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Minimization of the
renormalized energy

in the unit ball of R
2

We establish an explicit formula for the renormalized energy cor-

responding to the Ginzburg-Landau functional. Then we find the

location of vortices in the case of the unit ball in R
2, provided that

the topological Brouwer degree of the boundary data equals to 2 or 3.

Our proofs use techniques related to linear partial differential equa-

tions (Green’s formula for the Neumann problem), convex functions,

elementary identities or inequalities in the complex plane.

Superconductivity was discovered in 1911 by the Dutch physicist
Kamerlingh-Onnes. Superconducting materials exhibit two main
properties:
i. Their electric resistance is virtually zero.
ii. They have peculiar magnetic behavior.
From this point of view, superconductors can be classified into
two types. In type I, magnetic fields are excluded from the mate-
rial (except for a very thin layer near the surface). Type II super-
conductors, on the other hand, do allow penetration of magnetic
fields, but these fields concentrate in narrow regions or points,
called vortices. In fact, type II superconductors can sustain very
high magnetic fields.

The first successful theory for superconductivity was the phe-
nomenological macroscopic model proposed in 1935 by London.
His theory accounted for the expulsion of magnetic fields and
predicted the quantization of magnetic fluxoids. Then, in 1950
Ginzburg and Landau [3] proposed a more involved theory which
allowed for spatial variations of both the magnetic field and the
superconductivity order parameter. In addition to the model’s
success in explaining the experimental observations of the day, it
was by Abrikosov in 1957 to predict in [1] the existence of type II
superconductors, and the formation of large array of magnetic
vortices for such materials. In 1994, Bethuel, Brezis and Hélein
proposed a mathematical model of the Ginzburg-Landau theory
which relates the number of vortices to a topological invariant of
the boundary condition. A fundamental role in their analysis is
played by the notion of renormalized energy.

We give in what follows a partial answer to a problem raised by
Bethuel, Brezis and Hélein in [2]. Let B1 = {x = (x1 , x2) ∈

R
2 ; x2

1 + x2
2 = |x|2 < 1}. Fix d a positive integer and consider a

configuration a = (a1 , . . . , ad) of distinct points in B1. Let ρ > 0 be
sufficiently small such that the balls B(ai , ρ) are mutually disjoint
and contained in B1 and set Ωρ = B1 \

⋃d
i=1 B(ai , ρ). Consider the

boundary data g : S1 → S1 defined by g(θ) = eidθ . We observe
that the Brouwer degree deg (g, S1) is equal to d. We recall that
if G ⊂ R

2 is a smooth, bounded and simply connected domain
and h = (h1 , h2) ∈ C1(∂G, S1) then the topological Brouwer de-
gree (i.e., the winding number of h considered as a map from ∂G

into S1) is defined by

deg (h, ∂G) =
1

2π

∫

∂G

(

h1
∂h2

∂τ
− h2

∂h1

∂τ

)

,

where τ denotes the unit tangent vector to ∂G.
In [2], F. Bethuel, H. Brezis and F. Hélein have studied the be-

havior as ρ → 0 of solutions of the minimization problem

(1)Eρ,g = min
v∈Eρ,g

∫

Ωρ

| ∇v |2 ,

where

Eρ,g = {v ∈ H1(Ωρ ; S1); v = g on ∂G and

deg(v, ∂B(ai , ρ)) = +1, for i = 1, ..., d} .

We have denoted by H1(Ωρ ; S1) the space of all measurable func-
tions u : Ωρ → R

2 such that u ∈ H1(Ωρ) and |u| = 1 for a.e.
x ∈ Ωρ. We also point out that all the derivatives appearing in
this paper are taken in distributional sense.

It is proved in [2] that problem (1) has a unique solution,
say uρ. By analyzing the behavior of uρ as ρ → 0 the following
asymptotic estimate is obtained as well:

(2)
1
2

∫

Ωρ

| ∇uρ |2= π d log
1
ρ

+ W(a) + O(ρ) , as ρ → 0.
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In [2], the functional W(a) is implicitly defined by the formula

(3)W(a) = −π ∑
i 6= j

log|ai − a j| +
d

2

∫

S1
Φdσ − π

d

∑
i=1

R(ai) ,

where Φ is the unique solution of the linear Neumann problem

(4)















∆Φ = 2π ∑d
i=1 δai in B1 ,

∂Φ

∂ν
= d on S1 ,

∫

S1 Φ = 0 ,

where ν is the outward normal to S1 and δb denotes the Dirac
mass concentrated at the point b ∈ B1, and where R(x) = Φ(x)−

∑d
i=1 log |x − ai|. We observe that R is a harmonic function in B1,

so R ∈ C(B1), which means that R(ai) makes sense. The function-
al W, called the renormalized energy, has the following interesting
properties:

i. W(a) → +∞ as two of the points ai coalesce;
ii. W(a) → +∞ as one of the points ai tends to ∂B1.

The asymptotic expansion (2) shows that the renormalized ener-
gy W is what remains in the energy after the singular core energy

π d log 1
ρ has been removed.

The renormalized energy may be also obtained by changing the
class of testing functions and adding a penalization in the ener-

gy. Such a penalty is
1
ε2

∫

B1

(1 − |u|2)2 which leds naturally to the

Ginzburg-Landau functional

Eε(u) =
1
2

∫

B1

|∇u|2 +
1

4ε2

∫

B1

(1−|u|2)2 , ε > 0 .

Set H1
g = {u ∈ H1(B1 ; C); u = g on S1}. As proved in [2] the

minimization problem

inf
u ∈H1

g

Eε(u)

has at least one smooth solution uε. Moreover uε converges (as
ε → 0) to a map with values in S1 and which is C∞, except for
some configuration of points, called vortices. It is very surprising
that this configuration consists exactly of d points. This shows
that the topological degree of the boundary condition creates the
same quantized vortices as a magnetic field in type II superconduc-
tors or as an angular rotation in superfluids (see [2], p. xviii). In [2]
it is also proved that the configuration of d vortices is a global
minimum point of the renormalized energy W(a) with respect to
all configurations of d distinct points in B1. So the renormalized
energy plays a crucial role in order to locate the singularities. The
asymptotic expansion in this case (see [2], Chapter IX) is

Eε(uε) = π d log
1
ε

+ min
a

W(a) + dγ + o(1) as ε → 0 ,

where γ is some universal constant.

In [2], Chapter XI, Open Problem 12, it is asked whether the vor-
tices form a regular configuration. The aim of this paper is to
deduce with elementary arguments an explicit formula for the
renormalized energy defined in (3) which will enable us to an-
swer partially the question raised by Bethuel, Brezis and Hélein

in their book. More precisely we prove

Theorem. The expression of the renormalized energy is given by

W(a) = −π ∑
1≤i< j≤d

log | ai − a j |
2 − π

d

∑
i, j=1

log | 1 − aia j | .

(5)

If d = 2 then the minimal configuration for W is unique (up to a ro-

tation) and consists of two points which are symmetric with respect to

the origin. If d = 3 then the configuration which minimizes W is also

unique and it consists of an equilateral triangle centered at the origin.

Proof. We shall use the expression (3) for the renormalized energy
W(a). We observe that it suffices to compute the function R for
one point, say a.

For every a 6= 0, let a⋆ =
a

|a|2
. We define the function

G : B1 \ {a} → R by

G(x) =











1
2π log | x − a | + 1

2π log | x − a⋆ | − 1
4π | x |2 +C

if a 6= 0
1

2π log | x | − 1
4π | x |2 +C if a = 0

and we choose the constant C such that
∫

S1
G = 0.

It follows that, for every a ∈ B1,

(6)C =
1

4π
+

1
2π

log | a |,

if a 6= 0, and C = 1
4π if a = 0. The function G satisfies

(7)















∆G = δa −
1
π in B1

∂G
∂ν

= 0 on ∂B1
∫

∂B1
G = 0 .

It follows now from (4) that






























∆

(

Φ

2π

)

= δa in B1

∂
∂ν

(

Φ

2π

)

= 1
2π on ∂B1

∫

∂B1
Φ

2π = 0 .

Thus the function Ψ = Φ

2π − 1
4π (| x |2 −1) satisfies

(8)















∆Ψ = δa −
1
π in B1

∂Ψ

∂ν
= 0 on S1

∫

S1 Ψ = 0 .

By uniqueness, it follows from (7) and (8) that

Φ

2π
−

1
4π

(| x |2 −1) =
1

2π
log | x − a | +

1
2π

log | x − a⋆ | −
1

4π
| x |2 +C .

Taking into account the expression of C given in (6), as well as the
link between Φ and R we obtain (5).
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Let a and b be two distinct points in B1. Then

−
W

π
= log(| a |2 + | b |2 −2 | a | · | b | · cosϕ)

+ log(1+ | a |2| b |2 −2 | a | · | b | · cosϕ)

+ log(1− | a |2) + log(1− | b |2) ,

where ϕ denotes the angle between the vectors −→Oa and −→
Ob. So, a

necessary condition for the minimum of W is cosϕ = −1, that is
the points a, O and b are colinear, with O between a and b. Hence
one may suppose that the points a and b lie on the real axis and
−1 < b < 0 < a < 1. Denote

f (a, b) = 2 log(a− b) + 2 log(1− ab) + log(1− a2) + log(1− b2) .

Since the function log(1 − x2) is concave on (0, +∞) it follows
that

log(1 − a2) + log(1 − b2) ≤ 2 log
(

1 −

(

a − b

2

)2)

.

On the other hand, it is obvious that 1 − ab ≤ 1 +

(

a − b

2

)2
.

Hence
f (a, b) ≤ f

(

a − b

2
,

b − a

2

)

which means that the maximum of f is achieved provided that
a = −b. A straightforward calculation shows that max f =

f (5−1/4 ,−5−1/4), so min W = −π f (5−1/4 ,−5−1/4) .

For d = 3, in order to minimize the functional W given by (5), it
is enough to maximize the functional

F(a) = ∏
1≤i< j≤3

|ai − a j|
2
(

|ai − a j|
2 +(1− r2

i )(1− r2
j )

)

·
3

∏
i=1

(1− r2
i ) ,

where ri = |ai|.
Using the elementary identity

3
3

∑
i =1

|ai|
2 =|

3

∑
i=1

ai|
2 + ∑

1≤i< j≤3
|ai − a j|

2

we find
(9)3

3

∑
i =1

|ai|
2 ≥ ∑

1≤i< j≤3
|ai − a j|

2 .

Put S = ∑3
i=1 r2

i . We try to minimize F keeping S constant. Using
(9), we have

∏
1 ≤i< j≤3

|ai − a j|
2 ≤

(

∑1≤i< j≤3|ai − a j|
2

3

)3
≤ (

3

∑
i=1

|ai|
2)3 = S3 ,

(10)

(11)
3

∏
i =1

(1 − r2
i ) ≤

(

3 − S

3

)3

and

∏
1≤i< j≤3

(

|ai − a j|
2 + (1 − r2

i )(1 − r2
j )

)

≤

( ∑1≤i< j≤3(|ai − a j|
2 + (1 − r2

i )(1 − r2
j ))

3

)3

≤

( ∑ 1 − ∑ r2
i − ∑ r2

j + ∑ r2
i r2

j + ∑|ai − a j|
2

3

)3

≤

(

3 − 2S + S2

3 + 3S

3

)3

=

(

S2 + 3S + 9
32

)3
.

(12)

We have applied here the elementary inequality

∑
1 ≤i< j≤3

r2
i r2

j ≤
1
3

( 3

∑
i=1

r2
i

)2
.

From (10), (11) and (12) we find

F ≤ S3 ·

(

3 − S

3

)3
·

(

S2 + 3S + 9
32

)3
=

1
39 (−S4 + 27S)3 .

It follows that the maximum of F is achieved if S = 3 · 4−1/3

and max F = 36 · 4−4, with equality when we have equality in
(10), (11) and (12), i.e., if and only if a2 = εa1 , a3 = ε2a1, where
ε = cos 2π

3 + i sin 2π
3 . This implies that min W = π log 28

36 . �

Open problems

We conclude this paper with the following open problems which
were raised by Professor Haim Brezis:

1. Find the configuration which minimizes W given by (5), pro-
vided that d ≥ 4. Is this configuration given by a regular d-gon
(as for d = 2, 3) or does it consist of an Abrikosov lattice as
d → +∞, as predicted in [2], p. 139?

2. Prove that the minimal configuration ‘goes to the boundary’, as
d → ∞, in the following sense: for given d, let a = (a1 , . . . , ad)

be an arbitrary configuration which minimizes W and set
xd = min{|ai|; 1 ≤ i ≤ d}. Prove that limd→∞

xd = 1. k
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