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Solutions to the problems in this section can be sent

to the editor — preferably by e-mail. The most el-

egant solutions will be published in a later issue.

Readers are invited to submit general mathematical

problems. Unless the problem is still open, a valid

solution should be included.

Solutions to problems from the fourth series will be

published in the next issue.

Editor:

R.J. Fokkink

Technische Universiteit Delft

Faculteit Wiskunde

P.O. Box 5036

2600 GA Delft

The Netherlands

r.j.fokkink@its.tudelft.nl

Problem 7 (H. van den Berg)

For a natural number n not divisible by 3 show that the only integer solutions of

(X2 − YZ)n + (Y2 − XZ)n + (Z2 − XY)n = 1

are the trivial ones.

Problem 8 (Ronald de Man)

Partition the set of numbers {1, 2, . . . , 2n} into n pairs and denote the set of pairs by A.

Define a partial order on A by {ai , bi} < {a j , b j} if and only if a j < ai < bi < b j. As usual,

we call a totally ordered subset of (A, <) a chain and we say that two chains A1 , A2 cover

A if A1 ∪ A2 = A. Count the number of partitions into pairs for which A can be covered

by two chains.

Problem 9 (Alex Heinis)

Let a trapezoid with a right angle be given. Suppose that there is a circle that is tangent to

all four sides of the trapezoid. Let L be the line through the intersection of the diagonals,

parallel to the base of the trapezoid. Show that the length of the segment on L bounded

by two sides is equal to the height of the trapezoid.

Solutions to volume 1, no 1 (March 2000)

Problem 1 A solid cylinder is placed on a horizontal plane. Suppose that the barycentre

is not on the central axis, nor vertically below this axis, so that gravity forces the cylinder

into oscillation. Moreover, suppose that the oscillations are infinitesimal and that rolling

is frictionless. Then what is the period of the oscillation?

The original solution by H.A. Lorentz appeared in the first issue of Nieuw Archief in 1875.

In fact, Lorentz gave two solutions to the problem, interpreting the frictionless rolling of

the cylinder in two ways: rolling on ice or rolling on a table without energy loss. The

solution below, due to Beukers, deals with both cases in one go.

Solutions by Frits Beukers (Utrecht) and Fons Daalderop (Delft).

In the cylinder, which we assume to be in stable rest, we take cylindrical coordinates

z, r,φ. The direction φ = 0 corresponds to the direction from the central axis to the area

that touches the table on which the cylinder is resting. By
∫

f dm we denote integration

of the quantity f over the whole cylinder with respect to the mass distribution. The total

mass equals m =
∫

ρ dV, the moment of inertia is given by I =
∫

r2 dm. Due to the fact

that the cylinder is stably at rest we have
∫

r sinφ dm = 0 and the distance of the center

of gravity to the central axis is given by rz =
∫

r cosφ dm.

Let r0 be the radius of the cylinder. If we slightly move the cylinder, it undergoes a

rotation by some small angle we call θ, and a horizontal movement which is about r0θ.

The point with cylindrical coordinates z, r,φ undergoes a displacement by the vector

(r0θ, 0) + r(sinφ,− cosφ)θ.

Note that if the cylinder is rolling on ice instead of on a table, the term (r0θ, 0) vanishes.

The kinetic energy corresponding to this displacement is

Ekin =
1

2

(

∫

((r0 + r sinφ)2 + r2 cos2 φ)dm

)

θ̇2 ,

where θ̇ denotes the derivative of θ with respect to time. We derive

Ekin =
1

2

(

∫

(r2
0 + r2 + 2rr0 sinφ)dm

)

θ̇2 =
1

2
(mr2

0 + I)θ̇2 .
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s The potential energy of the displaced cylinder is given by Epot = −

∫

gr cos(φ −θ) dm,

where g is the acceleration of gravity. Using the approximation cos(φ − θ) = cosφ +

(sinφ)θ − 1
2 (cosφ)θ2 + O(θ3), we get Epot = −mgrz + 1

2 mgrzθ
2. The total energy, for-

getting about the constant term −mgrz, now equals

1

2

(

(mr2
0 + I)θ̇2 + mgrzθ

2
)

.

Note that this is precisely the energy function of a harmonic oscillator with angular fre-

quency
√

mgrz

mr2
0+I

. If the cylinder is rolling on ice, the term mr2
0 in the denominator vanish-

es.

Problem 2 One quickly verifies that the plane cannot be partitioned in two sets, such that

points of distance 1 are in opposite sets. A point in the plane is called rational if both its

coordinates are rational. Is it possible to partition the rational points in two sets, such

that points of distance 1 are in opposite sets?

In the spring of 1999, Wim Feijen (Eindhoven) put the following teaser on a blackboard

in a hallway of the computer science department at TU Eindhoven: “Prove that there is

no coloring by three colors of the real plane such that every pair of points of distance 1 is

of a different color.” Having solved this problem, a natural question is how many colors

are needed for the rational plane.

This problem was brought to CWI Amsterdam by Sjouke Mauw. Several people in

Eindhoven and Amsterdam solved the problem. A neat solution is on Vincent van Oost-

rom’s homepage at http://www.phil.uu.nl/~oostrom/publication/misc.html. His solu-

tion is similar to the one below. It is still unknown how many colors are required for the

real plane. This is known as Hadwiger’s Problem.

Solutions by Ronald van Luijk (Utrecht), Frits Beukers (Utrecht) and Robert Israel (Van-

couver). Their solutions are the same.

The answer is ‘yes’. Color the points in Q2 red and blue as follows.

Consider the set V = {( a
2k , b

2k ) | a, b, k ∈ Z≥0 , 0 ≤ a, b < 2k}. We color all points

of V red. Note that any point (p, q) ∈ Q2 can be written uniquely in the form (p, q) =

(p′ , q′) + (α, β) where (α, β) ∈ V and p′ , q′ have odd denominators. We color (p, q) red if

p′ + q′ ≡ 0 (mod 2) and blue if p′ + q′ ≡ 1 (mod 2). This gives the desired partitioning.

To see this, observe that r2 + s2 = 1 with r, s ∈ Q is only possible if r, s have

odd denominators. In particular, r + s ≡ r2 + s2 ≡ 1 (mod 2). Hence (p1 − p2)
2 +

(q1 − q2)
2= 1 with pi , q j ∈ Q implies that p1 − p2 , q1 − q2 have odd denominators. More-

over, p1 − q1 + p2 − q2 ≡ 1 (mod 2) from which we infer p1 + q1 ≡ p2 + q2 + 1 (mod 2).

Problem 3 The sequence a1 , a2 , . . . is defined by ∑d|n ad = 2n for all n ≥ 1. Show that

n|an for all n.

Lucien van Hamme (Brussel) points out that this is a classical result, going back to 1880

or earlier, and refers to Dickson’s History of the theory of numbers. Van Hamme remarks

that the problem can be generalized considerably, as shown by C. Smyth, A coloring proof

of a generalization of Fermat’s little theorem, Amer. Math. Monthly 93 (1986), 469–471. Some

readers may have noticed that Problem 3 is in fact equivalent to Problem 977 in Nieuw

Archief, vierde serie, no. 15 (3) (1997).

Solutions by Ronald van Luijk (Utrecht), Frits Beukers (Utrecht), Jack van Lint (Pasade-

na), Wim Luxemburg (Pasadena), Minh Can (Columbus), Robert Israel (Vancouver). Be-

low is the solution by Van Lint and Luxemburg. It is a pretty little counting argument,

submitted on the same day, from the same place, without the one being aware of the

other’s solution.

Let M(d) denote the number of circular sequences of 0’s and 1’s of length d that are not

periodic. Counting all circular sequences of 0’s and 1’s, we find ∑d|n dM(d) = 2n. Since

an = nM(n) by definition, we are done. k


