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Kloosterman Centennial Celebration

Arithmetic applications
of Kloosterman sums
Last April saw the 100-th anniversary of the birth of H.D. Klooster-

man. The occasion was celebrated by a one day meeting in Leiden,

and this article is a report on one of the lectures given. It describes

one of Kloosterman’s abiding contributions to mathematics, the ex-

ponential sum which now bears his name. Kloosterman sums may

appear somewhat technical at first glance, but they are of frequent

occurence throughout analytic number theory, and their use has

brought numerous diverse applications.

H.D. Kloosterman (third from the left) in the garden of paleis Soestdijk, during the reception
at the ICM in 1954.

Exponential sums are a key tool in analytic number theory. If A

is a finite set of integers, and f a real valued function on A, then
the sum S = ∑n∈A e2π i f (n) is a typical exponential sum. Usually
one writes e(t) = exp(2π it), for convenience. Two types of ex-
ponential sum are commonly encountered, each handled by their
own techniques. Analytic sums are those in which A is the set
of integers from some finite real interval I, and f extends to a
smooth function on I. Arithmetic sums are defined by giving po-
lynomials g(X), f (X) ∈ Z[X] and a modulus q ∈ N. We then
take A to be the set of integers n ∈ I for which (h(n), q) = 1,
and set f (n) = g(n)h(n)/q, where m is any integer for which
mm ≡ 1(mod q). Thus f is, in effect, a rational function, to modu-
lus q. In this case we have

S = ∑
n∈I

e(g(n)h(n)/q),

where the sum omits any values where h(n) is not defined. Notice
that we get the same values for e(g(n)h(n)/q) and for S, whatever
choices modulo q we make for the values of h(n).

When h(X) = 1 we get a sum that can be viewed either as
analytic or arithmetic. Special techniques apply to such sums. The
simplest example of a sum which is arithmetic but not analytic is
thus ∑

n ∈I

e(cn/q) = SI(q; c),

say. The usual method (often the only method) to handle arithme-
tic sums of this type is to convert them into sums over a ‘complete’
range I = (0, q]. This is achieved via the following result.

Lemma Let An ∈ C be a sequence with period q, and let Âm be the

discrete Fourier transform ∑q
n=1 Ane(mn/q). Then if a < b are integers

we have
∣

∣

∣

∣

∣

∑
a<n≤b

An − b − a

q
Â0

∣

∣

∣

∣

∣

≤ (log q) max
1≤m<q

|Âm|.
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In general we expect Âm to be small for 1 ≤ m < q, so that the
partial sum of the An is approximately described by its average
value, namely q−1 Â0.

If this lemma is applied to SI(q; c), under the assumption that I

has length at most q, we find that

|SI(q; c)| ≤ (1 + log q) max
1≤m≤q

|S(m, c; q)|, (1)

where
S(m, c; q) =

q

∑
n=1

e(
mn + cn

q
).

(Here again we follow the convention that values where n is not
defined are omitted.) These sums S(m, c; q) are the Kloosterman
sums. They arise from ‘completing the range’ for the simplest pos-
sible genuine arithmetic exponential sum SI(q; c). Estimates for
their size are crucial in bounding SI(q; c), as (1) shows.

Kloosterman’s work on quadratic forms

Lagrange’s famous theorem of 1770 states that every positive in-
teger is a sum of four squares. It is natural to ask what happens
if one looks at solutions of N = a1n2

1 + a2n2
2 + a3n2

3 + a4n2
4, with

fixed coefficients ai ∈ N. Numerical experiment suggests that in
some cases all integers are represented, in others all integers with
a finite number of exceptions are represented, and in yet other
cases infinitely many exceptions occur. In the early 1920’s the
Hardy-Littlewood circle method was being developed. It is a very
general tool, ideally suited to investigate questions of this kind, in
which one hopes to show that all integers take a certain form, with
at most a finite number of exceptions. The problem above can be
easily handled if one allows 5 or more variables, but for quadra-
tic forms in 4 variables the Hardy-Littlewood method narrowly
missed the target. In his seminal paper [10] in 1926, Kloosterman
introduced his ‘Kloosterman refinement’ of the Hardy-Littlewood
method. This enabled him to identify precisely which sets of coef-
ficients a1 , a2 , a3 , a4 allow all sufficiently large n to be represented.
In his work he encountered for the first time the sums that bear
his name, and succeeded in giving a non-trivial bound for them.

In the circle method one integrates a generating function
around a circle, in order to pick out its coefficients by using
Cauchy’s integral formula. One isolates the contributions coming
from the part of the circle near to each root of unity e(n/q). To
do this one chooses a parameter Q and arranges those fractions
n/q ∈ [0, 1) for which q ≤ Q, into increasing order. This gives
a so-called ‘Farey sequence’. Early applications of the circle me-
thod treated these fractions relatively crudely, but Kloosterman
found it necessary to investigate their distribution fairly preci-
sely. In particular he was interested in the length of the interval
around the fraction n/q. To illustrate his argument take two con-
secutive Farey fractions u/v and n/q, and consider the length of
the interval [u/v, n/q]. It is an elementary fact about such frac-
tions that vn − uq = 1, so that the interval has length 1/vq. For
fractions with a fixed denominator q this varies erratically as one
changes the numerator n. Indeed since vn ≡ 1(mod q), one has
v ≡ n(mod q), so that the length of the interval [u/v, n/q] is essen-
tially determined by n. However Weyl’s criterion for uniform dis-
tribution shows that these lengths will be smoothly distributed,
as one varies n over an interval I, providing that the sums SI(q; c)

are small compared to the length of I, whenever q ∤ c. The key to
the problem was thus to give an estimate for SI(q; c) which was

substantially smaller than q.
In view of (1) one is therefore led to ask about the size of the

Kloosterman sum S(m, c; q). Trivially one has |S(m, c; q)| ≤ q, but
this is not quite small enough to be useful.

Kloosterman’s bound

To illustrate the way in which Kloosterman found a non-trivial
bound for his sum, let us consider the case in which q is a prime,
p say. Then

S(m, c; p) =
p−1

∑
n=1

e(
mn + cn

p
),

where now all n in the range 1 ≤ n ≤ p − 1 do actually occur.
Whenever a is an integer coprime to p, the residues of an run over
the integers 1, . . . , p − 1 as n does. For any such a we therefore
have

S(m, c; p) =
p−1

∑
n=1

e(
m.an + c.an

p
)

=
p−1

∑
n=1

e(
ma.n + ca.n

p
)

= S(ma, ca; p).

We are assuming that p ∤ c, so that the values of ca are distinct for
1 ≤ a ≤ p − 1. The sum

Σ =
p−1

∑
r=0

p−1

∑
s=0

|S(r, s; p)|4

therefore contains p − 1 copies of |S(m, c; p)|4, so that

(p − 1)|S(m, c; p)|4 ≤ Σ. (2)

We may expand |S(r, s; p)|4 as

p−1

∑
n1 =1

p−1

∑
n2 =1

p−1

∑
n3 =1

p−1

∑
n4 =1

e(
rA + sB

p
),

where

A = n1 + n2 − n3 − n4 , B = n1 + n2 − n3 − n4 .

On rearranging the orders of summation, it follows that

Σ = ∑
ni

∑
r,s

e(
rA + sB

p
) = ∑

ni

{∑
r

e(
rA

p
)}{∑

s
e(

sB

p
)}.

The two innermost sums are easily evaluated. If ωp = 1, but ω 6=
1, then p−1

∑
r =0

ωr =
ωp − 1
ω − 1

= 0,

while for ω = 1 the sum is plainly p. It follows that

p−1

∑
r =0

e(
rA

p
) =

{

0, p ∤ A,

p, p|A,

and similarly for the sum over s. We therefore conclude that

Σ = p2#{(n1 , n2 , n3 , n4) : p|A, B}.

It is a trivial exercise to show that if p|A, B then either n3 , n4
is a permutation of n1 , n2, or n1 + n2 ≡ n3 + n4 ≡ 0(mod p).
Thus there are at most 3(p − 1)2 available sets of values for
n1 , n2 , n3 , n4, so that
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Σ ≤ 3p2(p − 1)2
< 3p3(p − 1).

We now deduce from (2) that

|S(m, c; p)| < 31/4 p3/4 , (p ∤ c). (3)

This is the non-trivial bound found by Kloosterman. It demon-
strates that SI(p; c) contains some cancellation as soon as the leng-
th of I is of order larger than p3/4 log p. As described above this
was enough to enable Kloosterman to solve the problem on qua-
ternary quadratic forms.

It should be mentioned that Weil [13] obtained the stronger
bound

|S(m, c; p)| ≤ 2p1/2 , (p ∤ c) (4)

from his proof of the Riemann Hypothesis for curves over finite
fields. This estimate is essentially best possible. Many of the ap-
plications of Kloosterman sums take advantage of this stronger
bound.

A recent variant of Kloosterman’s problem

It is conjectured that every sufficiently large integer N ≡
4(mod 24) is a sum N = p2

1 + p2
2 + p2

3 + p2
4 with the pi all prime.

Many numbers N 6≡ 4(mod 24) are also of this form, but it is easy
to see that one of the primes must be 2 or 3 unless N ≡ 4(mod 24),
so that the condition is needed if one is to have a problem that
genuinely involves 4 variables. The analogous question with 5
primes is solved, but the case of 4 primes looks extremely dif-
ficult. An interesting approximation to the conjecture was ob-
tained by Brüdern and Fouvry [2], using the Kloosterman refi-
nement of the Hardy-Littlewood circle method, in conjunction
with the estimate for the Kloosterman sum. They showed that
every sufficiently large integer N ≡ 4(mod 24) may be written
as N = P2

1 + P2
2 + P2

3 + P2
4 , where the Pi are ‘almost-prime’ in the

sense that they contain only a bounded number of prime factors.
To be specific they showed that one can take the Pi each to have at
most 34 prime factors. This may seem a ridiculously large num-
ber, but such almost-primes have zero density in N, so that it was
quite an achievement to prove a result of this type.

An elementary problem

One apparently very elementary problem to which Kloosterman
sums have been applied is the following. Let p be a prime number,
and let a be an integer not divisible by p. Solve mn ≡ a(mod p)

with positive integers m and n as small as possible. Write M(a)

for the minimal value of max(m, n). What can one say abut the
size of M(a)? Clearly one has M(p − 1) ≥

√

p − 1, and M(a)

is always at most p − 1, but is there a better upper bound? One
might expect, on probabilistic grounds, that M(a) is never much
larger than p1/2.

To tackle this question we shall write An = 1 if mn ≡ a(mod p)

has a solution m with 1 ≤ m ≤ M, say, and An = 0 otherwise. The
lemma given earlier then shows that

∣

∣

∣

∣

∣

∑
0<n≤M

An − M

p
Â0

∣

∣

∣

∣

∣

≤ (log p) max
1≤k<p

|Âk|. (5)

The sum ∑n≤M An represents the number of solutions to mn ≡
a(mod p) with 1 ≤ m, n ≤ M. The term Â0 is just M, and

Âk = ∑
n:∃m≤M, mn≡a(mod p)

e(kn/p) =
M

∑
m=1

e(kam/p),

on substituting am for n. It follows from (1) that

|Âk| =|S(0,M](p, k)| ≤ (1 + log p) max
1≤m≤p

|S(m, k; p)|,

and an application of the Weil bound (4) produces

|Âk| ≤ 2(1 + log p)p1/2 , (p ∤ k).

Inserting this estimate into (5) shows that
∣

∣

∣

∣

#{m, n ≤ M : mn ≡ a(mod p)} − M2

p

∣

∣

∣

∣

≤ 2(log p)(1 + log p)p
1
2

< 4(log p)2 p1/2

for p ≥ 3. Thus if M2/p ≥ 4(log p)2 p1/2, we must have at least
one solution to mn ≡ a(mod p) with m, n ≤ M. We therefore
deduce that

M(a) ≤ 2(log p)p3/4 .

This gives the desired improvement on the trivial bound M(a) ≤
p − 1. Notice that when M is appreciably larger than p3/4, the
above analysis show that there are asymptotically M2/p solutions
to mn ≡ a(mod p) with m, n ≤ M.

It is an open problem to improve on the exponent 3/4.

Problems involving the divisor function

The divisor function d(n) is the number of divisors of n, or equi-
valently the number of solutions n = ab with a, b ∈ N. It was
shown by Dirichlet that

∑
n ≤x

d(n) = x(log x + 2γ − 1) + O(x1/2),

where γ is Euler’s constant. This suggests a number of pro-
blems, among them being the behaviour of ∑n≤x d(n)d(n + 1).
This sum counts 4-tuples a, b, r, s of positive integers for which
ab ≤ x and ab + 1 = rs. We can eliminate s to yield the condition
ab ≡ −1(mod r). If we think of r as being fixed, and count how
many solutions a, b there will be, we produce a question closely
related to that of the previous section, concerning M(−1). Since
a and b will typically be of size x1/2, the analysis above can be
used to give an asymptotic formula for the number of pairs a, b,
providing that x1/2, which plays the rôle of M, is a little larger
than r3/4. This is satisfactory, since r is typically of size x1/2. In
this way one may obtain the asymptotic formula

∑
n ≤x

d(n)d(n + 1) = xQ(log x) + O(x5/6+ε) (6)

where ε is a small fixed positive number, and Q is a certain qua-
dratic polynomial (whose coefficients are absolute constants that
are a little unpleasant to specify).

One can replace the Weil bound by Kloosterman’s bound
(3) in the above analysis, in which case one will get an expo-
nent 11/12 + ε in the error term. However the trivial bound
|S(m, c; p)| ≤ p does not produce an exponent less than 1.

The sums ∑n≤x d(n)d(n + a) may be handled in the same way
for any a ∈ N. These are of interest because they arise in the theo-
ry of the Riemann Zeta-function.
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One defines, as usual

ζ(s) =
∞

∑
n=1

n−s , (s ∈ C, Re(s) > 1).

The divisor function enters via the formulaζ(s)2 = ∑∞

n=1 d(n)n−s.
The mean values

Ik(T) =
∫ T

0
|ζ(

1
2

+ it)|2kdt

have been extensively investigated. It is relatively easy to give
an asymptotic formula for Ik(T) for k = 1, while for k ≥ 3 it
is an important unsolved problem. When k = 2 one may write
|ζ |4 as ζ2ζ2. Expanding this produces a double sum whose near-
diagonal terms involve d(n)d(n + a), for fixed a. The analysis then
reduces to a question concerning ∑n≤x d(n)d(n + a). In this way
Heath-Brown [5] showed that

∫ T

0
|ζ(

1
2

+ it)|4dt = TF(log T) + O(T7/8+ε), (7)

where ε is a small fixed positive number, and F is a certain quartic
polynomial.

Kloostermania

In all the above problems, and many others, the key step is to use
a bound on the size of the Kloosterman sum. In fact a great many
of these problems involve not one, but many Kloosterman sums,
occuring in various different forms of average. It was realized a
long way back that if one had non-trivial estimates for averages of
Kloosterman sums, then many of these results could be improved.
Thus it was a major achievement when Kuznetsov [11] showed
that

∑
q ≤x

S(m, n; q)√
q

≪ x2/3+ε

for any fixed small positive ε, and any fixed non-zero integers m

and n. Kuznetsov’s paper sparked a tremendous flurry of work,
principally by Kuznetsov and Iwaniec, and their co-authors. A
multitude of different kinds of averages of Kloosterman sums we-
re investigated, and a host of applications were produced.

This activity was nicknamed ‘Kloostermania’, which reflected
the excitement generated in the field at large. In particular it
should be mentioned that the exponent 5/6 in (6) was reduced
to 2/3 by Motohashi [12], and likewise the exponent 7/8 in (7)
was reduced to 2/3 by Zavorotnyi [14], in both cases using the
theory developed by Kuznetsov and Iwaniec.

Applications to primes

Kloostermania produced many applications to the theory of
prime numbers. One such application relates to the following
question. Are there infinitely many primes p such that (p − 1)/2
is also prime? This seems to be about as hard as the twin prime
conjecture. As an approximation to the problem, it was shown by
Fouvry [4], that there are infinitely many p for which (p − 1)/2
has a prime factor larger than p2/3. Thus (p − 1)/2 is close to
being prime.

Fouvry’s work itself had an interesting application. It was used
by Adleman and Heath-Brown [1], in 1985, to show that the ‘First
Case’ of Fermat’s Last Theorem holds for infinitely many primes.

Thus for infinitely many prime exponents p, if xp + yp = zp, then
p|xyz. It should be stressed that until Wiles’ work, Fermat’s Last
Theorem was only known for finitely many primes. The above
theorem of Adleman and Heath-Brown, an application of Kloos-
terman sums, was the only result proven to hold for infinitely ma-
ny primes.

Another application of Kloostermania concerns primitive
roots. If p is a prime, we say that g ∈ Z is a primitive root of p

if g + Z generates (Z/pZ)×. An equivalent statement is that the
recurring expansion of 1/p to base g has minimal period p − 1. It
is not hard to see that 0 is never a primitive root, that −1 is a pri-
mitive root only for p = 2 and p = 3, and that a square can only be
a primitive root for p = 2. It was conjectured by Artin that every
value of g, apart from these exceptions, is a primitive root for infi-
nitely many primes. In particular, taking g = 10, there should be
infinitely many primes p for which the decimal expansion of 1/p

has minimal period p − 1.
As an approximation to Artin’s conjecture one has the theorem

(Heath-Brown [6]) that there are at most 2 prime values of g for
which the conjecture fails; and that there are at most 3 square-free
values. (Here g is said to be square-free if the only square dividing
g is 12.) The proof uses technical results about the distribution of
primes, which had previously been established using Klooster-
mania.

A final problem

A famous problem in prime number theory asks whether any
irreducible polynomial F(x) ∈ Z[x], such that the numbers
F(1), F(2), F(3), . . . have no common factor, takes infinitely ma-
ny prime values. Thus for example, n2 + 1 should take infinitely
many prime values.

This problem appears to be well out of reach when F has de-
gree 2 or more, so we look at an easier question, concerning the
behaviour of P(F(n)), defined as the largest prime factor of F(n),
where F is assumed to have degree at least 2. It is not hard to
show that P(F(n)) ≥ n for infinitely many n, and Nagell showed
that P(F(n))/n is unbounded. However it is natural to hope for
stronger assertions than this.

In 1967 Hooley [8] showed, using Weil’s bound (4) for the
Kloosterman sum, that P(n2 + 1) ≫ n11/10 infinitely often (a
result subsequently improved by Deshouillers and Iwaniec [3],
using Kloostermania, to allow an exponent 1.202 . . .).

In his proof Hooley has to consider the distribution, as m va-
ries, of the solutions of the congruence n2 + 1 ≡ 0(mod m). In
order to show that the distribution is uniform one needs, accor-
ding to the Weyl criterion, to demonstrate that the sum

S1 = ∑
m≤x

∑
n: n2+1≡0(mod m)

e(cn/m)

is o(x). Hooley transforms this sum by setting m = a2 + b2, so
that a2 + b2 ≡ 0(mod m), and hence (ab)2 + 1 ≡ 0(mod m). Thus
one can take n = ab and replace the sum S1 by

S2 = ∑
a,b

e(
cab

a2 + b2 ).

Unfortunately this is not of the same shape as a sum SI(q; c),
since the variable b appears both in the numerator and the deno-
minator of the fraction above.

It is instructive to see how Hooley gets round this difficulty. In
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general, if uu ≡ 1(mod v), then uu = 1 + vw for some w. Thus
vw ≡ −1(mod u), so that w ≡ −v(mod u). In order to distin-
guish inverses modulo v from those modulo u we shall attach su-
perscripts v and u as appropriate. Then we have

uu(v) + v(−w) = 1

and −w is an admissible value for vv(u). Thus

uu(v) + vv(u) = 1,

whence
u(v)

v
+

v(u)

u
=

1
uv

.

We apply this with u = b and v = a2 + b2. Then the term 1/uv is
sufficiently small as to be negligible, while

− v(u)

u
= − (a2 + b2)

(b)

b
= − a2(b)

b
.

Thus
cab

a2 + b2

may be replaced by

− caa2(b)

b
= − ca(b)

b
.

This enables us to replace S2 by

∑
b

∑
a

e(− ca(b)

b
) = ∑

b

SI(b;−c),

for suitable intervals I = I(b).

It is now clear that we may use (1) together with the Weil
bound (4) to get non-trivial bounds for S1 and S2, providing that
the range for a is a little larger than b1/2. This is satisfactory since a

and b are typically both of size x1/2.
Having succeeded in handling n2 + 1, Hooley [9] went on to

consider n3 + 2. Here he was also able to produce sums of the
form SI(q; c), but now the intervals I were typically of length q1/3.
Thus he was unable to produce a satisfactory bound using (1) in
conjunction with the Weil estimate (4). Instead he made the con-
jecture that

S(a,b](q; c) ≪ qε(b − a)1/2 , (b − a ≤ q, q ∤ c),

for any fixed ε > 0, and showed, subject to this conjecture, that
there is a positive constant δ such that P(n3 + 2)/n1+δ is unboun-
ded. In fact his analysis shows that δ = 1/31 is admissable.

This exemplifies a major problem in a great many applications
of Kloosterman sums: Can one give a nontrivial bound for SI(q; c)

when I has length less than q1/2?
It is possible to do this when q is ‘smooth’, that is to say,

q consists only of small prime factors. The moduli q occuring
in Hooley’s analysis of n3 + 2 are not necessarily smooth, but
Heath-Brown [7] has recently managed to circumvent this dif-
ficulty, and to show unconditionally that P(n3 + 2)/n1+δ is un-
bounded, with a positive constant δ. The method produces an ex-
plicit value for the constant δ, but the reader might be forgiven
for doubting whether δ is indeed positive, for the value obtained
is δ = 10−303 (!). k
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