them public or exchange them in some

public way. They can now both compute

SA,B = sAsBP = sAKB = sBKA.

Indeed, Alice knows the public KB of Bob and her own secret sA

and can compute sAKB = SA,B. For Bob a similar situation holds.

Since the x-coordinate of SA,B determines the y-coordinate apart

from a single bit (the sign), Alice and Bob should only use the

x-coordinate as common secret key.

An overview of the Diffie-Hellman key exchange system over

elliptic curves is given in Table 3. Note that an exponentiation in

the original system translates into a scalar multiplication, just like

a multiplication in the original system translates into an addition.

system parameters elliptic curve E over Zp point P on
E of high order v

secret key of user U sU , 0 < sU < v

public key of user U the point KU = sUP
common key of Alice and Bob the point SA,B = sAsBP
Alice computes SA,B = sAKB

Bob computes SA,B = sBKA

Table 3 The Diffie-Hellman key exchange system over elliptic curves.

The importance of EC-cryptosystems

So, why is it interesting to generalize the Diffie-Hellman key ex-

change system to the elliptic curve setting? Maybe at the begin-

ning, some sceptics may have thought that this was a generaliza-

tion just for the sake of the generalization or that it was motivated

by patent aspects. Both assumptions were incorrect, as it turned

out that there was much more to it. To understand this, one has

to look at the various methods to take discrete logarithms and see

if they can be adapted to the elliptic curve setting.

Obviously, exhaustive search and baby-step giant step can be

generalized. For instance, one can make a table of O,P, 2P, . . . , 9P
and then check if Q is in the table. If it is not, check if Q− 10P is

in the table, otherwise check if Q− 20P is in the table, etcetera.

Also Pollard’s method can be generalized very naturally (see

[1]). The index calculus method has defeated any attempt to gen-

eralize it to the elliptic curve setting. The reason seems to lie in

the fact that while one can define a ‘natural’ factor base in the set

of integers (e.g. the first so many prime numbers) and then check

quite easily if an integer factors completely over this factor base,

a similar thing can not be done for the points on an elliptic curve.

(In the ring of polynomials a natural factor base consists of a fi-

nite set of irreducible polynomials. This is relevant for the elliptic

curve cryptosystems defined over finite fields.)

The above observation is extremely important and explains

all the interest in EC-cryptosystems (ECC’s). To keep the Diffie-

Hellman key exchange over Zp secure even the index-calculus

method with its subexponential complexity should be infeasible.

This forces the designers of the system to use very large prime

numbers p (or, if the finite field GF(q) is used instead of Zp , q has

to be taken very large). With the Diffie-Hellman key exchange

over an elliptic curve one does not have to worry about the index

calculus method (or related techniques). This leaves the design-

er with Pollard’s method which has an exponential running time.

To see how these complexities compare, see Table 4. Quite clear-

ly, much smaller prime numbers suffice when using elliptic curve

Henk van Tilborg Elliptic curve cryptosystems; too good to be true? NAW 5/2 nr. 3 september 2001 225

cryptosystems than when working over finite fields. This com-

parison is not completely fair. For instance, more constants need

to be stored to describe an elliptic curve. To get an impression of

the security of a cryptosystem we refer the reader to [6]. Depend-

ing on assumptions that one wants to make, like the expected in-

crease of computer power per year and the number of years that

the system has to remain secure, the program in [6] will calculate

the necessary key lengths.

In the regular Diffie-Hellman key exchange some parameter

choices are not safe. For instance, prime numbers p for which p −
1 only has small prime factors have to be avoided. A similar thing

holds for elliptic curve cryptosystems. The strongest attack seems

to be the MOV attack [7]. It reduces the logarithm problem over

an elliptic curve to the regular logarithm problem over a finite

field. The MOV attack can be applied to so-called singular and

super-singular elliptic curves. This means that the subexponential

algorithms can be applied again and that nothing can be gained

by using cryptosystems over such curves! Luckily, it is quite easy

to test and avoid these curves.

Only one worry remains among applied cryptographers: since

elliptic curves have not been studied as intensively as the classi-

cal discrete logarithm problem over Zp and much less than the

factorization problem, new insights may make the whole idea of

elliptic curve cryptosystems worthless (from an application point

of view). Only the future can show if this worry is justified. On

the other hand, with every year that elliptic curve cryptosystems

are around such dramatic events seem less and less likely. For

further reading, we refer the reader to [1].

As a final remark, we note that it is only natural to consid-

er other group structures to set up a Diffie-Hellman-like key ex-

change system. However, all current proposals of this kind seem

to lack an efficient implementation.

Applications

As was noted before, the security of elliptic curve based cryp-

tosystems grows exponentially in its parameter, while alternative

digits of p Pollard index calculus

100 1.13 1015 6.79 1015

150 3.78 1022 1.03 1019

200 1.27 1030 4.05 1021

250 4.25 1037 6.87 1023

300 1.43 1045 6.49 1025

Table 4 Pollard’s method compared with the index calculus method.

systems as RSA have a subexponential security. To give another

comparison: a 256 bits EC cryptosystem should be compared to

a 3072 bits RSA modulus. The computational overhead of both

systems grows like n3 , where n is the key length in bits.

When implementing cryptosystems one often has to deal with

practical constraints like memory requirement, processing time,

or power consumption (for instance on smartcards). A fast grow-

ing application area is wireless communication. It is here that

ECC compares very favorably with other systems. ECC’s can be

implemented on smartcards without mathematical coprocessor.

Contactless smartcards only work with ECC because other sys-

tems require too much induction energy. Also for the wireless

communication with or between handhelds, like the Palm Pilot,

EEC offers advantages that other systems can not offer: a shorter

key generation, a shorter handshaking protocol, etc. For this rea-

son, one will very likely see ECC applied in future applications

of e-commerce, for instance when people use their handheld to

sign their business transactions. Already at this moment, there are

many international standards involving ECC: ISO, ANSI, IEEE,

and SECG. k

Acknowledgement

The author likes to thank Rene Struik for his valuable comments

and input.

References

1 I. Blake, G. Seroussi, and N. Smart, Elliptic
Curves in Cryptography, London Mathemat-
ical Society Lecture Note Series, Vol. 265,
Cambridge: Cambridge University Press,
1999.

2 W. Diffie and M.E. Hellman, New directions
in cryptography, IEEE Trans. Inf. Theory, IT-
22, pp. 644–654, Nov. 1976.

3 P. Flajolet and A.M. Odlyzko, Random map-
ping statistics, in Advances in Cryptogra-
phy: Proc. of Eurocrypt ’89, J.-J. Quisquater
and J. Vandewalle, Eds., Lecture Notes in
Computer Science 434, Springer Verlag,
Berlin etc., pp. 329–354, 1990.

4 D.M. Gordon, Discrete logarithms in GF(p)
using the number field sieve, SIAM Journal on
Discrete Mathematics, 6, pp. 124-138, 1993.

5 A.G. Konheim, Cryptography, a primer, John
Wiley & Sons, New York, etc., 1981.

6 A.K. Lenstra and E.R. Verheul, Selecting
Cryptographic Key Sizes,
http://www.cryptosavvy.com/

7 A. Menezes, T. Okamoto, and S. Vanstone,
Reducing elliptic curve logarithms to loga-
rithms in a finite field, IEEE Transactions on
Information Theory, IT-39, pp. 1639–1646,
1993.

8 Menezes, A.J., P.C. van Oorschot, and
S.A. Vanstone, Handbook of Applied Cryptog-
raphy, CRC Press, Boca Raton, etc. 1997.

9 S. Miller, Use of elliptic curves in cryptogra-
phy, abstract in Advances in Cryptography:
Proc. of Crypto ’85, H.C. Williams, Ed.,
Lecture Notes in Computer Science 218,
Springer Verlag, Berlin etc., p. 417, 1986.

10 J.M. Pollard, Monte Carlo methods for index
computation (mod p), Math. Comp. 32, pp.
918–924, 1978.

11 R.L. Rivest, A. Shamir and L. Adleman,
A method for obtaining digital signatures and
public key cryptosystems, Comm. ACM, Vol.
21, pp. 120–126, Febr. 1978.

12 R. Schoof, Counting points on elliptic curves
over finite fields, Journal de Théorie des
Nombres de Bordeaux, 7, pp. 219–254,
1995.

13 J.H. Silverman, The Arithmetic of Elliptic
Curves, Springer Verlag, Berlin, etc., 1986.

14 Henk C.A. van Tilborg, Fundamentals of
cryptology; A professional reference and inter-
active tutorial, Kluwer Academic Publish-
ers, Boston etc., 2000.

