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Algebraization of topology

It is aphoristically said that mathematics consists mainly of three

basic disciplines: algebra, analysis and geometry, and the rest is

their applications. However, in today’s mathematics, the interplay

of these disciplines is so intertwined and they are blended into one

another to such an extent that it has become almost impossible to

draw a line of demarcation between them. Each intrudes very often

on territory of the others to give rise to new disciplines and in turn

gets greatly stimulated in its own growth. Applications of topology

(which is essentially analysis) to algebra and geometry have changed

their entire fabric beyond recognition.

In this article, we intend to demonstrate how problems which

are basically topological in nature can be extended, raised to new

heights and even finally solved by employing algebraic methods,

a process which we call ’algebraization of topology’. Although

examples are available in abundance throughout mathematics,

see [14], we have chosen four for discussion taking into account

their importance, elegance and appeal to a general reader. They

are:

1. Automatic Continuity

2. Stone-Weierstrass Theorems

3. The Closed Ideal Problem

4. Artin’s Theory of Braids

In our exposition, we shall stress on laying bare the essential

connections between these (without proof), particularly the role

played by algebraic methods. We shall also take the reader to

some of the frontiers of the literature on problems connected with

these examples, except in case of example 4, the algebraic ramifi-

cations of which can be found in [4], [5], [12] and [28]. We include

it here because of its fascination as one of the most simple classical

examples of algebraization of topology.

Preliminaries

We explain some of the terminology that we shall use in the se-

quel. Our starting point is the concept of a vector space which

is the ‘absolute zero’ for functional analysts. A vector space X

is called a normed linear space if with each vector x in it there

is associated a real number ||x||, called the norm of x, such that

||x|| ≥ 0 and ||x|| = 0 if and only if x = 0, ||αx|| = |α| ||x|| for

each scalar α and ||x + y|| ≤ ||x|| + ||y|| for all x, y in X. Ba-

nach defined the concept of a normed linear space for the first

time in his doctoral thesis in 1922 and thus laid the foundation

of functional analysis. In fact, every normed linear space X is a

metric space with the metric defined by d(x, y) = ||x − y||, and

hence a topological space. Thus what Banach did more signifi-

cantly, by defining a normed linear space, was that he imposed a

topological structure on a vector space, which is purely an alge-

braic structure. This is what we could term as the ‘topologization

of algebra’. A Banach space is a normed linear space which is

complete (as a metric space). In fact, Banach himself calls com-

plete normed linear spaces ‘espaces du type B ’ in a foot-note in

his famous book [8], the very first monograph on functional anal-

ysis.

A Banach space X endowed with the additional structure of an

inner product 〈x, y〉 such that the norm is related with the inner

product by the equality 〈x, x〉 = ||x||2 is called a Hilbert space. A

Banach algebra is a Banach space A which is also an algebra with

identity 1 such that ||xy|| ≤ ||x|| ||y|| and ||1|| = 1. A Banach

algebra A is commutative if xy = yx for all x, y in A. If B is a

subalgebra of A, then the set of all elements of A which commute

with each element of B is also an algebra, called the commutant

of B and denoted by B′. The double commutant B′′ of B is defined

by B′′ = (B′)′.

To discuss examples 1 and 2, we shall need some results from

the theory of C∗-algebras, while for discussing example 3, we

shall concentrate on by far the most important C∗-algebras B(H)

of all bounded linear operators on a Hilbert space H. A mapping

x → x∗ defined on a Banach algebra A is called an involution on

A if:

i. (ax + by)∗ = ax∗ + by∗

ii. (xy)∗ = y∗x∗

iii. (x∗)∗ = x for all x, y ∈ A and a, b ∈ C.

A C∗-algebra is a Banach algebra A with an involution x → x∗

such that

||x∗x|| = ||x||2 (the ∗-quadratic norm equality).

The concept of a C∗-algebra provides an example of a perfect dif-

fusion of algebra, analysis and geometry. It borrows the ∗-algebra

structure from algebra, completeness from analysis and the ∗-

quadratic norm from geometry. In fact, the three aspects are so

tightly fitted in the ∗-quadratic norm equality that any change

in one aspect has automatic reflections on the other two. A C∗-

subalgebra of the C∗-algebra B(H) is called a von Neumann alge-
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bra if it is closed in the weak-operator topology. We have Dixmi-

er [16] and Zhu [45] as good references on the subject.

Automatic continuity

If T is a mapping (transformation) of a metric space X into a met-

ric space Y, then T may be continuous at certain points of X with-

out being continuous on the whole of X (unless X consists of a

single point). However, if X and Y are normed linear spaces, we

have the following result on automatic continuity in elementary

functional analysis:

Theorem. Let X and Y be normed linear spaces and T : X → Y

a linear transformation. If T is continuous at a point, then T is

automatically continuous, that is, it is continuous at every point

of X.

It is easy to see that it is the linearity of T, purely an algebraic

property, which determines the continuity of T once it is continu-

ous at a single point.

We shall, however, concentrate on automatic continuity in

Banach algebras. As a very special case, we consider C∗-

algebras A and B. A homomorphism ψ : A → B is called a C∗-

homomorphism ifψ(x∗) = ψ(x)∗ for all x ∈ A andψ(1) = 1. We

have the following well known result; see [16] or [45].

Theorem. Every C∗-homomorphism ψ : A → B is automatically

continuous. In fact ||ψ(x)|| ≤ ||x|| for all x ∈ A and thus ψ is

actually a contraction.

For general Banach algebras nothing like this last theorem holds.

But the commutativity of Banach algebras A and B and the semi-

simplicity of B (both algebraic properties) make all the difference.

A Banach algebra is called semi-simple if its radical (the inter-

section of all its maximal ideals) is {0}. We have the following

theorem.

Theorem. If ψ is a homomorphism of a commutative Banach al-

gebra A into a semi-simple commutative Banach algebra B, then

ψ is automatically continuous.

Kaplansky conjectured in 1950 that this theorem holds even if A

and B are non-commutative. This remained an open question till

1967 when B.E. Johnson [23] proved a slightly weaker result:

Theorem (Johnson). If A and B are Banach algebras, B semi-simple,

then any onto homomorphism ψ : A → B is automatically con-

tinuous.

As a particular case of this theorem, one can obtain the following

conclusion which has many important applications [6].

Theorem. Every involution on a semi-simple Banach algebra is

continuous.

B. Aupetit [6] has recently given an interestingly elegant short

proof of an extension of Johnson’s theorem via subharmonic func-

tions. Can we replace an ‘onto’ homomorphism by an ‘into’ ho-

momorphism in Johnson’s theorem? No one knows!

Kaplansky’s Conjecture. If ψ is a homomorphism of a Banach al-

gebra A into a semi-simple Banach algebra B, is ψ continuous?

Even the following problem continues to be unsolved.

Problem. Let ψ be a homomorphism of a Banach algebra A into

a semi-simple Banach algebra B with its range dense in B. Is ψ

continuous?

There are partial solutions known in which the denseness of the

range of ψ with some additional conditions guarantee the conti-

nuity of ψ, but in most of these cases ψ turns out to be onto, and

hence continuous by Johnson’s theorem. A typical example is the

following result (see [6]).

Theorem. Let A and B be Banach algebras, B semi-simple. If

ψ : A → B is a homomorphism such that its range is dense and

has at most countable codimension in B, then ψ is continuous.

For further references on automatic continuity, see Sinclair [36]

and Dales [15]; see also [7].

Lastly, we would like to mention yet another important result

for von Neumann algebras, the so called double commutant theo-

rem, which provides a very neat and clean yet quite deep example

of algebraization of topology [45].

Theorem (The Double Commutant Theorem). A C∗-subalgebra A of

B(H) is a von Neumann algebra if and only if A = A′′.

Stone-Weierstrass theorems

Every real polynomial is a continuous function but the converse

is not true. The Weierstrass approximation theorem says, nev-

ertheless, that continuous functions are not essentially far away

from polynomials. Precisely speaking, for a closed interval [a, b],

the set P[a, b] of all polynomials is dense in the set C[a, b] of all

continuous functions defined on [a, b]. The crux of the generaliza-

tion of this result by Stone is to replace the closed interval [a, b]

by a compact Hausdorff space X. But the problem is that to talk

of a polynomial over X does not make sense. What Stone actual-

ly did was first to visualize and paraphrase Weierstrass theorem

in terms of algebras. The process gives one of the most striking

examples of algebraization of topology.

Firstly we observe that a polynomial is a finite linear combi-

nation of functions 1, x, x2 , x3 , . . . In other words, the two func-

tions 1 and x generate the algebra P[a, b], that can be regarded as

a subalgebra of the algebra C[a, b], which is actually a Banach al-

gebra with sup norm. Since P[a, b], the closure of P[a, b] in C[a, b],

is also an algebra, we see that P[a, b] is the closed subalgebra of

C[a, b] generated by the functions 1 and x. The Weierstrass theo-

rem states precisely that P[a, b] = C[a, b]. This algebraic version

of Weierstrass theorem gives meaning to the question: “Can the

closed interval [a, b] in Weierstrass theorem be replaced by a suit-

able topological space X?” By closely examining the characteristic

properties of functions 1 and x (the first is a constant function and

the second separates points in [a, b]) and that [a, b] is a compact

Hausdorff space, Stone [37] proved the following generalization

of Weierstrass theorem.
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The Stone-Weierstrass Theorem. Let X be a compact Hausdorff

space and C(X, C) the algebra of all complex continuous func-

tions defined on X. If A is a closed subalgebra of C(X, C) such

that:

i. it contains a non-zero constant function,

ii. separates points in X, and

iii. contains the conjugate f of each its function f ,

then A = C(X, C).

Several remarks are in order. Firstly, we refer to Rudin [34] and

Aupetit [6] for certain generalizations of the theorem which we

shall not discuss. Secondly, we refer to Kaplansky [26] for an al-

ternative proof of the theorem which is based on partitions rather

than lattice-theoretic methods as given by Stone [37]. The two

proofs are more or less of the same length, but while one could

work with partitions in case of non-commutative algebras, with

lattices this is not possible. Thirdly, as Weierstrass theorem occu-

pies a salutary position in classical analysis, the importance of the

Stone-Weierstrass theorem in modern analysis cannot be overem-

phasized. It is not surprising that its generalizations, extensions,

unsolved problems associated with it and their partial solutions

and variants are still attracting the attention of analysts. Fourth-

ly, its generalization to locally compact Hausdorff spaces is rather

routine as we shall see later, a proof which is still not so popular

in the literature. We discuss here in brief its extensions to C∗-

algebras.

As C(X, C) is a commutative C∗-algebra, a natural question

that arises is the following: ‘If A is a C∗-algebra, not necessarily

commutative, and B is a C∗-subalgebra of A, under what condi-

tions on B does A equal B?’ In order to examine certain answers

to this question, we need to introduce some terminology.

An element x in a C∗-algebra A is positive (x ≥ 0) if there exists

an element y ∈ A such that x = yy∗. A functionalψ on A is said to

be ‘positive’ ifψ(x) ≥ 0 for all x ≥ 0 in A and a ‘state’ on A ifψ is

positive andψ(1) = 1. The set S(A) of all states on A is a subset of

the closed unit ball in A∗, the dual space of A. S(A) with the W∗-

topology induced by the W∗-topology of A∗ is called the ‘state

space’ of A. The state space S(A) is a convex compact Hausdorff

space, and hence has a non-empty set of extreme points. As a

matter of fact, by the Krein-Milmann theorem S(A) is the W∗-

closed convex hull of the set of its extreme points. An extreme

point of the state space S(A) is called a ‘pure state’ of A. We shall

denote by P(A) the W∗-closure of the set of extreme points of A

together with {0} and call it the ‘pure state space’ of A.

Now if A is commutative, then A is isomorphic to the algebra

of W∗-continuous functions on the set of pure states on A. In fact,

if x ∈ A, then x corresponds to the function ψ → ψ(x), where ψ

is a pure state on A. As the set of pure states on A is a compact

Hausdorff space, it follows by Stone-Weierstrass theorem that if B

is a C∗-subalgebra of A which separates points in the set of pure

states on A, then B = A. Whether this is true even when A is non-

commutative is an open question known as ‘the Stone-Weierstrass

problem’.

The Stone-Weierstrass Problem. If A is a C∗-algebra, not necessar-

ily commutative, and B is a C∗-subalgebra of A which separates

the pure states of A, is B = A?

An affirmative answer to this question will provide a non-

commutative extension of the Stone-Weierstrass theorem. In 1960

Glimm [21] obtained a partial solution of this problem by show-

ing that it will suffice if B separates P(A), the pure state space

of A.

Theorem (Glimm). If A is a C∗-algebra, not necessarily commuta-

tive, and B is a C∗-subalgebra of A which separates the pure state

space of A, then B = A.

Before we close this section and suggest literature for further read-

ing on the subject for which there is no scope to discuss in this

article, we make a few observations. In fact, if A is commutative,

then the set of pure states of A is W∗-closed in A∗. Therefore, in

the non-commutative case Glimm assumed a more stringent con-

dition as suggested by Kadison that B separates not only the set of

pure states of A but the pure state space P(A) of A and proved the

non-commutative C∗-algebra extension of the Stone-Weierstrass

theorem by using some unpublished work of Kadison; see Dixmi-

er [16].

The Stone-Weierstrass problem can be stated in another equiv-

alent form. Kadison [25] proved that if A is a C∗-algebra, then

there is a one-one correspondence between the pure states of A

and the set M of maximal modular left ideals of A. We say that

a C∗-subalgebra B of A separates M if for I, J ∈ M, we have

I 6= J ⇔ I ∩ B 6= J ∩ B. Since if A is commutative and B sep-

arates M, then B = A, the Stone-Weierstrass problem takes the

following form.

The Stone-Weierstrass Problem, alternative form. If A is a C∗-

algebra, not necessarily commutative, and B is a C∗-subalgebra

of A which separates M, is B = A?

Kaplansky [26] studied so-called CCR algebras. A C∗-algebra A is

called a CCR algebra if every irreducible representation of A con-

sists of completely continuous operators. He solved the Stone-

Weierstrass problem in the affirmative in case A is a CCR alge-

bra. In fact, his argument can he extended to achieve the same

result in case A is a GCR algebra (a C∗-algebra with a compo-

sition series {Iα} of ideals such that Iα+1/Iα is CCR). Although

Glimm’s proof is of genuine ingenuity, its bulk is devoted to use

the ideas developed in [26]. Lastly we observe that the Stone-

Weierstrass theorem has an easy extension to the algebra C0(X) of

complex-valued continuous functions on a locally compact Haus-

dorff space X vanishing at infinity. In fact, each maximal mod-

ular ideal of C0(X) is hinged at some point x ∈ X, i.e. consists

of those functions in C0(X) which vanish at x. Now it suffices to

observe that a C∗-subalgebra B of C0(X) separates points in X if

and only if it separates its maximal ideals and consequently the

Stone-Weierstrass theorem holds for C0(X).

We suggest further reading on the subject. Dixmier [16] pro-

vides a good exposition of the work of Kaplansky [26] and

Glimm [21] with simplification of their arguments. Akemann [1]

was first to obtain some partial solutions of the general Stone-

Weierstrass problem. In [2], Akemann and Anderson have giv-

en a survey of the various approaches attempted by a number of

authors up to 1982 to solve the problem in the light of the gen-

eral framework developed by Akemann [1]. Some results on fac-

torial Stone-Weierstrass problem for separable C∗-algebras were

obtained by Anderson and Bunce [3]. Earlier in 1970 Sakai [35]
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had solved the problem in case A is separable and B is nuclear.

Longo [27] and Popa [31] have independently obtained a solu-

tion of the factorial Stone-Weierstrass problem for separable C∗-

algebras. For recent complements to Stone-Weierstrass theorem,

see Brown [13].

The closed ideal problem

Here we discuss a problem in operator theory which remained

open for more than four decades (1940-1984) and in the solu-

tion of which algebraic methods have played a great role, as

we shall show. Let T be an operator in B(H), where H is an

infinite-dimensional separable complex Hilbert space. A closed

subspace M of H is called invariant under T if T(M) ⊂ M —

{0} and H are trivially invariant under T. M is called non-trivial

if M 6= {0} and M 6= H. Does every operator T have a non-

trivial invariant subspace? This is the so-called ‘invariant sub-

space problem’, which is still open. No one knows as to who

raised the problem for the first time. Perhaps it arose natural-

ly amongst mathematicians after the unpublished discovery by

von Neumann that every non-zero compact operator has a non-

trivial invariant subspace. The problem has been solved for Ba-

nach spaces; see Read [32], [33], Enflo [19] and Beauzamy [9], [10].

Consider a sequence w = {wn}∞

n=0 of positive real numbers

such that sup{wn+1/wn} < ∞. Define l1(w) as the space of all

complex sequences x = {x0 , x1 , . . .} with

||x|| =
∞

∑
n=0

|xn|wn < ∞.

Then l1(w) is a Banach space isometrically isomorphic to l1. The

(forward) shift operator T on l1(w) is defined by

Tx = {0, x0 , x1 , . . .}.

Since {wn+1/wn} is a bounded sequence, T is a bounded operator

on l1(w). The invariant subspaces of T will simply be called the

invariant subspaces of l1(w). The subspaces Mk(w) defined by

Mk(w) = {x ∈ l1(w) : xn = 0, n < k}, 0 ≤ k < ∞,

are obviously invariant subspaces of l1(w). These are called the

standard invariant subspaces of l1(w). Whatever is said so far

about l1(w) holds true about the Banach spaces lp(w), 1 ≤ p < ∞,

defined accordingly. Characterization of standard invariant sub-

spaces of lp(w) has been a fascinating subject for many mathe-

maticians; see for example references [18], [29], [42]–[44].

If the weight sequence wn satisfies also an additional condition:

wm+n+1 ≤ Cwmwn for all m, n

and a constant C > 0, then l1(w) is a Banach algebra and the

invariant subspaces of l1(w) are actually its closed ideals. The

Banach spaces lp(w), p > 1, become Banach algebras under more

stringent conditions on the weight sequence {wn}. See [22]. In

either case, the ideals Mk(w) are called the standard closed ideals

of these algebras. The algebras l1(w) are the special cases of more

general weighted Banach algebras first studied independently by

Beurling [11] and Gelfand [20], while the algebras lp(w), p > 1,

are closely related to the work of Wermer [40].

A Banach algebra lp(w) is called radical if the weight sequence

{wn} satisfies the condition limn→∞ w1/n
n = 0.

Problem. Is every closed ideal in a radical Banach algebra lp(w) an

Mk(w)? Or, equivalently, does there exist a radical Banach algebra

lp(w) with a non-standard closed ideal?

This is called the ‘closed ideal problem’. The problem for radi-

cal lp(w) algebras was first raised by Shilov around 1940 and re-

mained unanswered till 1984 when Thomas [38] constructed an

example of an algebra which has a non-standard closed ideal. He

further showed in 1985 that his construction can be extended to

lp(w)-algebras for p > 1 [39]. Nikolski [30] had earlier claimed to

have constructed an example of an l1(w)-algebra having a non-

standard closed ideal, but his construction was discovered to be

erroneous. In fact, the weight sequence w that he constructed did

give an example of a non-standard invariant subspace in the Ba-

nach space l1(w), but it failed to be an algebra weight sequence.

The crux of Thomas’ construction can be explained as follows:

let us denote by (Ax) the closed ideal generated by an element x

in A = l1(w). Thomas actually constructed for the first time a

Banach algebra A such that:

i. (Ax) = A, that is, x is a generator of A, and

ii. A has just one maximal ideal containing properly a closed ideal

which is not contained in (Ax2).

On the other hand, it is interesting to ask for conditions on the

weight sequence w which determine that all the closed ideals

of l1(w) are standard ones only. There is good literature on the

subject and we refer to [41] as a source of information.

Artin’s theory of braids

Here is an example of algebrization of topology in which contin-

uous deformations of a system are determined by purely algebra-

ic methods involving elementary group theory. We refer to Bir-

man [12] and Moran [28] for a good account of the subject. See

also Kac and Ulam [24].

We consider two parallel straight lines A and B in space which

are identically orientated and choose an equal number of points

on A and B, say a1 , a2 , a3 , a4 on A and b1 , b2 , b3 , b4 on B, as shown

in figure 1. Each ai is connected to a unique b j through a curve ci.

The curves ci may twist and wind in space subject to the con-

dition that the projection of each ci in the (A, B)-plane remains

monotone, a property that guarantees that the distance of a bug

from the line A as it moves from the point ai to the point bi along

the projection of ci is monotonically increasing. The system con-

sisting of the two lines A and B along with the curves ci is called

a ‘weaving pattern’.

Figure 1

We make the following postulates on deformations of a weaving

pattern:

i. Although the distance between the lines A and B may vary,

they remain parallel with the same orientation.
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ii. The points ai and bi can move arbitrarily along their respec-

tive lines irrespective of the distance between two consecutive

points but their order remains unchanged.

iii. The curves may be contracted or stretched but the projection

of each ci in the (A, B)-plane under any such deformation

continues to be monotone. (This guarantees that the multipli-

cation of two weaving patterns as introduced below is well-

defined.)

iv. No two ci’s intersect during any deformation.

We call two weaving patterns ‘equivalent’ if each can be obtained

from the other by a deformation having properties (i)–(iv). It is

easy to see that this equivalence between two weaving patterns is

actually an equivalence relation. We define a braid as an equiva-

lence class of weaving patterns. Now the question is how to iden-

tify two braids.

Fundamental problem. Which two braids are identical?

Equivalently, we may ask the question: ‘Which two weaving pat-

terns are equivalent?’ In order to solve the problem, we first de-

fine a binary operation on the set of weaving patterns. Given two

weaving patterns W1 and W2, we define W1 ◦ W2 as follows: put

W2 below W1 so that the line A of W2 lies on the line B of W1 and

the points a′1 , a′2 , a′3 , a′4 coincide respectively with b1 , b2 , b3 , b4 as

shown in figure 2.

Figure 2

Now defuse W1 and W2 into W1 ◦ W2 by removing the line in the

middle. The result is figure 3.

Figure 3

It is obvious that this binary composition is associative. Also, the

trivial weaving pattern I serves as the identity element for the

binary operation. The inverse of a weaving pattern, say of W1,

is obtained by interchanging the positions of lines A and B (see

figure 4). We see that W1 ◦ W−1
1 = W−1

1 ◦ W1 = I and have

Theorem. The set G of all weaving patterns is a group with respect

to the binary operation defined above.

Figure 4

Now consider the three weaving patterns W1, W2 and W3 with

their inverses. They are pictured in figure 5.

Figure 5

It’s not hard to see that each weaving pattern in the group G can

be represented as a product of these six elements. For example,

if W is as in figure 6, then we see that W = W2W−1
3 W1.

Figure 6

This shows that for each W in G, we have W = D1D2 · · · Dn

where each Di, i = 1, 2, . . . , n, is one of these six elements. We

call the representation D1D2 · · · Dn a word and observe that each

weaving pattern W in G can be represented as a word. However,

we see that this representation is not unique as different words

may represent the same element of G. For example, we have

W1W−1
1 = W2W−1

2 = W3W−1
3 = I.
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Thus we finally conclude:

Theorem. Any two weaving patterns are equivalent if and only if

the corresponding words represent the same element of G.

This work of E. Artin [4], [5] amply illustrates how a problem es-

sentially topological in nature can be solved by employing meth-

ods which are purely algebraic. k
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