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Complex differentiation under the integral

We present a theorem and corresponding counterexamples on the

classical question of differentiability of integrals depending on a

complex parameter. The results improve on the ones usually given

in textbooks.

The following theorem on complex differentiation under the inte-

gral might be the most convenient of its kind, fits well in a course

on real and complex analysis, and appears to be little known.

Theorem. Let (Ω,A, µ) be a measure space, let G ⊂ C be open,

and let f : G × Ω → C be a function subject to the following

assumptions:

A1: f (z, ·) is A-measurable for every z ∈ G,

A2: f (·,ω) is holomorphic for every ω ∈ Ω,

A3:
∫
| f (·,ω)| dµ(ω) is locally bounded, that is,

z0 ∈ G =⇒ ∃ δ > 0 : sup
z∈G,|z−z0 |≤δ

∫
| f (z,ω)| dµ(ω) < ∞. (1)

Then
∫

f (·,ω) dµ(ω) is holomorphic and may be differentiated

under the integral. More precisely, we have for every n ∈ N0 the

following conclusions:

C1: ∂n
z f is B(G) ⊗A-measurable and, for every A ⊂ G,

supz∈A |∂n
z f (z, ·)| is A-measurable,

C2: we have the implication

(2)K ⊂ G compact =⇒
∫

sup
z∈K

|∂n
z f (z,ω)| dµ(ω) < ∞,

C3:
∫

f (·,ω) dµ(ω) is holomorphic in G with

(3)∂n
z

∫
f (z,ω) dµ(ω) =

∫
∂n

z f (z,ω) dµ(ω) (z ∈ G).

Notation. We write N := {1, 2, . . .} and N0 := {0} ∪ N. If a set

X is naturally equipped with a metric or topology, as in the case

of X = C or X = G in the theorem, then B(X) denotes the Borel

σ-algebra on X, that is, the σ-algebra generated by the open sets,

and measurability refers to this σ-algebra. The product σ-algebra

of two σ-algebras A1 and A2 is denoted by A1 ⊗A2.

Assumptions A1 and A2 are the obvious ones for (3) to make sense

at all. But in place of A3, the natural if somewhat optimistic as-

sumption might appear to be

A−
3 :

∫
| f (z,ω)| dµ(ω) < ∞ (z ∈ G).

Counterexample 1, given below, shows that under assumptions

A1, A2, and A−
3 , and even when Ω = N and µ is counting mea-

sure, the function F :=
∫

f (·,ω) dµ(ω) can be discontinuous and

hence nonholomorphic (take a0 = 1). Alternatively, F can be holo-

morphic with
∫

∂z f (·,ω) dµ(ω) well defined and discontinuous

(take a0 = 0 and a1 = 1).

Counterexample 1. Let (an : n ∈ N0) be a sequence of com-

plex numbers. Then there exists a sequence of polynomials,

(pν : ν ∈ N), such that

(4)∑
ν ∈N

|p
(n)
ν (z)| < ∞ (n ∈ N0 , z ∈ C),

(5)∑
ν ∈N

p
(n)
ν (z) = an · 1{0}(z) (n ∈ N0 , z ∈ C).

Here we have used the alternative notation f (n) for the nth deriva-

tive ∂n
z f , and have written 1A for the indicator (or characteristic

function) of a set A.

What happens if we assume, in addition to A1, A2, and A−
3 ,

that
∫

f (·, ω) dµ(ω) converges locally uniformly? For abstract

(Ω,A, µ), it is not clear what this means, so let us think of the

case of counting measure on N. There the assumption means the

locally uniform convergence of the sequence of the partial sums

∑N
ν=1 f (·, ν). This would imply locally uniform convergence of

the derivatives ∑N
ν=1 ∂n

z f (·, ν), so that an example as in (5), with

f (·, ν) in place of pν and with some an 6= 0, would be impossible.

Nevertheless, conclusion C3 may fail due to nonexistence of the

right hand side in (3):

Counterexample 2. There exists a sequence of polynomials, (pν :

ν ∈ N), such that

(6)
∞

∑
ν =1

pν converges locally uniformly in C,

(7)∑
ν ∈N

|pν(z)| < ∞ (z ∈ C),

(8)∑
ν ∈N

|p′ν(0)| = ∞.

It is no accident that the series of the counterexamples behave

badly only in a rather small subset of G, here consisting of just

one point.



Lutz Mattner Complex differentiation under the integral NAW 5/2 nr. 2 maart 2001 33

Side remark. If, in the theorem, assumption A3 is replaced by A−
3 ,

then the conclusion remains valid with some dense open subset

G∗ ⊂ G in place of G.

Since the conclusion of the side remark is too weak for most appli-

cations encountered in the daily life of an analyst, the counterex-

amples show the need for finding some convenient assumption

stronger than A−
3 . For this problem, the best textbook treatments

known to me are given by Dieudonné [6, § 13.8.6.1], Elstrodt [8, p.

147], and Königsberger [12, p. 283]. They have the conclusion C3

under the assumptions A1, A2, and

A+
3 : z0 ∈ G =⇒ ∃ δ > 0 :

∫
supz∈G,|z−z0 |≤δ | f (z,ω)| dµ(ω) < ∞.

Obviously, assumption A+
3 alone is more restrictive than assump-

tion A3. On the other hand, conclusion C2 of the theorem shows

that the two conditions are in fact equivalent in the presence of

assumptions A1 and A2. Hence the point of the present theorem

is not greater generality, but greater convenience in checking the

assumptions. The following simple example illustrates this.

Example (holomorphic Fourier transforms). Let g : R → C be locally

integrable with respect to Lebesgue measure, let

H :=
{

z ∈ C :
∫
|eiztg(t)| dt < ∞

}
,

ĝ(z) :=
∫

eiztg(t) dt (z ∈ H),

and assume that G :=
◦
H, the interior of H, is not empty. Then ĝ is

holomorphic in G and may be differentiated under the integral.

Proof. We apply the theorem to Ω := R with Lebesgue measure,

and f (z, t) := g(t)eizt for z ∈ G and t ∈ R. Assumptions A1

and A2 are obviously fulfilled. To check A3, it suffices to observe

that
∫
| f (x + iy, t)| dt =

∫
e−yt|g(t)| dt depends only on y and is a

convex [0, ∞]-valued function of this real variable (in particular,

G is a strip of the form R + iI with I ⊂ R an open interval), and

hence surely is locally bounded on G as a function of the complex

variable z = x + iy. �

Of course, one may also directly check assumption A+
3 in this ex-

ample, using

sup
z ∈G,|z−z0 |≤δ

| f (z, t)| ≤
(

e−(y0+δ)t + e−(y0−δ)t
)
·|g(t)|.

The following result shows that it is still possible to weaken as-

sumption A3 a bit without invalidating the theorem. Again, this

does not achieve greater generality, but may afford greater conve-

nience in checking the assumptions. In this case, however, I am

not aware of any natural application.

Addendum to the theorem. The theorem remains valid if assump-

tion A3 is replaced by

A0
3:

∫
| f (·,ω)| dµ(ω) is locally integrable with respect to Lebes-

gue measure on G, that is,

z0 ∈ G =⇒ ∃ δ > 0 such that: (9)∫∫

z=x+iy∈G, |z−z0 |≤δ

∫
| f (z,ω)| dµ(ω) dxdy < ∞.

Literature

Let us first consider the very special case in which µ is counting

measure on Ω = N. Then the assumption A1 and the conclusion

C1 of the theorem are trivial, and the implication ‘A2, A3 =⇒ C2

with n = 0’ is implicitly given by Remmert in [17, § 8.4.4], but not

in [18], crediting Martin Reinders. (The proof of conclusion C2 in

the proof of the theorem below is analogous to the argument of

Reinders.) Of course, the conclusions ‘C2 with n arbitrary’ and

C3 then follow by standard theorems on series of holomorphic

functions [17 or 18, § 8.4.2].

For more general measure spaces, Światkowski [22] comes

close to formulating and proving the theorem of the present pa-

per. (Without Burckel [2], I would probably not have found this

reference.) His Lemma on page 63 has for Ω the unit interval

with Lebesgue measure, but no special property of this measure

space except σ-finiteness is used. His claim amounts to: ‘A1, A2,

A3 =⇒ C3’. He neither proves nor explicitly assumes the joint

measurability of f (contained in our conclusion C1), but uses it

implicitly in his proof via Fubini, which hence might be regarded

as incomplete. (Concerning the necessity of the product measur-

ability assumption in Fubini’s theorem, one may consult [15].)

The same implication ‘A1, A2, A3 =⇒ C3’ is stated and proved

by Everitt, Hayman & Nasri-Roudsari [10], apparently indepen-

dently of [22]. They assume µ to be σ-finite and prove the needed

product measurability before applying Fubini’s theorem. The the-

orem of the present paper improves on this by adding conclusion

C2 and omitting the assumption of σ-finiteness.

Counterexamples proving ‘A1, A2, A−
3 ;

∫
f (·,ω) dµ(ω)

holomorphic’ were supplied by Światkowski [22] and Hay-

man [11]. The latter example is studied in greater detail and gen-

erality by Everitt & Hayman [9] and by Chen & Hayman [4]. The

counterexamples given in the present paper are designed to show

that something can go wrong even under natural additional con-

ditions. The construction of Counterexample 1 refines one pre-

sented by Remmert [19 or 20, § 12.3.1]. The construction of Coun-

terexample 2 slightly modifies an unpublished one of Saeki, see

Burckel [3], which is mentioned without details in [17, § 3.3.2],

but not in [18]. In Saeki’s example, one has polynomials pν satis-

fying (6), (7), and sup|z|≤ǫ ∑ν∈N |pν(z)| = ∞ for every ǫ > 0. In

Counterexample 2, the third of these properties is replaced by (8),

which, in view of the theorem, is more restrictive.

A theorem analogous to our side remark is also proved by

Światkowski [22, p. 64]. This kind of result and its method of

proof goes back to Osgood [16], see [2, p. 227].

Proofs

The following known lemma is used below to prove the measur-

ability statements of the theorem. Versions of it have been dis-

cussed in dozens of journal articles, starting with Lebesgue [13,

seventh page]. Many later references are given by Averna [1].

Nevertheless, most accounts of measure and integration theo-

ry ignore the lemma, or present versions insufficiently general.

Hence we include a proof here.

Lemma. Let (X,A) be measurable space, let (Y, τ) be a topological

space with countable basis, and let (Z, d) be a metric space. Let

further f : X×Y → Z be a function such that f (·, y) is measurable

for every y ∈ Y and f (x, ·) is continuous for every x ∈ X. Then f

is A⊗ B(Y)-measurable.
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Proof. Let (Un : n ∈ N) be an enumeration of a basis of τ . For each

n ∈ N, let {En,1 , . . . , En,k(n)} denote the partition of Y generated

by {U1 , . . . , Un}. Choose yn,i ∈ En,i. By the measurability of the

En,i and the measurability of the f (·, y), the function fn : X×Y →

Z, defined by

fn(x, y) := f (x, yn,i) (y ∈ En,i),

is measurable. Further, using the continuity of each f (x, ·), it

is easily seen that limn→∞ fn = f pointwise. (In detail: Let

(x, y) ∈ X × Y and let V be a neighbourhood of f (x, y). Then

there is a neighbourhood U of y with f (x, U) ⊂ V. We have

y ∈ Un0 ⊂ U for some n0 ∈ N. Hence, for every n ≥ n0,

there is an i(n) ∈ {1, . . . , k(n)} with y ∈ En,i(n) ⊂ U, and hence

fn(x, y) = f (x, yn,i(n)) ∈ f (x, U) ⊂ V.) It follows that f is mea-

surable. (For this last step, see [7, Theorem 4.2.2]. In the special

case Z = C, which is the only one needed below, we can alterna-

tively refer to [21, Corollary (a) to Theorem 1.14].) �

Proof of the theorem. Naturally, the claim C1 depends only on the

assumptions A1 and A2: For z ∈ G fixed, the representation

∂n+1
z f (z, ω) = lim

k→∞, z+k−1∈G
k · (∂n

z f (z + k−1 ,ω) − ∂n
z f (z,ω))

(ω ∈ Ω, n ∈ N0)

shows that ∂n
z f (z, ·) is measurable for every z ∈ G and every

n ∈ N0. The product measurability of each function ∂n
z f follows

using the preceding Lemma. Let now A ⊂ G. Choose a countable

and dense subset D of A. Using the continuity of ∂n
z f (·, ω), the

measurability of supz∈A |∂n
z f (z, ·)| = supz∈D |∂n

z f (z, ·)| follows.

Without loss of generality, we may assume in what fol-

lows that µ is σ-finite. To prove this claim, let Ωz :=

{ω ∈ Ω : | f (z,ω)| > 0} for z ∈ G. Let further D ⊂ G be count-

able and dense. By assumption A3, we have f (z, ·) ∈ L1(µ), so

that Ωz must be σ-finite for every z ∈ G. Using the continuity

of f (·,ω), we get Ω̃ :=
⋃

z∈G Ωz =
⋃

z∈D Ωz and hence the σ-

finiteness of Ω̃. Obviously, validity of the theorem for the given

measure µ is implied by the validity of the theorem for theσ-finite

measure µ̃ := µ(· ∩ Ω̃).

Proof of C2. We use the standard notation Br(a) :=

{z ∈ C : |z − a| < r} for open disks. Let a ∈ G and r ∈ ]0, ∞[

be such that the closed disk Br(a) ⊂ G. If g is any function holo-

morphic in G, the Cauchy formulas for the derivatives yield

g(n)(z) =
n!

2π

∫ 2π

0

g(a + reit)

(a + reit − z)n+1
reit dt (z ∈ Br(a)). (10)

For z ∈ Br/2(a), we have |a + reit − z| ≥ r/2, and hence

|g(n)(z)| ≤
n!

2π

2n+1

rn

∫ 2π

0
|g(a + reit)| dt (z ∈ Br/2(a)). (11)

An application of (11) to each f (·,ω) yields

∫
sup

z ∈Br/2(a)

|∂n
z f (z, ω)| dµ(ω)

≤
n!2n+1

2πrn

∫ ∫ 2π

0
| f (a + reit ,ω)| dt dµ(ω).

A change of the order of integration on the right hand side (which

is allowed, since µ is assumed to be σ-finite and the integrand is

nonnegative and known to be product measurable) yields, using

assumption A3, finiteness of the right hand side, and thus finite-

ness of the left hand side. This implies (2) via the usual covering

argument.

First proof of C3. For n = 0, the claim (3) is trivial. To pro-

ceed from n to n + 1, thus proving in particular the claimed holo-

morphy, calculate for fixed z ∈ G the difference quotients of∫
∂n

z f (·,ω) dµ(ω) under the integral. Applying the mean value

theorem of differential calculus (in the inequality version valid

for vector-valued functions [5, § 8.5.4]) in a compact and convex

neighbourhood of z in G, and using C2 with n + 1 in place of n, we

easily see that the dominated convergence theorem is applicable,

yielding (3) with n + 1 in place of n.

Second proof of C3. To abbreviate, let F :=
∫

f (·,ω) dµ(ω).

From claim C2, already proved, for n = 0, we get the continu-

ity of F using the dominated convergence theorem. We now use

the characterization of holomorphy in terms of Cauchy’s formu-

la: Inserting F for g on the right hand side of (10) for n = 0 and

interchanging the integrations shows that (10) holds for n = 0

with g = F. By [17 or 18, Theorem 8.2.1], F must be holomorphic.

Finally an application of (10) for arbitrary n to g = F yields, via in-

terchanging integrations and an application of (10) to g = f (·, ω),

the formula (3). �

Proof of the addendum to the theorem. Modification of

the proof concerning σ-finiteness: By (9), the set G0 :=

{z ∈ G :
∫
| f (z,ω)| dµ(ω) < ∞} differs from the open set G at

most by a set of two-dimensional Lebesgue measure zero, and

hence is dense in G. Therefore, choosing D ⊂ G0 countable and

dense, D is also dense in G, so that we may proceed as in the proof

of the theorem.

Modification of the proof of C2. We now have to integrate over

an area rather than over a curve. Here is the version of the ar-

gument suggested by the referee. Let z ∈ G and r ∈ ]0, ∞[ with

Br(z) ⊂ G. For any g holomorphic in G, take (10) with a = z,

write s in place of r, and apply (n + 2)r−(n+2) ∫ r
0 . . . sn+1 ds. The

result is

g(n)(z) =
n + 2

rn+2

n!

2π

∫ r

0
s
∫ 2π

0
g(z + seit)e−int dt ds,

implying

|g(n)(z)| ≤
n + 2

rn+2

n!

2π

∫∫

Br(z)

|g(ξ + iη)| dξdη,

and hence, for z0 ∈ G and r ∈ ]0, ∞[ with B2r(z0) ⊂ G,

sup
|z−z0 | ≤r

|g(n)(z)| ≤
n + 2

rn+2

n!

2π

∫∫

B2r(z0)

|g(ξ + iη)| dξdη.

With f (·,ω) in place of g and with 2r ≤ δ with δ from (9), an

application of
∫

. . . dµ(ω) yields (2). �

Proof of the side remark. Put h :=
∫
| f (·,ω)| dµ(ω) and

G∗ :=
{

z0 ∈ G : ∃ δ > 0 with sup
z∈G,|z−z0 |≤δ

h(z) < ∞

}
.

Then G∗ is open. By Fatou’s lemma, h is lower semicontinuous.

An easy application of Baire’s theorem [6, § 12.16.2] shows that

G∗ is dense in G. Obviously, the assumptions of the theorem, and

hence its conclusions, hold with G∗ in place of G. �
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Construction of Counterexample 1. Let us fix ν ∈ N for a moment

and put

Aν :=
{

z ∈ C : |z| ≤ 1/ν
}

,

Bν :=
{

z ∈ C : |z| ≤ ν, d(z, [0, ∞[) ≥ 2/ν
}

,

Cν :=
{

z ∈ C : d(z, [3/ν, ν]) ≤ 1/ν
}

.

Then the sets Aν , Bν , Cν are compact and disjoint. Setting Kν :=

Aν ∪ Bν ∪ Cν , we observe that C \ Kν is connected. Runge’s the-

orem on polynomial approximation [21, Theorem 13.7] yields the

existence of a polynomial qν with

|qν(z)| ≤ 2−ν (z ∈ Bν ∪ Cν),

|qν(z) −
ν

∑
n=0

anzn/n!| ≤ 2−ν (z ∈ Aν).

We now define p0 := q0 and pν := qν − qν−1 for ν ≥ 2. It is not

difficult to check that the sequence (pν : ν ∈ N) has the required

properties. To derive appropriate bounds for nth derivatives, one

may use (10) with a = z and r = 1/ν.

Construction of Counterexample 2. For k ∈ N, let

Ak :=
{
ρeiθ : ρ ∈ [1/k, k], θ ∈ [1/k, 2π ]

}
.

Using Runge’s theorem, we can easily find a polynomial rk with

rk(0) = 0, r′k(0) = 1, |rk(z)| ≤
1

k2
(z ∈ Ak).

Let us put λk := sup|z|≤k |rk(z)| and choose a sequence (lk : k ∈

N) of even positive integers satisfying limk→∞
λk/lk = 0. We

now write qk := l−1
k rk and define the polynomial pν to be the νth

element in the sequence

(−)0q1 , (−)1q1 , . . . , (−)l1−1q1 , (−)0q2 , (−)1q2 , . . . , (−)l2−1q2 , . . .

If now z ∈ C and N ∈ N with ∑k−1
j=1 l j < N ≤ ∑k

j=1 l j and with

k ≥ |z|, then

|
N

∑
ν=1

pν(z)| ∈ {0, |qk(z)|} ≤
λk

lk
.

Hence we get (6), with the limit being identically zero. For z = 0,

(7) is trivial. For z 6= 0, there is a k0 ∈ N with z ∈ Ak for k ≥ k0.

Hence, with ν0 := ∑k0−1
j=1 l j,

∑
ν>ν0

|pν(z)| = ∑
k≥k0

lk|qk(z)| = ∑
k≥k0

|rk(z)| ≤ ∑ 1

k2
< ∞,

yielding (7). Finally, (8) is obvious: ∑ν |p′ν(0)| = ∑k lkq′k(0) =

∑k 1 = ∞.
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