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A rational approach to π

This article is based on notes for the lecture with the same title, which

was held by the author on the occasion of the ‘Pi in de Pieterskerk’

event on July 5, 2000 (Pi-day). The present article expands these

notes with short proofs of most of the theorems given, but not

proved, during the lecture.

During the weeks preceding Pi-day in Leiden, and of course on

the day itself, it has once more become clear that the number π

has an alluring appeal to a very broad audience. A possible expla-

nation for this interest is that π is the only transcendental number

which most people have ever seen and will ever see. The fact that

such a transcendental number cannot be written down exactly is

then a source of amazement and wonder.

In the past few years this fascination with π has resulted in a

number of books on the subject of π . Some of these books are

written for a wide audience, some others can be read only with a

substantial mathematical background. In the bibliography of this

article we give a short, descriptive listing of such books and some

websites as well. Through these publications devoted to π , a body

of facts and stories has developed itself around this number. We

can read about Archimedes’ method to compute π , Ludolf van

Ceulen’s record computation, Machin’s formula, the arithmetic-

geometric mean, Ramanujan’s miraculous formulas, the impos-

sibility of circle quadrature, computation of digits of π without

knowing the previous ones. All these topics form part of what I

would like to call π-folklore.

It is not the purpose of this article to provide another introduc-

tion to π-folklore. I refer the reader interested in this folklore to

the bibliography. The purpose of the present article is to adver-

tise a rather recent result around π , and thus help it find its way

into π-folklore. The result deals with the explicit construction of

good rational approximations to π . Let us start with two very

well-known rational numbers that approximate π :

22

7
− π ≈ 0.00126,

355

113
− π ≈ 0.000000266.

The number 22
7 is so well-known as an approximation, that many

people think that it equals π . The second approximation has been

discovered in the fifth century by the Chinese mathematician Tsu

Chung Chih. One might wonder why we call these rational ap-

proximations good, and whether more of such good approxima-

tions exist. To quantify what ‘good’ means we rewrite our ap-

proximations as
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7
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∣

∣

∣

≈ 1

73.429
,
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∣

∣

∣

355

113
− π

∣

∣

∣

∣

≈ 1

1133.201
.

The exponents 3.429 and 3.201 will be called the quality of the

respective approximations. In general, the quality of an approxi-

mation
p
q with p, q ∈ N and gcd(p, q) = 1 is the number M such

that

∣

∣

∣

∣

π − p

q
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∣

∣

∣

=
1

qM
.

Using the theory of continued fractions we know that there ex-

ist infinitely many rational approximations to π whose quality

is ≥ 2. However, the continued fraction expansion of π is com-

pletely intractable. Almost nothing is known about this continued

fraction and thus we have no control over it. For applications one

would like to have an explicit construction of rational approxima-
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tions to π of good quality. By that we mean quality ≥ 1. This is of

course less than quality ≥ 2 as with continued fractions. But this

lesser quality is counter-balanced by the greater control over the

approximations, due to the explicitness of the construction. This

control, which is important for several applications, is lacking in

the case of continued fractions.

It turns out that the number π is surprisingly resistant against

construction of good quality approximations. Despite many

efforts it was only in 1993 that the Japanese mathematician

Masayoshi Hata succeeded in giving such a construction in

M. Hata, Rational approximations to π and some other numbers, Acta

Arith. 63 (1993), pp. 335–349.

In this article we shall describe a simple irrationality proof of π .

Then we explain the role of explicit good quality approximations

in irrationality proofs and irrationality measures. Finally we de-

scribe a few attempts to construct good quality approximations

crowned by Hata’s successful construction.

Irrationality of π

The first irrationality proof of π was given in 1773 by the Swiss

mathematician J. Lambert. In the long history of π this can be

called a fairly recent result. The reason for the late appearance of

such a proof is that proving irrationality of π is far from trivial.

Lambert made use of a continued fraction of the cotangent func-

tion. Such continued fractions were relatively new in Lambert’s

time. Here is the formula that Lambert used:

cot
1

x
= x − 1

3x − 1

5x − 1

7x − . . .

This formula means that if, for a given x, we compute consecu-

tively the truncated fractions:

x − 1

3x
, x − 1

3x − 1

5x

, x − 1

3x − 1

5x − 1

7x

,

et cetera, we get a sequence of numbers which converges to cot 1
x .

In fact, it turns out that this convergence is surprisingly fast. The

truncated fractions are usually called the convergents of the contin-

ued fraction. Although I have seen this continued fraction many

times, I still think it is a wonderful formula. One of its interesting

features is that the right hand side does not contain π explicitly.

As the reader may know, there are several ways to expand the

cotangent function. For example, Euler’s summation

cot
1

x
= x +

∞

∑
n=1

2x

1 − n2π2x2

or the product formula

cot
1

x
= (−1 + πx/2)

∞

∏
n=1

n2π2x2 − (−1 + πx/2)2

n2π2x2 − 1
.

However, most of these expansions contain π explicitly. Lam-

bert’s continued fraction does not.

If, in particular, we take x = 2
π , we obtain the equality

0 = 2/π − 1

6/π − 1

10/π − 1

14/π − . . .

The right hand side is really an elaborate, but useful, way to ex-

press the number zero. Writing down the truncated fractions, we

get:

2/π − 1

6/π
=

12 − π2

6π
≈ 0.113,

2/π − 1

6/π − 1

10/π

=
120 − 12π2

60π − π3
≈ 0.00993,

2/π − 1

6/π − 1

10/π − 1

14/π

=
1680 − 180π2 + π4

840π − 20π3
≈ 0.000436,

30240 − 3360π2 + 30π4

15120π − 420π3 + π5
≈ 0.0000115.

In particular these convergents go to zero. Lambert argued as fol-

lows. Suppose that π were rational. Then the convergents are

rational numbers. By carefully estimating the numerical value of

these convergents and the size of the denominator, Lambert no-

ticed that the convergents are eventually non-zero rational num-

bers whose absolute values are strictly less than one divided by

their denominator. This is impossible and we get a contradiction.

Hence π is irrational.

A simpler proof

Lambert’s precise estimates are rather tedious though, and the

above sketch may not be very illuminating. Fortunately we have

nowadays a much simpler proof given by I. Niven in 1947. This

proof exploits the integral

In =
1

2

1

n!

∫ π

0
xn(π − x)n sin x dx

for every positive integer n. We remark that C. Hermite, in 1873,

used similar integrals in his own irrationality proof of π . See Her-

mite’s Oeuvres III, 146-149. However, this does not simplify the

question of why one should use integrals like In to prove irra-

tionality of π . This is one of the charms of irrationality proving.

Most of the time the initial idea seems to come clear out of the

blue. Here are some particular values of In:

I2 = 12 − π2 ,

I3 = 120 − 12π2 ,

I4 = 1680 − 180π2 + π4 ,

I5 = 30240 − 3360π2 + 30π4 .
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Looking at these polynomials in π one may observe that they co-

incide with the numerators of Lambert’s continued fraction. So

Niven’s integral is not so alien after all. The reader who is famil-

iar with continued fractions and with partial integration, may try

to find the reason for these coinciding polynomials in π . Here are

a number of facts for every positive integer n:

1. In ∈ Z[π ] of degree ≤ n,

2. In > 0,

3. In ≤ π2n+1

n! .

Fact (2) is easy, as the integrand of In is a positive function on the

segment of integration. So, In > 0. Fact (3) is also straightfor-

ward. The factors xn , (π − x)n , sin x in the integrand of In can be

estimated by πn , πn , 1 respectively. So

In =
1

2

1

n!

∫ π

0
xn(π − x)n sin x dx ≤ 1

n!

∫ π

0
π2n dx =

π2n+1

n!
.

Fact (1) follows from a number of observations. First of all, by

partial integration one can see that for any polynomial f (x) we

have

∫ π

0
f (x) sin x dx = f (π) + f (0) − f ′′(π) − f ′′(0)

+ f ′′′′(π) + f ′′′′(0) − . . .

The second observation is that x(π − x) is symmetric with respect

to the substitution x → π − x. Suppose that f (x) is symmetric in

this way. Then the same holds for the even order derivatives. So,

f (2k)(π) = f (2k)(0) for all k ≥ 0. Hence
∫ π

0
f (x) sin x dx = 2 f (0) − 2 f ′′(0) + 2 f ′′′′(0) − . . .

Now take f (x) = xn(π − x)n. We then see that f (k)(0) = 0 for all

k < n. Furthermore, by using the binomial expansion of (π − x)n,

we find that

f (k)(0) = k!

(

n

k − n

)

(−1)k−nπ2n−k

for all k ≥ n. Hence 1
n! f (k)(0) ∈ Z[π ] for every k and thus we

conclude that In ∈ Z[π ]. Also note that the highest power of π

that can occur is πn.

Now we can finish our irrationality proof. Suppose that π =
p
q

is rational. Since, by fact (1), In is a polynomial of degree n in π

with integer coefficients, it is a rational number with denominator

dividing qn. Moreover, by fact (2), In > 0. Because a positive

rational number is at least one divided by its denominator, we get

1

qn
≤ In .

Combine this with our upper bound for In (fact (3)) to get

1

qn
<

π2n+1

n!

for every positive integer n. In other words, n! < qnπ2n+1. This

becomes impossible when n is taken large enough! We conclude

that π cannot be rational. �

Blue print of an irrationality proof

In an American court of law the evidence for the irrationality

of π , which we presented in the previous section, might be called

‘circumstantial’. We constructed an increasingly complicated se-

quence of polynomials in π and the properties of these polyno-

mials bore indirect evidence against the rationality of π . There

is sometimes a more direct way to establishing irrationality of a

number. It is based on the following observation.

Observation. Let α be a real number. Suppose we have a sequence

of rational numbers

p1

q1
,

p2

q2
,

p3

q3
, . . . ,

pn

qn
, . . .

such that

0 <

∣

∣

∣

∣

α − pn

qn

∣

∣

∣

∣

<
ǫn

qn
,

where ǫn ↓ 0 as n goes to infinity. Then α is irrational.

The proof is quite straightforward. Suppose α =
p
q were rational,

where p, q ∈ Z and q > 0. Then the difference ∆n = |α − pn/qn|
is a positive rational number with a denominator dividing qqn.

Hence ∆n ≥ 1
qqn

. On the other hand we have the estimate ∆n <
ǫ
qn

for all n. Combining the two estimates we get

1

qqn
<

ǫn

qn

and hence 1
q < ǫn. Since ǫn ↓ 0 as n → ∞ we conclude that 1

q ≤ 0.

This is clearly impossible and so α is irrational. �

Irrationality of e

A famous example of this principle is the irrationality proof of e,

which we give here. We know that e is the sum of the series

e = 1 +
1

1!
+

1

2!
+

1

3!
+ · · · = ∑

n≥0

1

n!
.

Let us truncate this series after the term 1
n! and write

pn

n!
= 1 +

1

1!
+

1

2!
+ · · ·+ 1

n!
.

Then e − pn

n! = δn where

δn =
1

(n + 1)!
+

1

(n + 2)!
+

1

(n + 3)!
+ · · ·

We can estimate δn by using this series expression:

δn =
1

(n + 1)!

(

1 +
1

n + 2
+

1

(n + 2)(n + 3)
+ · · ·

)

<
1

(n + 1)!

(

1 +
1

1!
+

1

2!
+ · · ·

)

=
e

(n + 1)!
.
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Thus we see that 0 < e − pn

n! <
e

n+1
1
n! . Application of the above

observation with ǫn = e
n+1 now shows irrationality of e. �

Irrationality measures

Unfortunately, a similar irrationality proof for π is very hard to

find. In fact, it was only in 1993 that Hata managed to give an

explicit construction for rationals approximating π sufficiently

well to establish its irrationality. But there is more. In general,

irrationality proofs obtained by explicit construction of rational

approximations yield more information than just an irrationality

proof. They often provide so-called irrationality measures as well.

It turns out that Hata’s construction also yields the best irrational-

ity measure for π yet proved.

In the remainder of this section we explain what an irrationali-

ty measure is. In the following,α will be a fixed irrational number.

Consider a rational approximation
p
q to α with p, q ∈ Z, q > 0 and

gcd(p, q) = 1. Recall that we defined the quality of this approxi-

mation as the number M > 0 such that

∣

∣

∣

∣

α − p

q

∣

∣

∣

∣

=
1

qM
.

If it does not exist, we take M = 0. As a first result we prove,

Theorem. Letα be an irrational number. Then there exist infinitely

many approximations to α of quality ≥ 2.

This statement is part of the theory of continued fractions. But

also without knowledge of continued fractions it is not hard to

show. Fix a large positive integer Q and consider the set of num-

bers {qα} for q = 0, 1, 2, . . . , Q, where {x} denotes the difference

between x and the largest integer ≤ x. The set of {qα} is a set

of Q + 1 numbers in the interval [0, 1). So it tends to be crowded

when Q gets large. In particular, there must be two values of q,

say q1 < q2, such that the difference between {q1α} and {q2α}
is less than 1

Q in absolute value. Choose integers p1 , p2 such that

{qiα} = qiα − pi. Then, |(q2 − q1)α − (p2 − p1)| <
1
Q . Since

clearly 0 < q2 − q1 ≤ Q we see that
p2−p1

q2−q1
is an approximation of

quality at least 2. By choosing increasingly large values for Q we

can produce an infinite sequence of such approximations. �

In the introduction we have seen two good rational approxima-

tions to π whose quality was larger than 3. One may wonder if an

infinite number of such good quality approximations exists for π ,

or any other irrational we are looking at. To that end we introduce

the following concept.

Definition. The irrationality measure of an irrational number α is

defined as the limsup over all qualities of all rational approxima-

tions and is denoted by µ(α).

We have taken the limsup in our definition rather than the maxi-

mum since we are for example interested in the question whether

π has infinitely many approximations of quality at least 3. The

first two occurrences from the introduction may have been excep-

tional coincidences. If we assume that π behaves like most other

numbers, then there is very little chance that µ(π) ≥ 3. This is

shown by the following theorem.

Theorem. The set of irrational numbers with irrationality measure

strictly larger than 2 has Lebesgue measure zero.

This theorem is not hard to prove. Let us restrict ourselves to the

irrational numbers in the interval [0, 1]. Choose ǫ > 0. A number

α with µ(α) ≥ 2 + 2ǫ is, by definition, contained in an interval of

the form

[

p

q
− 1

q2+ǫ
,

p

q
+

1

q2+ǫ

]

,

with 0 < p < q integers, infinitely many times. Let us give an

upper bound for the total length of these intervals with q > Q,

where Q is some large fixed positive integer. Such a bound can be

given by

∞

∑
q=Q+1

q

∑
p=1

2

q2+ǫ
.

The inner sum is equal to 2
q1+ǫ . The sum over q can be estimated

by the integral criterion,

∞

∑
q=Q+1

2

q1+ǫ
<

∫

∞

Q

2

x1+ǫ
dx =

2

ǫQǫ
.

When we let Q → ∞ we see that the latter bound goes to zero.

Hence the Lebesgue measure of the numbers in [0, 1] with irra-

tionality measure ≥ 2 + 2ǫ is zero. The set of numbers in [0, 1]

with irrationality measure > 2 is the union of all sets of numbers

with irrationality measure at least 2 + 2/n for n = 1, 2, 3, 4, . . ..

Since a countable union of measure zero sets has again measure

zero, our result follows. �

Liouville numbers

We note that numbers with irrationality measure > 2 do exist. In

fact there exist irrational numbers with irrationality measure ∞.

These are the so-called Liouville numbers. An example of such a

number is given by ∑n≥0
1

2n! .

Name year upper bound for µ(π)

K. Mahler 1953 42

M. Mignotte 1974 20.6

G. Chudnovsky 1979 19.89

G. Rhin, C. Viola 1993 14.8

M. Hata 1993 8.02

Table 1

The reader may wish to verify as an exercise that the truncated se-

ries form a sequence of approximations whose qualities go to ∞.

On the other hand, numbers like Liouville numbers are a bit ar-

tificial. They are constructed for the purpose of having large ir-

rationality measures. It is expected that the irrationally measure

for a naturally occurring number is 2. Unfortunately, there are

not many instances where this is known. The algebraic numbers
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are known to have measure 2. This was shown by K.F. Roth in

1955, an achievement which won him the Fields medal. Another

known instance is e. The fact that µ(e) = 2 can easily be shown

by using the continued fraction expansion of e which, contrary

to that of π , is completely known. Although it is expected that

µ(π) = 2, it is very hard to get any results on µ(π). It was only in

1953 that K. Mahler was able to show for the first time that µ(π) is

finite. More precisely, he showed that µ(π) < 42. Through subse-

quent work, this bound was improved to lower values as is seen

from table 1.

Mignotte and Chudnovsky used Mahler’s method by improv-

ing his estimates. Rhin and Viola used certain double integrals to

show that µ(π2) ≤ 7.4. This implies that µ(π) ≤ 14.8. The reader

may wish to verify this last implication as an exercise.

Despite many efforts it was only in

1993 that the Japanese mathematician

Masayoshi Hata succeeded to give a

construction of good quality approx-

imations of the number π. M.Hata

(born 1954) works at the University of

Kyoto. His research interests are num-

ber theory and dynamical systems.

Hata’s method

The record of Rhin and Viola was only short-lived, since Hata de-

rived his bound on µ(π) in the same year. The method of Hata

differed completely from its predecessors. It uses precisely the

sequence of explicit rational approximations to π which we men-

tioned before. How one can derive an irrationality measure by

constructing a sequence of rational approximations is explained

in the following proposition.

Proposition. Let α be a real number. Suppose we have a sequence

of rational approximations

p1

q1
,

p2

q2
,

p3

q3
, . . . ,

pn

qn
, . . .

to α and suppose there exist ǫ > 0, Q > 1 with the following

properties:

i.
pn

qn
6= pn−1

qn−1
for all n.

ii. qn < Qn for all n.

iii.
∣

∣

∣
α − pn

qn

∣

∣

∣
≤ 1

Q(1+ǫ)n for all n.

Then µ(α) ≤ 1 + 1
ǫ .

Roughly speaking this Proposition says that if we can construct

a sequence of explicit rational approximations to α with qualities

at least 1 +ǫ, then this allows us to show that µ(α) < 1 + 1
ǫ . So,

to get a bound for µ(π) one might construct a sequence of good

quality approximations to π . Once more we have arrived at the

problem of constructing such a sequence. In the last section we

eventually find such a construction. We close this section with a

proof of the Proposition.

Let
p
q be any rational number with q > 0. Choose n such that

Qǫn ≥ 2q > Qǫ(n−2). Note that there are two such n. We make

the choice such that
pn

qn
6= p

q . This is possible on the basis of as-

sumption (i). Then

1

qqn
≤

∣

∣

∣

∣

pn

qn
− p

q

∣

∣

∣

∣

≤
∣

∣

∣

∣

α − pn

qn

∣

∣

∣

∣

+

∣

∣

∣

∣

α − p

q

∣

∣

∣

∣

≤ 1

Q(1+ǫ)n
+ ∆,

where we denoted ∆ =
∣

∣

∣
α − p

q

∣

∣

∣
. Using 2q ≤ Qǫn our last inequal-

ity implies

1

qQn
≤ ∆ +

1

2qQn

and hence

∆ >
1

2qQn
.

Now we use 2q > Qǫ(n−2) to derive Qn
< (2q)n/(ǫ(n−2)). Hence

∣

∣

∣

∣

α − p

q

∣

∣

∣

∣

= ∆ ≥ (2q)
−1− n

ǫ(n−2) .

As q increases, the number n increases and n/(n − 2) → 1. Thus

we see that there cannot be infinitely many approximations of α

of quality at least 1 + 1
ǫ + δ for any fixed δ > 0. We conclude,

µ(α) ≤ 1 + 1
ǫ . �

Constructing rational approximations of π

We shall now make a number of attempts to construct good qual-

ity approximations to π . In presenting several attempts, only one

of which is successful, we hope to illustrate the elusiveness of π

with respect to explicit rational approximation.

Our first approach begins with the consideration of integrals

of the form

J(F) =
∫ 1

0

F(t)

1 + t2
dt,

where F ∈ Z[t] with the constraint that F(i) = F(−i). The reason

is that by a partial fraction expansion we see that

F(t)

1 + t2
= G(t) +

F(i) − F(−i)

2i

t

1 + t2
+

F(i) + F(−i)

2

1

1 + t2

for some polynomial G ∈ Z[t]. Assuming now that F(i) = F(−i)

we get, using
∫ 1

0
1

1+t2 dt = π
4 , that

J(F) =
∫ 1

0
G(t) dt +

F(i)

4
π .
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When J(F) is small, the rational number − 4
F(i)

∫ 1
0 G(t) dt can be

considered as a rational approximation of π . In order to make

J(F) small it is a good idea to choose F is such a way that it has

small values in the interval [0, 1]. For example F(t) = t4n(1− t)4n,

whose maximum value on [0, 1] is 1
256n . Moreover, for this choice

of F we get F(i) = F(−i) = (−4)n. Putting

Jn :=
∫ 1

0

t4n(1 − t)4n

1 + t2
dt,

we get

J1 = −π +
22

7
,

J2 = 4π − 188684

15015
,

J3 = −16π +
431302721

8580495
,

J4 = 64π − 5930158704872

29494189725
,

...

Without proof we mention here that the qualities of the resulting

approximations eventually tend to log 4/ log(2e8) ≈ 0.738. So

this is not enough to get either an irrationality proof of π , nor

an irrationality measure. Notice by the way that J1 = −π + 22
7 ,

which gives one of the two famous approximations of π . Since I1

is the integral of a positive function we see that J1 > 0 and thus

we have a proof of the fact that π 6= 22
7 . It is not clear whether

there exists a natural choice of F which produces the approxima-

tion 355
113 .

I have tried a number of other choices of F, but they also did

not give the desired infinite sequence of quality > 1 approxima-

tions to π . The reader is hereby invited to make a number of at-

tempts for him- or herself. Programs like Maple and Mathematica

can be very helpful for such experiments.

There is a small extension of the previous idea, namely to con-

sider integrals of the form

J(F, m) =
∫ 1

0

F(t)

(1 + t2)m+1
dt,

where m ∈ Z≥0 and F ∈ Z[t]. Having higher powers of 1 + t2 in

the denominator makes the integrand even smaller. In addition,

the exponent m + 1 turns out to have a positive influence on the

size of the denominators of the approximations. In general J(F, m)

evaluates to

aF,m + bF,mπ + cF,m log 2,

where aF,m , bF,m , cF,m are rational numbers. The following eval-

uations of bF,m and cF,m are an exercise for the reader who feels

challenged by them.

i. cF,m = − 1
2 residuet=∞

[

F(t)
(1+t2)m+1

]

.

ii. bF,m = i
2 residuet=i

[

F(t)
(1+t2)m+1

]

.

iii. cF,m = 0 if F ∈ Z[t2] or degree(F) ≤ 2m.

A second attempt

We remind the reader that the residue of a rational function G at

t = ∞ is minus the coefficient of t−1 in the Laurent expansion of

G in increasing powers of t−1. Using this remark it is hopefully

clear that (iii) is a direct consequence of (i).

It is clear that for the construction of rational approximations

of π we must get rid of the log 2 term. So we want that cF,m = 0.

By property (iii) we see that this certainly holds for integrals of

the form

Jn :=
∫ 1

0

tn(1 − t)n

(1 + t2)n+1
dt.

Then

J1 = − 1

8
π +

1

2
,

J2 =
1

8
π − 3

8
,

J3 = − 1

8
π +

19

48
,

J4 =
17

128
π − 5

12
,

J5 = − 37

256
π +

109

240
,

...

This gives us the approximations

4

1
,

3

1
,

19

6
,

160

51
,

1744

555
,

644

205
, . . .

of π . It turns out that roughly the first thirty approximations in

this sequence do have quality > 1. So this looks promising. Un-

fortunately in the long run the asymptotics have decided other-

wise and the qualities go to the value 0.9058 . . . as n → ∞. As

we see, the result is better than the previous attempt, but 0.9058

is still not larger than 1.

Continued fractions

It is not entirely without reason that we mention the above ap-

proximations. They are closely related to continued fractions.

Consider the classical continued fraction

arctan x =
x

1 +
x2

3 +
(2x)2

5 +
(3x)2

7 + . . .

Take x = 1 to obtain

π =
4

1 +
12

3 +
22

5 +
32

7 + . . .
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The first few convergents read:

4

1
= 4,

4

1 +
12

3

= 3,
4

1 +
12

3 +
22

5

=
19

6
,

4

1 +
12

3 +
22

5 +
32

7

=
160

51
.

Notice that these are exactly the approximations we got with the

integrals Jn. Again, the reader with some experience in continued

fractions and partial integration may try to show these equalities.

Let us now point out a small side track. Take x = 1√
3

in our

continued fraction for arctan x. We obtain,

π√
3

=
2

1 +
12/3

3 +
22/3

5 +
32/3

7 + . . .

The first few convergents are:

2,
9

5
,

49

27
,

185

102
,

5387

2970
, . . .

It turns out that the qualities of these approximations to π√
3

tend

to 1.1368 · · · as n → ∞. So we see that for π√
3

it is possible to

get a sequence of good quality approximations. In a similar vein,

R. Apéry discovered in 1978 an infinite sequence of good quality

approximations to π2. So we see that the numbers π√
3

and π2

are better amenable to explicit rational approximations. However,

what we really want is π ! This is a somewhat frustrating situation

and many people have tried to give good explicit approximations.

As we remarked before, it was not until 1993 that Hata succeeded

in doing so.

Approximations of π having quality > 1

The approximations we present now, are a variation on Hata’s

ideas. They have the property that they fall more into the line

of approach we have adopted. The resulting approximations are

weaker than the ones obtained by Hata, but they do have the de-

sired qualities > 1.

Consider the integrals

Kn =
∫ 1

−1

t2n(1 − t2)2n

(1 + it)3n+1
dt.

This way of writing Kn is more in line with Hata’s approach. Split

the interval [−1, 1] into its positive and negative part. Substitute

t → −t on the negative part, and we obtain an integral of the form

we are looking for,

Kn =
∫ 1

0

t2n(1 − t2)2n
(

(1 + it)3n+1 + (1 − it)3n+1
)

(1 + t2)3n+1
dt.

The first few values read:

K1 = 14π − 44,

K2 = 968π − 45616

15
,

K3 = 75920π − 1669568

7
,

K4 = 6288296π − 9778855936

495
,

...

K40 = a40π − b40

c40
,

...

Note that K1 gives us the approximation 22
7 again! We have not

written down the values of the integers a40 , b40 , c40 but we would

like to mention some peculiarities:

gcd(a40 , b40) = 223 ,

c40 = 3 · 5 · 72 · 13 · 17 · 19 · 23 · 29 · 37 · 41·
· 43 · 47 · 53 · 59 · 83 · 89 · 97 · 101·
· 103 · 107 · 109 · 113.

In general, let us write Kn = anπ − bn
cn

with an , bn , cn integers and

gcd(bn , cn) = 1. It turns out that both an and bn are divisible by

2[n/2] for all n. So this means that Kn/2[n/2] gives us the same

approximations as Kn, but its absolute value is much smaller. Sec-

ondly, we can show that cn divides the lowest common multiple

of the numbers 2, 3, . . . , 3n. And so cn will be composed of many

primes ≤ 3n, as we can see from the example c40. However, ob-

serve that in the factorisation of c40 the primes between 60 and

80 are missing. This is no coincidence. Hata discovered that in

general the primes between 3n/2 and 2n do not occur in the fac-

torisation of cn. This absence of primes improves our estimates

for the size of the denominator of the approximation for π by a

small amount. But it is precisely the right amount to enable us to

get approximations of quality > 1. It turns out that the integrals

K1 , K2 , . . . give us the sequence of approximations

22

7
,

5702

1815
,

104348

33215
, . . .

of π whose qualities exceed 1.0449 in the long run!

Supposing this sequence satisfies all other assumptions of our

proposition on irrationality measures, we get an irrationality mea-

sure of 1 + 1
0.0449 = 23.271 . . .. Of course this is worse than

the measure given by Hata. The construction used by Hata is

somewhat different from the type of integral we considered in

this section. Readers interested in his original construction are

warmly encouraged to have a look at Hata’s paper. The main
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point of the present section was to point out that a judicious

choice of F(t) may after all produce a sequence of good quality

π-approximations. In fact, I spent considerable effort to find oth-

er choices of F(t) which would give better quality approximations

than those from Kn. This would have been a nice result on the oc-

casion of Pi-day. Unfortunately I was not clever enough to find

such F(t). However, given the fact that the possibility of such

a choice was proved only around 1993, one should not give up

hoping for an improvement. It would actually be a very nice sur-

prise if a reader of this article is more successful in finding such a

sequence of better approximations. k
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