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Projection methods for over

Everybody who has some experience in doing mathematics knows,

that dimensional reduction and projection are useful tools to con-

front problems that are too complicated to solve without any sim-

plification. Who hasn’t, occasionally, but notwithstanding timidly,

suggested that perhaps it would be a good idea to study the simple

one-dimensional case first before trying to understand the real-world

three-dimensional problem? Apparently, it is a wide-spread faith

that such simplifications will not damage the essential mathemati-

cal or physical truth that is hidden in the original problem. But is this

faith founded? Regardless of the answer, one should realize that in

many applications there is no plausible alternative, so it would be

unfair to judge too harshly on those who solve reduced problems

and, with due mathematical care, formulate interesting and strong

theorems and hypotheses on the full problem. Among them are the

people from the field of numerical linear algebra.

1 Tosca, the rabbit and the physicist

Visiting the shadow theater Laterna Magica in Prague in the

spring of 1998, I was truly impressed by the skillful way in which

the puppeteers moved their heroes in such a way, that their sha-

dows on the screen told me something of which I hardly doubt-

ed it was the full story. Sure, there was one dimension lacking,

and sure, it was all in black and white, but somehow Tosca was

still pretty and il Barone Vitellio Scarpia still collapsed when the

kitchen knife hit target. Arriving back at my office at the Mate-
matický Ústav of the Akademie Věd České Republiky, where I

was employed at that time, I sat down at my desk, mournfully

contemplated on spending one tenth of a month’s salary in one

evening, switched on a spotlight, and started to project images on

the wall by folding my hands. Rabbit. Camel. Crocodile. All just

as I had been taught many years before.

It took me a while before I realized that the shadow theater

play and my own brave though unpublicized attempts to produce

art of some kind, were two entirely different things. As a matter

of fact, they showed opposite aspects of the concept of projection:

preserving the reality as much as possible (the shadow theater),

and creating false images (there is, after all, a non-negligible dif-

ference between a pair of hands and a rabbit). Like many things in

life, it all depended on the point of view, or, as a physicist from the

previous century put it, on the frame of reference. Indeed, after

I moved the spotlight on my desk by a futile twenty centimeters,

the shadow on the wall pretty much resembled my very own two

hands, folded together in some unnatural manner, but with the

recognizable curved little fingers that enable me to hit an octave

plus a third on the piano.
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sized linear algebra problems

2 Oversized problems in linear algebra

In linear algebra, two of the most frequent and important prob-

lems that are posed are the linear system problem and the eigen-
value problem. As soon as students enter university (and if we’re

lucky, sometimes even before), they are asked to solve the typical

Ax = b and Ax = λx. Tedious (and not seldom incorrect) cal-

culations follow, techniques like Gaussian elimination and find-

ing roots of polynomial equations (Ah! Let the degree be not too

high or a factorization obvious!) are applied, and answers (not

seldom incorrect) are given. Should we tell those students that

when Industry knocks on the door, it comes with matrices of size

ten thousand times ten thousand? One million times one million?

If we do, wouldn’t it then be not more than decent to teach them

about projection and dimensional reduction?

2.1 Subspaces, bases and projections

Having agreed on this, the question is, how does this all work.

The answer is simpler than one might think, and the mathemat-

ics we need in order to understand the basic principles, is not

much more than what we present in this small section. Let’s

suppose that the matrix from our linear system or eigenvalue

problem has size n × n, and choose a k-dimensional subspace V
of Rn. Typically, one should think of k as being much smaller

than n. Let V be a matrix with k mutually orthonormal columns

v1 , · · · , vk spanning V. Then every element of V can be written as

Vu for some vector u ∈ Rk. The entries of u are the local coor-
dinates of Vu with respect to the basis v1 , · · · , vk of V. Clearly,

by orthonormality of the columns of V and the fact that VHV

has as entries the Euclidean inner products vH
i v j = (vi , v j)L2 :=

v
(1)
i v

(1)
j + · · · + v

(n)
i v

(n)
j , we have that VHV = I, the identity ma-

trix.

The matrix VVH is important too: using VHV = I we see that

for all y ∈ Rn , VH(y − VVH y) = 0, and from this it follows that

z = (y − VVH y) is orthogonal to V. After all, it is orthogonal to

each of the columns of V:
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Since Vu ∈ V for all u ∈ Rk, we have in particular that VVH y ∈
V for all y ∈ Rn. So the relation y − VVH y ⊥ V tells us that

VVH y is the orthogonal projection of y on V. And VH y are its

local coordinates. As a matter of fact, VVH y can be written as the

more familiar looking expansion

VVH y = (v1 , y)L2 v1 + · · · + (vk , y)L2 vk .

We are now able to explain how to use projections in the approxi-

mation of solutions of oversized linear algebra problems.

2.2 Projecting from extra-large to medium

Concentrate on the linear system problem Ax = b. If we apply A

to an element v of V, then of course we cannot expect the result

Av to be in V again. Neither can we expect b to be in V (unless

we deliberately chose V that way). But both the projection of Av

on V and of b on V are surely in V. So, imagining ourselves in the
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shadow theater, we could ask ourselves what would happen if,

instead of demanding Av and b to be equal, we would demand

their projections to be equal. Then on the screen, the problem

looks solved.

Figure 1 Projecting a linear system

Mathematically, we would be trying to find an element v ∈ V such

that (PV ◦ A)v = PVb,

where PV is the projection on V. Or, in matrix language, using

again that every v ∈ V can be written as Vy for some y, we would

be trying to find y such that

VH AVy = VHb. (1)

This is a linear system again, for the matrix M := VH AV, which

is ‘only’ k × k big. Note that it is of this size because in (1) we im-

posed equality of the local coordinates of both projections. Now,

just download a computer program to perform Gaussian elimina-

tion on this system, and it will be solved very quickly. Of course,

we are not so much interested in the local coordinates y, but in

the vector v = Vy ∈ Rn, which is the element of V such that

the shadow of AVy coincides with the shadow of b. Naturally, the

success of this approach depends on the point of view. But, before

we go into that, let’s first look at the eigenvalue problem.

2.3 Extra-large eigenvalue problems

Actually, there is not much difference between projection meth-

ods for the linear system problem and the eigenvalue problem.

Also in the eigenvalue problem, we can look for an element v in

our subspace V such that the projection of Av coincides with a

multiple µv of v. One thing is obviously different: µv does not

need to be projected onto V since it is already in it to start with.

Since we will demand equality of the local coordinates again, the

projected problem to solve reads in this case as:

VH AVy = VHµVy, or, equivalently, My = µy. (2)

We wouldn’t advice anyone to try and factorize the characteristic

polynomial belonging to this eigenvalue problem of size k × k.

Better find some software for small to medium size eigenvalue

problems, or write it yourself after reading section 5 of this paper.

2.4 Equal rites

To make the situations for the linear system problem and the

eigenvalue problem coincide a bit more, we will from now on

assume that the subspace V is chosen such, that b is in it. Then

also for the linear system problem, the right-hand side does not

need to be projected into the subspace anymore; in fact, every-

Figure 2 Projecting an eigenvalue problem

thing will, for both problems, only depend on how much the op-

erator A maps the space V outside of itself.

Figure 3 Subspace V , its image AV , and their intersection ℓ

2.5 Right or wrong?

Now, look back at Equation (1). Its solution y gives a vector Vy

that is in general not equal to x. To get an idea how far away it is

from x, we define the residual for (1) as

r := b − AVy = A(x − Vy).

As we see, r is not equal to the error x −Vy, but since it is linearly

related to it, we can extract useful information from it. Moreover,

without knowing x, the residual can be easily computed.

Figure 4 Relation between error and residual

Apart from that, being the difference between the object and its

shadow, it is orthogonal to the screen, to V. As a matter of fact,

the projection method is designed to yield y, such that r is or-

thogonal to V. This is exactly what is expressed by the defining
equation (1) for y as VHr = VH(AVy − b) = 0. For the eigen-

value problem, all is similar. Given an eigenvalue µ of M and a

corresponding eigenvector y, just define the eigenvalue residual
as r := AVy −µVy and note that it can be easily computed. Also,

it is orthogonal to V by definition. In section 7, we learn a bit more

about residuals.



Jan Brandts Projection methods for oversized linear algebra problems NAW 5/1 nr. 3 september 2000 267

2.6 Invariant subspaces, exact solutions

The ideal situation is of course the one in which A does not map V
outside of itself; V is then called an invariant subspace which, for

invertible A, means that AV = V. Both the linear system problem

as well as (part of) the eigenvalue problem will then be solved

exactly by our projection method. To see this, first note that, in

matrix language, AV = V means that there exists a small square

matrix M such that AV = VM. Denoting the k × k matrix entries

of M by mi j, this relation states that

Av j = m1 jv1 + m2 jv2 + · · · + mk jvk ,

which indeed expresses that the image under A of a basis vector

v j of V is a linear combination of basis vectors of V. Assuming that

b ∈ V and that AV = VM, it follows that r = b−VMy ∈ V. Recall

that r is orthogonal to V. Then, since the only element in V orthog-

onal to V is the zero vector, we get VMy = b, or AVy = b, and

hence x = Vy. Using the same arguments on (2) for the eigenval-

ue residual r = AVy − λVy, one can check that if V is an invariant

subspace, all eigenvalues of M = VH AV are eigenvalues of A,

and all eigenvectors y of M yield eigenvectors Vy of A. We leave

this as the proverbial exercise to the reader.

The idea to project a problem (either infinite dimensional

or almost infinite dimensional) on a relatively small subspace

containing the most essential information goes back to Boris

Galerkin (1871–1945), John Strutt (1842–1919, better known as

Lord Rayleigh) and Walther Ritz (1878–1909).

Figure 5 Lord Rayleigh (left) (1842–1919) and Walther Ritz (1878–1909)

3 Moving the screen around

The fact that reduction of dimension might really preserve the es-

sentials of the object that is projected, is now beyond doubt. The

problem that remains to be solved, is where to put the spotlight,

or, as we have just seen, where to put the screen. In order to

keep things simple, we will only consider the case in which the

spotlight will project orthogonally on the screen, and then only in

our usual daily-life Euclidean geometry1. This implies that once

you’ve decided on the position of the screen, there’s only one pos-

sible position of the spotlight, and vice versa.

Choosing a subspace V and performing the projection gives

an approximation of our linear algebra problem. Computing the

residual gives some idea about how good this approximation is.

But what to do next, if we are not satisfied with this approxima-

tion? The obvious choice is to reposition the screen and the spot-

light and look at the object from a different viewpoint. Of course,

this repositioning should, if possible, not be at random, but based

on some heuristic, or strategy. Another choice is not to reposition

the screen, but to make it bigger, to expand it, to add one or more
dimensions to it. Or, in other words, perform a projection on a

space W of bigger dimension such that V ⊂ W. Intuitively, this

seems to be more promising, but at the same time it also looks a

bit more complicated.

Remark. Regardless of if you want to reposition the space or to

expand it, the strategy should be aimed at moving towards an

invariant subspace.

3.1 A framework based on expansion

Let’s concentrate on the expansion approach. Of course, we do

not want our projected problem to become too big, so it seems

like a good idea to start with a simple one-dimensional sub-

space. Then we have the opportunity to strategically expand this

space k − 1 times by one extra dimension before we arrive at a k-

dimensional subspace. This will surely be better then to start off

with a random subspace of dimension k, or one chosen by some

vague intuition.

Figure 6 Expansion improves the view

It will be fairly straight-forward to maintain an orthonormal basis

for the subspace. Assume that Vk spans the current k-dimensional

subspace Vk, and that VH
k Vk = I. Then as soon as we have decid-

ed in which direction q to expand, we compute v̂ = (I − VkVH
k )q

(this is nothing more than orthogonalization of q to Vk), normal-

ize it to length one , v = v̂/‖v̂‖, and set Vk+1 := (Vk|v), which

is the matrix Vk with extra column v. Then VH
k+1Vk+1 = I while

the span of Vk+1 is still equal to the span of (Vk|q). After all, by

the orthogonalization, we have only removed components from q

that were in Vk already.

We can also efficiently compute the projected matrix Mk+1 =

VH
k+1 AVk+1 on the expanded space Vk+1 using the projection Mk

on Vk. Recall that this is the matrix that we need in order to solve

the reduced problem. It will prove to pay off if we maintain a

matrix Wk := AVk during the expansion process. Each time after

the orthogonal expansion v is computed from q, compute w := Av

and add this as new column to the current Wk. Then note that

Mk+1 = (Vk|v)H(Wk|w) =





Mk VH
k w

vHWk vHw



 ,

1 There do exist important methods that do not fall in this category.
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and that we have Mk still available from the previous projection.2

This means, that we only need to compute 2k + 1 new entries in-

stead of all (k + 1)2 of them.

The resulting iterative projection algorithm is given below. We

have skipped the indices, which are not really necessary in the

algorithm.

Algorithm 1. Iterative Projection Method

input: A, V,ε; matrix, first subspace, the desired reduction

of the residual
W = AV;

M = VHW; projected matrix belonging to the subspace V
spanned by V

r = s =residual of projected problem;

while ‖r‖ > ε‖s‖
q = expansion vector, strategically obtained . . .;

v̂ = (I − VVH)q; orthogonalization of q against V

v = v̂/‖v̂‖; normalization

w = Av; compute new column for the matrix W

M =

(

M VHw

vHW vHw

)

; efficient implementation of projection

M = (V|v)H(W|w) using previous M

V = (V|v); expansion of the subspace

W = (W|w); updating the matrix W = AV

r = residual of the new projected problem derived
from M and V;

end (while)

Remark. In solving the linear system, the assumption b ∈ V forces

us to start with V =< b >. By < . . . > we denote the span of the

vectors between the brackets.

In the algorithm-frame above, we have only sketched the main

iteration. We did not specify how to obtain the vector by which

to expand the current subspace. Sometimes this is done iterative-

ly as well. We will now present one of the most important and

elegant strategies.

4 Expanding towards an invariant subspace

If the approximation coming from the projection on a subspace

does not have the accuracy that is desired, we need to think about

how to expand the subspace in such a way, that the next projection

will give better results. As we have seen in the previous, we know

that we would like our new space to be closer to invariant than

the one we had. At first glance, this seems a frustrating task: we

started off, for example, with looking for an eigenvector v (which

is a one dimensional invariant subspace), and now our algorithm

wants us to iterate towards an invariant subspace of larger di-

mension that contains the start-vector as well as v. This might be

a simpler problem (take the whole space and you’re ready), but

it looks as if we’re only pushing the real problem slightly further

away from ourselves3. In the linear system case, it seems even

worse. All we wanted was to solve a system, and now we have

to iterate towards a smallest possible invariant subspace contain-

ing b. Isn’t this an example of the cure being worse than the dis-

ease? Apart from that, what are the odds that this smallest invari-

ant subspace is not the whole space?

4.1 A straight-forward approach

Question. Suppose you’re given a matrix A and a vector b and
you’re asked to produce the smallest invariant subspace V for A

such that b is in it. How would you proceed?

Not hindered by any pre-knowledge, and hoping that the one

who put this question to you gave you an easy one, you might

as well compute Ab and check if this is, by some funny coinci-

dence, a multiple of b. If this is the case, you can smile relieved

and say “Hey, it’s an eigenvector!”. If, on the other hand, it isn’t,

then you do know that V must, at least, contain Ab as well. So,

putting V1 = < b > and V2 = < b, Ab >, we have replaced the

question above by the question how to find the smallest invari-

ant subspace that contains V2. And, finding an answer for this
question can be started off similarly. Just compute (a basis for)

AV2 and see if it’s in V2. Here it starts getting interesting, be-

cause clearly, we only need to check where the basisvector Ab of

V2 ends up. If A(Ab) is in V2, we’re ready, and if not, we can

define V3 = < b, Ab, A(Ab) > and proceed4.

Answer. If the smallest invariant subspace containing b has di-
mension m, then it equals Vm. For any k, the space Vk :=

< b, Ab, · · · , Ak−1b > is called the k-th Krylov subspace for the
vector b and the operator A. Usually it’s denoted by Kk(A, b),
and that’s why we will do the same.

As we’ve just seen, a nice property of Krylov subspaces is that

if you apply A to it, you move out of the space in at most one

direction. Put mathematically, we have

k − 1 ≤ dim(Kk(A, v) ∩ AKk(A, v)) ≤ k.

So, for increasing k, we might say that the Krylov subspace moves,

in the relative sense, towards an invariant subspace. This is not

too bad in the light of our projection methods. And indeed,

the Rayleigh-Ritz-Galerkin algorithm combined with Krylov sub-

spaces gives rise to an important class of algorithms in both the

linear system and the eigenvalue problem case.

4.2 Iterative Krylov subspace projection

In the Rayleigh-Ritz-Galerkin framework, we can try to solve our

oversized linear algebra problem by iterating towards an invari-

ant subspace as follows. Starting in the eigenvalue problem case

with a random unit vector v, and in the linear system case with

v := b/‖b‖ we do a first projection. Then, upon entering the

2 Also in the computation of the residual, the vector AVy is needed; this can then be implemented cheaply as Wk y.
3 This way to tackle a problem seems to be very popular in mathematics. It can be very successful if many small pushes add up to a big push.
4 This, actually, is an example in which many slight pushes forward bring you to the answer of a problem.
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Figure 7 Krylov subspaces are ‘almost invariant’

while-loop, we propose to use Av as expansion vector for the cur-

rent subspace, as suggested by the results of the previous section.

But, as it turns out, there is an important alternative giving the

same result.

Remark. The residual r resulting from projection on Kk(A, v) is

an element of Kk+1(A, v). This means that it can be used to ex-

pand the subspace with, especially since it is already orthogonal

to Kk(A, v). The orthogonalization step in our algorithm therefore

becomes superfluous with this choice of expansion.

If the residual of the now two-dimensional projected problem is

not small enough, we repeat the procedure.

Remark. At all iteration numbers k, the columns of the matrix

Vk = V form an orthonormal basis for Kk(A, v) consisting of the

startvector and the consecutive normalized residuals. Moreover,

the basis Vk of Kk(A, v) is part of the basis Vk+1 of Kk+1(A, v).

This last property leads to the following. Since for all k, we have

that

A : Kk(A, v) → AKk(A, v) ⊂ Kk+1(A, v),

it follows that A maps the first j columns of Vk on a linear combi-

nation of the first j + 1 columns of Vk+1 for all j ≤ k. Or, in matrix

language,
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The most right matrix, with k + 1 rows and k columns, we’ll call

Hk+1,k. This H stands for Hessenberg, because matrices (hi j) such

that hi j = 0 for all indices i ≥ j + 2 are called upper Hessenberg
matrices. The non-zero elements in column j of Hk+1,k are the lo-

cal coordinates of Av j with respect to the basis v1 , · · · , v j+1. As

a matter of fact, since Avi is a linear combination of v1 , · · · , v j for

all i < j, the relative magnitude of the entry h j+1, j measures how

much Vj is mapped outside itself. Denoting the k × k upper part

of Hk+1,k simply by Hk, we can state another important and inter-

esting observation.

Remark. The projected matrix Mk = VH
k AVk equals Hk. If A is

symmetric, then Hk is also symmetric, and in particular tridiago-

nal. This means, that in expanding the projected matrix from Mk

to Mk+1, we know a priori that the new far right column mk+1

of Mk+1 (and by symmetry also the last row) will only have two

non-zero elements.

The message is, that in calculating the projected matrix for sym-

metric A, we can explicitly make use of those known zero ele-

ments to reduce the computational costs. Moreover, as we will

illustrate in the upcoming section, efficient algorithms are known

to solve linear algebra problems with Hessenberg or symmetric

tridiagonal matrices, so apart from the fact that the reduced prob-

lem is smaller than the original one, it also has a favorable struc-

ture.

5 Small and medium problems

For completeness of our toolbox for oversized problems, let’s re-

flect for a while on the small and medium problems, of which

we loosely assumed we could just download some software and

solve them. Instead of boring you with details on Gaussian Elim-

ination, we’ll introduce you to the QR-factorization. The idea be-

hind it is simple.

QR-factorization. Let Z be an n × k matrix of rank k. Then there
exist an n× k matrix Q with QHQ = I and a k× k upper triangular
matrix R such that Z = QR.

Figure 8 QR-factorization

This factorization can easily be constructed, for example by ap-

plying (from the left to the right) the Gram-Schmidt orthonormal-
ization process to the linearly independent columns of Z. The

orthonormal result is then Q, and the matrix R contains orthogo-

nalization coefficients above the diagonal, and normalization co-

efficients on the diagonal.

5.1 Linear systems and QR-factorization

Any linear system Zx = b can be solved quite efficiently by QR-

factorizing Z and solving Rx = QHb. The efficiency comes from

the fact that Q−1 = QH and from the comfortable way in which

systems with upper triangular matrices can be solved:

Rx = QHb, or
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Compute the right-hand side QHb. Then, just start with solving

xk from the last equation, and proceed to higher rows by substi-

tution.



270 NAW 5/1 nr. 3 september 2000 Projection methods for oversized linear algebra problems Jan Brandts

Another important observation is that for Hessenberg matrices

in general, with their large amount of zero elements, the QR-

decomposition can be computed more cheaply then for general

matrices. In particular, for the Hessenberg matrices that arise in

our projection algorithms, the QR-decomposition at a certain iter-

ation step can be obtained from the one in in the previous iteration

step at relatively small costs. This all contributes to the efficiency

of the Ritz-Galerkin projection methods on Krylov Subspaces.

5.2 The QR-algorithm

The solution of small and medium size eigenvalue problems can

be done using the QR-decomposition as well. Not, of course, by

doing one decomposition, but by doing a repetition of them. Af-

ter all, since eigenvalue problems are equivalent to finding roots

of polynomials, this is necessarily iterative as soon as the degree

of the polynomial exceeds four. Before we proceed, let’s first high-

light the Schur form of a matrix Z. Its existence can be proved by

a rather straight-forward induction argument.

Schur canonical form. Let Z be a square matrix. Then there ex-
ists a matrix Q with QHQ = I and an upper triangular matrix R

such that ZQ = QR. The diagonal elements of R are equal to the
eigenvalues of Z.

Please do note the similarity (but equally important, the dif-

ference) between the Schur form and the QR-decomposition.

Doesn’t this ask for an algorithm to produce the Schur form by

means of QR-decompositions? And in fact, a very simple idea

would be to do a Picard iteration or successive substitution on

ZQ = QR as follows:

start with Q0 = I, iterate Qn+1Rn+1 = ZQn , (3)

where, of course, the left-hand side Qn+1Rn+1 is obtained by QR-

decomposition of the right-hand side ZQn.

Figure 9 The QR-algorithm as Picard iteration

Clearly, any fixed point of this iteration yields a Schur form. And

believe it or not, this simple looking idea is at the foundations of

one of the most successful eigenvalue algorithms to compute the

Schur form of a small size matrix, the QR-algorithm, which is a

more advanced implementation of the same idea.

QR-algorithm. The basic QR-algorithm is Picard iteration on the
Schur canonical form, using QR-decomposition at every iteration
step.

To be precise, the QR-algorithm is usually presented as follows:

start with Q̂1R̂1 = Z, iterate Q̂n+1R̂n+1 = R̂nQ̂n . (4)

In this form, the intuition behind it is less clear, but the algorithm

is more robust and cheaper. Some manipulations give that (4)

actually produces Q̂n+1 and R̂n+1 such that

Q̂1 · · · Q̂nQ̂n+1R̂n+1 = ZQ̂1 · · · Q̂n ,

which shows that the transformation Qn+1 from (3) is generated

as a product of transformations Q̂ j, and that the upper triangu-

lar matrices are in principle equal for both iterations. Nice aspect

of this formulation is that the right hand side Q̂nR̂n in (4) is al-

ways spectrally equivalent to the original matrix Z, which follows

immediately from R̂1Q̂1 = Q̂H
1 ZQ̂1 and an induction argument.

Moreover, in case the algorithm converges, we have that Q̂ j → I,

so R̂ jQ̂ j → R, the triangular QR-factor of Z. A last favorable

property results from the following.

Remark. If Z is an upper Hessenberg matrix, then so are its orthog-

onal QR-factor and the product RQ. In that case, one only needs

to perform the relatively cheap QR-decompositions for Hessen-

berg matrices in each step of the iteration (4).

Therefore, if Z is not upper Hessenberg to start with, it is worth-

while to transform it such, that the result is indeed an upper Hes-

senberg matrix. Note that this can be realized by transformation

to an orthonormal basis of a full Krylov subspace. For symmetric

matrices, the situation is even more favorable.

Remark. In our initial iteration (3), even if we assume Z to be a

Hessenberg matrix, the right-hand side ZQn is not upper Hessen-

berg anymore. In fact, being the product of two upper Hessenberg

matrices, it has one more non-trivial subdiagonal.

5.3 Shifts and lucky guesses

It would go to far to try and explain the convergence behavior of

the QR-algorithm. A few words, however, won’t harm our cause.

First of all, let’s reflect on what happens to the QR-decomposition

if Z is singular. If we assume that Z is an upper Hessenberg matrix

with non-zero elements below the diagonal, then the singularity

can only be caused by the last column being a linear combina-

tion of the others. Still, a QR-factorization can be made, one in

which the last column of Q spans the one remaining dimension

(as would have happened without the singularity, of course) but

with an upper triangular matrix R = (ri j) with rkk = 0. It might

seem a trivial observation, but then the matrix QH ZQ = RQ has

last row zero, which shows that Z has a zero eigenvalue.

The QR-algorithm with shifts exploits this idea to accelerate

the original QR-algorithm. First, Z is transformed to an upper

Hessenberg matrix Z1, then it iterates as follows:

start with Q̂1R̂1 =Z1 − µ1 I, iterate

{

Zn+1 := R̂nQ̂n+µn I,

Q̂n+1R̂n+1:= Zn+1−µn+1 I.

The intuition behind this is, that again at each stage, the upper

Hessenberg matrix Zn has the same eigenvalues as the original

matrix Z. And if Z −µn I happens to be singular, then the last row

of Zn equals µneH
n , showing explicitly that Z has an eigenvalue
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equal to µn. We could then proceed the QR-iteration with the

(k − 1) × (k − 1) upper-left block of Z, which has the remaining

eigenvalues of Z.

If we would be able to a priori guess the eigenvalues exactly
right then we would be earning our money differently than now.

But based on a continuity argument, we might hope that if we use

a shift that is close to an eigenvalue, then for the last row eH
k Zn

of Zn we have

eH
n Zn = µneH

k + hH ,

where h = αek−1 + βek has a relative small norm compared to

|µn|. This would make µ̂ = µn + β an approximation of an eigen-

value, while the size of α would indicate how good this approxi-

mation is. Hoping that it is an even better approximation than µn,

we could continue the QR-algorithm with next shift equal to µ̂.

Remark. As soon as the subdiagonal element at position ( j + 1, j)

of the matrix Zn is very small, the problem might be split in two

by replacing this small element by zero, and continuing with the

remaining j × j and (k − j − 1) × (k − j − 1) blocks.

A last remark on the QR-algorithm. If Z is a real matrix with com-

plex eigenvalues, then it is clearly impossible to iterate towards a

Schur decomposition using real shifts only: every matrix Rn that

is produced, will have real entries as long as real shifts are used.

Complex and double shifts are remedies for this, but we won’t

present any details.

6 Feedback in the eigenvalue algorithm

Let’s return to our projection methods for very large linear alge-

bra problems. Recall that they produce small systems or small

eigenvalue problems to solve, for which the small matrix is upper

Hessenberg or even tridiagonal. Those were exactly the matri-

ces for which the algorithms in the previous section work very

efficiently. So it seems as if we’re doing fine so far, and that every-

thing fits perfectly together. We will now solely concentrate on

the eigenvalue problem and explain a mechanism that will fit in

the total framework even more beautifully.

6.1 How to start

Suppose that you’re interested in finding the, say, p eigenvalues

of a matrix A that are closest to some target value τ in the complex

plane. The ideal situation would be to have a vector available that

is a linear combination of five corresponding independent eigen-

vectors or Schur vectors. Then in five steps, an invariant subspace

would be generated, and the problem solved. However, know-

ing nothing about the spectrum initially, there’s not much better

we can do than to start our eigenvalue algorithm with some ran-

dom vector v. Doing a number of iterations and watching the

eigenvalue approximations then gives a first idea about the part

of the spectrum of A. Since it might be that our startvector has on-

ly small components in the directions of the eigenvectors we are

interested in, it could very well happen that convergence to oth-
er eigenvalues than the ones we want, occurs. Apart from that,

the number of iterations should not become too large; the calcula-

tions become slower and slower since the work per iteration step

increases quadratically, and also the computer memory might be-

come too full to have good performance. So, what to do if we do

not want to expand our subspace any further, but we still haven’t
found what we’re looking for?

6.2 How to proceed

Suppose we have done k > p steps of the algorithm, which gives

us k approximate eigenvalues. The idea is to divide those into

two groups: those we find uninteresting, say µ1 , · · · , µℓ, because

they are relatively far away from the target τ , and the remaining

‘good’ ones, say µℓ+1 , · · · , µk. Then, compute

v̂ =
ṽ

‖ṽ‖ , where ṽ = Π
ℓ
j=1(A − µ j)v, (5)

and start the algorithm all over again but now with v̂ as startvec-

tor. The philosophy behind this is, that apparently, v contained

too large components in uninteresting directions (that is why and

how µ1 , · · · , µℓ were generated in the first place.). By applying the

product in (5) to v, we aim to partially remove or filter away those

components from v, so that starting again with v̂ hopefully won’t

yield approximations of those uninteresting eigenvalues again.

Figure 10 Selecting the eigenvalues of interest

The big disadvantage is, that it seems quite an expensive proce-

dure to apply a projection method only to find out afterwards that

we started with the wrong vector.

6.3 Recycling Krylov subspaces

Watching the screen, we find out that it could have been better

positioned. We even see that some directions are okay, and some

aren’t. Nevertheless, the previous section suggests that we roll it

up, put it away and start all over again. Now, can’t that be done

better? Wouldn’t it be a shame to throw away this orthonormal

basis of the k-dimensional Krylov subspace that we so carefully

built and maintained? After all, isn’t it true that we only want

to get rid of ℓ dimensions, and not of all of them? Indeed, for

our new startvector v̂ from (5), we have that v̂ ∈ Kℓ(A, v), which

implies that Kk−ℓ(A, v̂) ⊂ Kk(A, v).

Would it be too much to ask if there’s a way to extract this sub-

space from Kk(A, v), and while we’re at it, also an orthonormal

basis for it and the Hessenberg representation of A on this or-

thonormal basis? Or are we pushing our luck now . . .

Let’s first write down what we have. We have, with our ran-

dom start v, matrices Vk+1 and Hk+1,k = (hi j) such that

AVk = Vk+1 Hk+1,k , or, equivalently,

AVk = Vk Hk + hk+1,kvk+1eH
k .

(6)
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Second, let’s write down what we would like to have: an or-

thonormal basis Wk−ℓ+1 for the k − ℓ + 1 dimensional subspace

Kk−ℓ+1(A, v̂) and an upper Hessenberg matrix Ĥk−ℓ+1,k−ℓ such

that, with q := k − ℓ,

AWq = Wq+1 Ĥq+1,q , or, equivalently,

AWq = Wq Ĥq + ĥq+1,qwq+1eH
q+1 .

The reason why we would like to have this is, that we would

have mimicked the first q steps of our algorithm with startvector

v̂ without actually performing them, and from there on we could

just continue the algorithm by expansion with the residual for the

projected problem.

Two important observations regarding bases for Krylov sub-

spaces should be made here5. First one is, that when the basis is

orthonormal, it is uniquely determined by the first vector, give or

take the sign of the basisvectors. Secondly, not only does A re-

duce to upper Hessenberg form on such a basis, also the reverse
holds: if AVk = Vk+1 Hk+1,k with Hk+1,k upper Hessenberg, then

Vk spans the Krylov subspace Kk(A, Vke1). So, in fact, in order

to find Wq, all we need to find is the orthogonal transformation

Q such that VkQ has v̂ as first column, and such that A has up-

per Hessenberg form on the first q columns of VkQ. We’ll give

the elegant solution of this problem in the case q = k − 1, which

corresponds to filtering away only one component of our original

startvector v. If one wants to filter away more components, the

generalization is, hopefully, obvious.

6.4 The QR-algorithm strikes again

The key to the solution is, surprisingly enough, the QR-algorithm.

Just apply one iteration step of it, with shift µ, to the Hessenberg

matrix Hk,

QR = Hk − µ I, and Ĥk := RQ + µ I. (7)

This transformation Q and the upper Hessenberg matrix Ĥk lead

to the fulfillment of all the wishful thinking of the previous sec-

tion. Simply define Wk := VkQ, after which Wk still spans

Kk(A, v) since the right-multiplication does not change the col-

umn span. Also, note that WH
k Wk = I. Then, using (6) and (7), for

the first column Wke1 of Wk we find,

Wke1 = VkQe1 = VkQ
Re1

r11
=

1

r11
Vk(Hk − µ I)e1

=
1

r11
(AVk − µVk)e1 = v̂,

where in the last step, we used that Vke1 = v, and that we started,

at the left, with a vector of length one. It remains to be shown that

for all j ≤ k − 1, the first j columns Wj of Wk span K j(A, v̂).

Remark. Since Wk does not span Kk(A, v̂), there does not exist an

upper Hessenberg matrix H such that AWk−1 = Wk H.

It will, however, appear to be possible to alter the last column of

Wk such that we obtain our goal. First note that

Vk HkQ = Vk(QR + µ I)Q = VkQĤk = Wk Ĥk ,

which is nothing more than applying (7), after which we find, us-

ing the right (and right) relation in (6), that

AWk = AVkQ = Vk HkQ + hk+1,kvk+1eH
k Q

= Wk Ĥk + hk+1,kvk+1eH
k Q.

(8)

Now, the first k − 2 columns of the n × k matrix Ek :=

hk+1,kvk+1eH
k Q are zero, because Q, being the orthogonal QR-

factor of Hk, is an upper Hessenberg matrix. Both last columns

of Ek are known multiples of vk+1, let’s say Ekek−1 = αvk+1 and

Ekek = βvk+1.

Figure 11 Removing the last column

So, writing Ĥk,k−1 for the first k − 1 columns of Ĥk, we find by

comparing the first k − 1 columns of (8) that

AWk−1 = Wk Ĥk,k−1 +αvk+1eH
k−1 .

Since Ĥk,k−1 is an upper Hessenberg matrix, the only equation in

which the last column wk of Wk appears, is

AWk−1ek−1 = wk ĥk,k−1 +αvk+1 . (9)

Note that WH
k−1(wk ĥk,k−1 +αvk+1) = 0. So, if we redefine wk and

ĥk,k−1 as a unit-vector and scalar such that wk ĥk,k−1 equals the

right-hand side of (9), then redefining Wk := (Wk−1|wk) finally

leads to AWk−1ek−1 = wk ĥk,k−1 and hence,

AWk−1 = Wk Ĥk,k−1 .

Summarizing we can say that if we regret to have started the

eigenvalue algorithm with startvector v, then we can still do

something about it without throwing away everything we have

done. The QR-algorithm applied to the small Hessenberg matrix

Hk provides us with the unitary transformation that selects a sub-

space from Kk(A, v) that contains the ‘most relevant’ information.

Remark. As we have seen before, applying a step of the QR-

algorithm to Hk with a shift µ that is an eigenvalue of Hk, pro-

duces a matrix Ĥk that has µeH
k as last row. As a consequence we

get ĥk,k−1 = 0 in (9).

And now, for something completely different . . . What about the

objects that we try to approximate? Do they let themselves be

approximated, or do they give rise to false images on the screen

that might just look perfectly okay, like the rabbit that wasn’t a

rabbit?

7 The complex minefield

It is well-known that eigenvalues depend continuously on the en-

tries of the matrix. In general, we cannot expect to have higher

5 By basis we mean the inductively built basis.
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Figure 12 On the left two eigenvalues of a normal matrix, on the right the only (twenty-
fold) eigenvalue of a non-normal matrix of size twenty.

smoothness, as the example

A =

(

1 a

ε 1

)

, λ1,2 = 1 +−
√

aε

clearly shows. The same example (with ε = 0) also illustrates that

the Jordan canonical form, which is so useful in many theoretical

issues, is not even continuous, as a function from the matrix en-

tries. That is why in the previous we preferred to use the Schur
canonical form, which is in fact continuous as a function of the

matrix entries, and this partly explains the success of eigenvalue

algorithms based on the Schur form. The success becomes even

bigger when eigenvalues are simple and isolated, which makes

them differentiable.

7.1 Introducing the characters

Before we go further, let’s briefly recall the main classification of

matrices. The nicest group is formed by the Hermitian matrices,

for which AH = A. It is a subset of the larger group of so-called

normal matrices. Normal matrices have eigenvectors that form an

orthonormal basis. In fact, they are exactly the matrices for which

A and AH commute. Clearly, they form a subset of all diagona-
lizable matrices, which are the ones that have eigenvectors form-

ing a basis. Matrices that are not diagonalizable are also called

defective, which refers to a lack of eigenvectors to form a basis.

Following our linguistic intuition, we tend to think of defective

matrices as the bad guys. As a matter of fact, non-normal matri-

ces in general are often presumed to be a bit suspect as well, even

if they’re not defective. We’ll illustrate why in the following.

7.2 Avoiding the pitfalls

Anything that has to do with eigenvalues, needs to be approached

with proper care. After all, eigenvalues indicate singular behav-
ior. In order to make things even more singular (say, more fun),

people tend to be interested in the following function,

R : C → R : z 7→‖(A − zI)−1‖−1 . (10)

Each eigenvalue corresponds to a singularity, and the characteris-

tics of the singularity depend on how close a matrix is to defective,

or how far away from normal. We will illustrate this by drawing

a logarithmic plot containing the function R and its contourlines

in the complex plane.

On the left in figure 12 we see two eigenvalues of a normal

matrix. On the right we see the only (twenty-fold) eigenvalue of

a non-normal matrix of size twenty. The same contours are given

Figure 13 A cluster of singularities close to each other makes the situation more compli-
cated.

on a comparable scale. The inner contour corresponds to R(z) =

10−16. In the left picture, the contours are very tight around the

eigenvalues, so that we cannot even see them. In the right picture,

however, there is a big disk in which R(z) ≤ 10−16.

Remark. In most practical computations, it is hard to distinguish

between 10−16 and zero. So, the average computer will think that

this relatively small matrix has an ‘eigendisk’ with centre 1 and

radius 0.1, implying that it is impossible to find the eigenvalue

with an accuracy of more than about ten percent.

In figure 13 we present similar plots for a matrix of size six on the

left, and a random matrix of size twenty on the right. What we try

to illustrate here is, that a cluster of singularities close to each oth-

er can also make the situation more complicated. Imagine your-

self somewhere in the complex plane, trying to spot a particular

eigenvalue, if there are one million of them around. In particular,

if there’s another eigenvalue around having a ‘deep’ singularity,

our object of interest might just drown in that singularity and re-

main unnoticed.

7.3 Eigen-areas

The message of the previous is clear. It is not the singularity that

counts, but the area in the complex plane in which we cannot

distinguish anymore what’s happening: do we have a singular-

ity here, or not? The exact eigenvalue could be anywhere in this

area. Of course, we need to be aware of this if we approximate

eigenvalues of any matrix, and those of a very large matrix in

particular. As a matter of fact, each contourline has a nice inter-

pretation. Suppose we have one at height ε . Then it bounds the

region within which an eigenvalue can move if the original matrix

A is perturbed by a matrix E with ‖E‖ ≤ ε. Or, in other words, for

each z with R(z) ≤ ε, there exists a matrix E with ‖E‖ ≤ ε, such

that z is an eigenvalue of A + E.

Figure 14 Perturbation of the matrix related to the contourlines of R
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If ε is small while at the same time the region bounded by the

ε-contour of R is large, the eigenvalue is called sensitive to per-
turbations. Analysis learns that the distance of A to a defective

matrix and its distance to a normal matrix are important factors

that influence the sensitivity of eigenvalues.

7.4 Residuals revisited

Let’s see how our projection method for eigenvalue problems

fits into this all. Recall that we defined the eigenvalue residu-
al r := AVk y − µVk y, where µ is an eigenvalue of the project-

ed matrix Mk and y a corresponding eigenvector of length one.

The residual was supposed to give us an idea how good µ and

v := Vk y approximate an eigenpair of A. We are now able to make

this claim more solid. Consider the surprisingly simple equality

(A − rvH)v = Av − rvHv = µv.

It states that we have found a matrix E = −rvH such that µ and v

are an exact eigenvalue and eigenvector of A + E. It all becomes

even more interesting when we realize that ‖E‖ = ‖r‖ and that

we are able to compute this norm easily.

Claim. Let r = Av−µv be an eigenvalue residual coming from our
projection method. Then µ lies within the contour R(z) ≤ ‖r‖, or
equivalently, R(µ) ≤ ‖r‖.

Now, before getting too excited about this, let’s not forget that

computing these contours is not an easy job, and it might very

well be that it is much harder then computing µ and v. But there

are situations in which you need some guarantees about the qual-

ity of µ, and in those cases this result may be very useful.

8 Modern developments, ancient ideas

The eigenvalue algorithm that we have sketched in the previous

sections, is not the only one that is based on projections. Even

though the idea of expanding the subspace towards an invariant

subspace is very appealing and natural (not to mention, it often

works quite satisfactory), there is another important strategy to

expand the subspace. The idea behind it might seem a bit per-

verse: what about expanding the subspace with error of the prob-

lem, then we’re ready at once.

8.1 Moving the problem forward

Hold on, reader! We’re not kidding here. Of course, there is no

way that we can add the error to the space, since by linearity, hav-

ing the approximation and the error would mean that we have

the solution. But in the case of expansion towards an invariant

subspace, the philosophy was the same: we didn’t actually ever

expect to get there in the first place, we only wanted to do small

steps in the right direction and stop when we would be close

enough. Our new idea is similar in this respect. It brings a kind

of nestedness or recursion into the algorithm, and by means of a

little bit of steering, it might be possible to find a balance between

the two extremes of expanding with the error and expanding at
random. It is all a matter of where to put the energy, and by di-

viding the energy cleverly, we might prevent the subspace from

growing too much while on the other hand preventing to solve

the whole problem by finding the perfect expansion vector.

8.2 Orthogonal corrections

Suppose you have an initial subspace V spanned by v and that

you’re after an eigenvector v̂. Assume both v and v̂ to be of unit

length. Write µ = vH Av for the eigenvalue approximation be-

longing to the first projection, and let r := Av − vµ be the cor-

responding residual. Then, if v 6∈ V⊥, there exists a unique or-
thogonal correction q ∈ V⊥ that yields v̂, meaning that q ⊥ v and

v̂ = (v + q)/‖v + q‖.

Figure 15 Orthogonal correction

It can be shown that q is a solution of the non-linear equation

q ⊥ v and (I − vvH)(A − µ I)q = q(vH Aq) − r. (11)

Note that the matrix (I − vvH)(A −µ I) in (11) is singular, not be-

cause of µ, which, after all, is only an approximation of an eigen-

value, but because of the projection (I − vvH) on the orthogonal

complement V⊥ of v. The orthogonality constraint q ⊥ v together

with the fact that r ∈ V⊥, make (11) into a better posed problem.

Indeed, the total right-hand side q(vH Aq) − r is in V⊥, and after

applying A − µ I to a vector w ∈ V⊥ it is projected back onto V⊥.

This makes (11) resemble a subspace method, with the very big
subspace V⊥.

8.3 Projection on a giant subspace

You might wonder why we would like to do something like that,

since we have stressed all the way, that the dimension of the sub-

space to project upon should be kept as small as possible. The

answer is that this projection is of a different type. Its goal is (for-

tunately!) not so much to reduce the dimension of the problem,

but to get rid of the dimension that might cause severe problems.

Indeed, if µ is relatively close to an eigenvalue λ of A, we might

get into the region in the complex plane where the function R(z)

from (10) is indistinguishable from zero. Or, equivalently, there

would exist vectors such that (A − µ I)−1w would be too large to

handle. In particular vectors w that make a small angle with the

eigenvector v̂ belonging to the eigenvalue λ would suffer from

this. By making sure that A − µ I only acts on vectors in V⊥,

we hope to filter out vector components that might be extreme-

ly blown up by (A − µ I)−1, just as we tried to do filtering in our

restart strategy for the Krylov subspce method for eigenvalues.

So that motivates the projection on the big subspace, or, working
in the orthogonal complement of v.

The equation (11) still might have several solutions because of

the non-linearlity. This is of course because the span of every
eigenvector v̂ of A that is not orthogonal to v, intersects with the
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affine variety {w + v | wHv = 0}, each giving rise to a corre-

sponding orthogonal correction q.

Remark. The solution q of (11) with the smallest norm will give

rise to the eigenvector v̂ of A that has minimal angle to v. Of

course, strictly speaking, there might be more than one solution q

with minimal norm.

Figure 16 Non-uniqueness of the orthogonal correction

8.4 Inexact solutions of Riccati equations

Equation (11) is, in fact, of a well-known type. It is classified as

a special kind of Riccati Equation, named after Il Barone Jacopo

Francesco Riccati. Riccati equations arise in many mathematical

fiends, like control theory, differential equations, and differential

geometry. It is our goal to find approximations of solutions to

the Riccati equation above, and use those to expand the subspace

with. Then, after solving the expanded projected problem, a new

approximation of the eigenvector is used to write down a new

Riccati equation to solve, and the process can repeat itself.

We will now comment on three strategies to obtain approxima-

tions of solutions of the Riccati equation (11).

8.5 Neglecting the quadratic term

A first idea is to forget about the quadratic term and to find the

(unique) solution q̂ ⊥ v of

(I − vvH)(A − µ I)q̂ = −r. (12)

This is just a linear system, and we might apply the projection

method with Krylov subspaces, or any other method, to find ap-

proximations to its solution.

Remark. Halfway the nineteenth century, Carl Gustav Jacob Jaco-

bi used, in a similar context, his Jacobi iteration to find orthogonal

corrections to approximations of eigenvectors. Instead of expand-

ing the subspace by the solution, he merely replaced the subspace

by the new approximation (he repositioned the screen).

Of course, Jacobi did not know about Krylov subspace methods,

and also the idea to expand subspaces was not known at that time.

Mind you, he had to do everything by hand, so his matrices were

rather small.

Remark. Since r ⊥ v and By := (I − vvH)(A −µ I)y ⊥ v for all y,

the Krylov subspace Kk(B,−r) is automatically orthogonal to v.

Figure 17 Jacopo Francesco Riccati (left) (1676-1754) and Carl Gustav Jacob Jacobi
(1804-1851)

So all approximations q̂k to the solution q̂ of (12) taken from this

space, automatically satisfy q̂k ⊥ v.

Since we already introduced an error by throwing away the

quadratic term, we might as well be satisfied with an approxi-

mation for the solution of (12) that is not very accurate. This leads

to the following interesting and surprising observation.

Remark. Using a Krylov subspace of dimension k = 1 to approx-

imate the solution of (12) yields the quite crude approximation

q̂ ≈ q̂1 := −αr for some α ∈ R, which leads exactly to the Krylov

subspace projection method for the eigenvalue problem treated in

section 4.

8.6 Using Picard iteration

As we have seen in the QR-algorithm, the relatively simple con-

cept of Picard iteration can be a very useful tool to approximate

solutions of non-linear equations. If, instead of the linearization

of the previous section, we apply Picard iteration to (11), we could

be iterating as follows,

q0 = 0, iterate qn+1 ⊥ v and

(I − vvH)(A − µ I)qn+1 = qn(vH Aqn) − r.

In each iteration step, we have to solve a linear system, so the

question is justified if this extra energy is well-spent. If, on the

other hand, in finding an approximation q̃1 for q1 we have com-

puted, say, a k-dimensional Krylov subspace Kk(B,−r), we might

as well use the same subspace to approximate the solution q̃2 of

q̃2 ⊥ v and (I − vvH)(A − µ I)q̃2 = q̃1(vH Aq̃1) − r.

Note that, since q̃1 ∈ Kk(B,−r), the right-hand side q̃H
1 (vH Aq̃1)−r

is also in Kk(B,−r). We can go for an approximation p ∈
Kk(B,−r) of q̃2 ≈ q2 such that the projection of Bp on Kk(B,−r)

equals q̃H
1 (vH Aq̃1) − r. The big advantage of this is, that we still

have the projected matrix B available from the computation of q̃1,

or, even better, its QR-factorization. So, following this strategy,

we could call the Picard iteration a projected Picard iteration, be-

cause it takes place completely within Kk(B,−r).

Remark. By linearity, we can write qn+1 = q1 + w where w solves

the projected equation

w ⊥ v and (I − vvH)(A − µ I)w = qn(vH Aqn).
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8.7 A non-linear subspace method

Going even one step further, we could try to project (11) directly

on the Krylov Subspace Kk(B,−r). Suppose we have an orthonor-

mal basis for it in the matrix V, and we write H for VH BV. Then

we can try to find v = Vy ∈ Kk(B,−r) such that

VH(BVy− (Vy)(vH AVy)+ r) = Hy− y(hH y)− e1‖r‖ = 0, (13)

where we wrote hH = vH AV. If we try to solve this small non-

linear equation by Picard iteration and look at the iterates Vy j,

they coincide with the q j from the previous section. So, nothing

really new is happening, apart from the fact that we can interpret

the small problem (13) as a small eigenvalue problem. Indeed,
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0

H
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1

y

)

= (hH y)

(

1

y

)

. (14)

This clearly implies that instead of using a Picard iteration, one

could use one or a few iterations of any efficient method (the

QR-algorithm?) for smaller eigenvalue problems to obtain ap-

proximations for the eigenvector (1, y)H for which y has minimal

norm. Such a y corresponds to the minimal norm approximation q

of (11).

Remark. Since the Picard iterations typically only converge if v is

close to v̂, the subspace expansion is a natural way to bring v into

this convergence area.

Expanding with (approximate) solutions of the eigenvalue prob-

lem (14) leads to algorithms with generally small subspaces com-

pared to the approach (12), but with more expensive iteration

steps. It remains to be found out which implementation of the

expansion methods with inexact solutions of the Riccati equation

is the most favorable for which situation.

8.8 Methods for invariant subspaces

As you might expect, an invariant subspace is, in general, more
stable than a single eigenvector. Therefore, people recently tend to

be more and more interested in invariant subspaces, and in ways

to find them that are different than going vector-by-vector for an

eigenvector basis. In fact, such a basis does not necessarily exist

in the first place.

The ideas of orthogonal corrections can be applied to invariant

subspaces as well. Under similar conditions, one can show that

there exists an orthogonal correction Q to an approximation X of

an invariant subspace X̂ (both stored as orthogonal matrices) that

satisfies the Riccati equation

Q ⊥ X and (I − XXH)AQ − QM = Q(XH AQ) − R, (15)

where M = XH AX and R = AX − XM is the residual. A dif-

ficulty in this equation is that Q and M don’t commute, so that

the linear operator in the left-hand side that acts on Q, is harder

to handle. Nevertheless, the essential ideas of the eigenvalue al-

gorithm of the previous section can still be applied, and a similar

projection algorithm with expansion by inexact solutions of the

Riccati equation (15) can be written down, including the Picard

iterations taking place in a Krylov subspace.

9 Conclusions

We have introduced projection methods for oversized linear alge-

bra problems. The ideas involve iterative expansion of the space

to project upon, either with the aim to move towards an invari-

ant subspace, or to include more and better approximations of

the object of interest into the space. In the first case, we explained

a way to restart the algorithm without breaking down the whole

subspace that was just built. Or, as you wish, we showed how

to rotate towards a sub-subspace that contains the most relevant

information.

Apart from describing the algorithms, we also made some re-

marks on stability of eigenvalues and practical problems that may

be encountered.

10 About this paper

It was a deliberate choice to write a paper on numerical meth-

ods for large linear algebra problems without referring much to

the numerical aspects and without presenting numerical tests of

the algorithms. Instead, the geometrical aspects were highlighted.

One of the other goals was to refrain as much as possible from the

specialized terminology that has become part of the daily vocabu-

lary of the numerical algebraist, and which might be less common

for the reader with a general mathematical background. For such

readers, it seemed better to talk about a method projecting on a

certain type of subspace and augmented with a clever feedback

mechanism, then to call it the Implicitly Restarted Arnoldi Algo-
rithm.

Naturally, in practice, also topics like implementation, numer-

ical stability, the effects of finite precision arithmetic, convergence

speed, and computational costs are of interest. The reader who is

interested in those aspects is referred to the literature.

10.1 Rough historical overview

The idea to project a linear algebra problem on a subspace goes

back to Rayleigh, Ritz, and Galerkin at the beginning of this cen-

tury. In 1950-51, Lanczos and Arnoldi proposed to use Krylov

subspaces to project upon. In both cases, though, the algorithms

were meant as a way to reduce the whole matrix to Hessenberg

or tridiagonal form. It took until the seventies before it was rec-

ognized by Saad, Kaniel, Page and others that the intermediate

projected matrices could be considered as useful approximations

of the unprojected ones. Linear system algorithms among this

category are Conjugate Gradients and the Full Orthogonalization
Method, while the eigenvalue algorithms are named after Lanc-

zos and Arnoldi.

It should be mentioned here that apart from finding the ap-

proximation from the Krylov subspace that gives a residual or-
thogonal to that space (those are the methods treated in this pa-

per), there is another important class of methods that aims to find

the approximation from the Krylov subspace that minimizes the

residual. Clearly, expanding the subspace then gives by construc-

tion a smaller residual. For non-Hermitian linear systems, the

Generalized Minimal Residual Method is the best known. Those

methods were developed in the early eighties.

Yet another class of subspace methods arises if bi-orthogonality
is exploited. The Krylov subspace belonging to AH has inter-
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esting features when used in combination with the space for A

itself: methods that aim to find an approximation from the one

space, such that the residual is orthogonal to the other, give (when

carefully worked out) tridiagonal projected matrices, even if A is

not Hermitian. Those methods too, have nice geometrical inter-

pretations in the sense that the two spaces, of course, coincide

for Hermitian matrices, and bifurcate as AH continuously moves
away from A. The methods fall into the class of Petrov-Galerkin
methods.

In the late fifties, Rutishauser developed a predecessor of the

QR-algorithm, and in particular Wilkinson developed the con-

vergence theory for the actual QR-algorithm halfway the six-

ties. Only in 1992, Sorensen found the connection between the

QR-algorithm and restarting the projection algorithm of Arnol-

di, which resulted in what is now widely known as the Implicitly
Restarted Arnoldi Method.

Important contributions to stability issues for eigenvalue prob-

lems are due to Bauer and Fike in 1960 and Henrici in 1962. The

region in the complex plane where the resolvent R has norm less

than ε is called the ε-pseudospectrum of the matrix. This concept

is due to Trefethen in 1992.

The algorithms based on the inexact solution of Riccati equations

are very recent. Neglecting the quadratic term leads to the Jacobi-
Davidson algorithm by Sleijpen and Van der Vorst (1996), which is

named after combining the old orthogonal correction ideas of Ja-

cobi (1845-1846) with the subspace expansion idea based on resid-

uals by Davidson (1975). The projected Picard iteration approach

leads to the Riccati algorithm (2000). The theory behind the Ric-

cati equation in connection with invariant subspaces goes back to

Stewart (1973), who derived perturbation theorems and stability

results for invariant subspaces from it.

Instead of giving an exhaustive bibliography, we prefer to

mention a few good and modern textbooks, which are, with a sin-

gle exception, all from the last ten years. In particular [5] treats

almost all topics touched in this paper and gives many links to

the research literature. For stability issues, we advice [3], [4], [6]

and [8]. For an easy and very readable further introduction to

general topics in numerical liner algebra, try [11]. For eigenvalue

problems, [7] and [9] are modern and readable textbooks. Apart

from those books, which do not include the recent developments,

we mention references [10] and [2], and the book [1] on the Riccati

equation. k
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