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During the 18th century three main traditions in mechanics developed,

somewhat in competition over reliability and generality: the approach

stressing central forces and based upon Newton’s principle of inverse-

square attraction and the three laws; that seeking to give primacy to

energy conservation, and its interchange with work; and an algebraic

style, using principles such as those of least action, d’Alembert’s, and

virtual work. They played differing and often competing roles across

the range of mechanics.

Daniel Bernoulli (1700–1782) lived through the bulk of these de-

velopments and made major contributions to several principles and

topics. But his contributions have not been fully studied, and his place

is hard to make precise; he seems to be somewhat overshadowed by

his father and uncle, and also by contemporaries such as Euler and

d’Alembert. What did he do, and is the appraisal fair or unjust?

1 Beginning and end

When Daniel Bernoulli was born in Groningen in 1700, the Leibnizian

differential and integral calculus had been in print for less than 20

years, and its creator and his own father John (1667–1748) and un-

cle James (1654–1705) were among its leading practitioners; the first

textbook, De l’analyse des infiniment petits, written by the Marquis de

l’Hôpital with John’s hand much upon the pen, had been published just

four years earlier. Leibniz’s approach to mechanics had been known

for a decade, and was also beginning to gain attention, especially in

Paris. Newton’s very different account of mechanics had appeared as

Principia mathematica in 1687, and gaining some discussion; his flux-

ional calculus was also known but still only in manuscript. A sense of

professionalisation of science was growing, especially since the found-

ing of the Royal Society of London and the Paris Academy of Sciences

in the 1660s; they were joined in the year of Bernoulli’s birth by the

Berlin Academy. Among recent deaths, that of Christiaan Huygens in

1695 was the most notable.

When Daniel Bernoulli died in Basel in 1782, Joseph Louis Lagrange

(1736–1813) was completing the manuscript of his Méchanique anal-

itique, which was to appear in Paris in 1788, the year after he moved

to its Academy from Berlin. He and colleagues such as Pierre Simon

Laplace (1749–1827) and Adrien Marie Legendre (1752–1833) were ac-

tive above all in mechanics and its attendant calculus; the engineering

side was in the hands of men such as Gaspard Riche de Prony (1755–

1839). Paris was becoming the world centre of mathematics, a status

which it would maintain for over 40 years; indeed, the early 1780s

were a time of transition, for within 18 months of Bernoulli’s demise

Leonhard Euler and Jean le Rond d’Alembert also died.

The development of mechanics and the calculus was by far the major

concern of mathematicians throughout Bernoulli’s career, a situation

to which he not only contributed but also helped to form. In this

tercentenary tribute I survey the range of his work in mechanics in the

context of its general development. First, a short curriculum vitae.

2 Life and career

Daniel’s father John was Professor of Mathematics at Groningen Uni-

versity in 1700; but he moved back to his home town of Basel five years

later to succeed James, and the son was educated at the university and

by members of his talented family. But mathematics was not the only

topic; medicine was also on the curriculum, and indeed was to provide

him with employment later. He spent several years in Germany and

Italy, but nipped home in 1721 to obtain his doctorate. Beginning to

publish, in 1725 he was appointed founder Professor of Mechanics at

another new academy: that in Saint Petersburg, founded by Peter the

Great. Two years later he was joined there by his friend Euler.

The weather was not suitable for Bernoulli’s health, however. In

1733 he succeeded in imitating his father by moving back to Basel Uni-

versity as Professor — but of Botany and Anatomy, since John still held

the mathematics chair. Never teaching botany, in 1743 he exchanged
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it with a colleague for the more amenable subject of physiology. Sev-

en years later he also took the chair in physics, where he alternated

semester courses on principles and on practical work. He held both

chairs until his death in 1782; however, nephews Daniel II substituted

for him from 1776 to 1780, and James II from 1780. (After John’s death

in 1748 the mathematics chair had been given to his youngest son and

Daniel’s brother John II (1710–1790).) Daniel also held the rectorship

of the university for the academic years 1744–1745 and 1756–1757.1 He

did not continue the dynasty, or at least he was not married.

Physiology and physics seem to have dominated Bernoulli’s tea-

ching; but his research work lay largely within mathematics with, as we

shall see, a notable medical component. Also unusual for a rational

mechanic of his time, quite often he conducted and reported upon ex-

periments carried out to test his theoretical findings. Rather isolated in

Basel, he maintained quite a large correspondence; that with Christian

Goldbach (1690–1754) and his letters to Euler were published together

in (Fuss 1843, 173–655), and were heavily used in a nice non-technical

account of his life and work (Wolf 1860), still the closest approximation

to a biography.2 Bernoulli’s other good mathematical friends included

Alexis Claude Clairaut (1713–1765), whom he met in Paris in 1733 while

travelling to Basel from Russia.

Bernoulli published under his own name two books and around 70

papers, which are listed at the end of each volume of the edition in pro-

gress of his works. Almost all of the papers appeared with academies,

of which he became in due course a (foreign) member.3 His favourite

venues were Saint Petersburg, where he had been resident; and Paris,

which offered quite regularly prize problems where he was victorious

ten times. (This was two less than Euler; often more than one winner

was named for a prize.) Mainly in later life Daniel became unusually ac-

tive in probability theory and statistics (Huber 1958, ch. 3); throughout

it he worked on mechanics and the calculus, like his contemporaries.

In mechanics he concentrated upon various problems in fluid flow,

elasticity and the vibration of strings, and engineering, but sometimes

with long intervals between contributions; for this reason my survey is

organised around topic rather than chronology.

Limitations of space and occasion prevent the citation of all perti-

nent publications; the years used are those of publication, which were

often some years after composition. Similarly, I shall not discuss avai-

lable manuscripts or correspondence; often his work interacted with

that of colleagues and contemporaries, especially his father and Euler,

but the full story is far too complicated for description here.

Among the leading historical sources, many details are contained

in (Truesdell 1954, 1955 and 1960), within the second series of the

edition of Euler’s works; prefaces to other volumes are also relevant.

The editorial material in the available volumes of the edition of the

works of the Bernoulli family are also valuable, especially for volume 3

on mechanics for Daniel (1987) in regards to the review to follow.

1 Much of the information in this paragraph draws passim on (Staehelin 1957), an informative history of the university. In the 1870s a building for the teaching

and practise of the physical sciences, named the ‘Bernoullianum’ in honour of the family, was built in the city near the University Library and the Botanical Garden

(Doublet 1914). It now houses the Geographical Institute of the university.

2 This article is one of dozens on Swiss scientists which Rudolf Wolf (1816–1893), Professor of Astronomy at Zürich University, produced in four volumes between

1858 and 1862. Other figures so treated included James and John Bernoulli, and Euler.

3 These academies included the Royal Society of London, to which Bernoulli did not send any paper; but he was successfully proposed as a foreign member on 3 May

1750 (Royal Society Archives). His supporters were Martin Folkes (antiquarian — and President), H.S. Stevens (‘gentleman’) and Cromwell Mortimer (physician).



244 NAW 5/1 nr. 3 september 2000 Daniel Bernoulli and the varieties of mechanics I. Grattan-Guinness

Daniel Bernoulli

3 Three traditions in mechanics

The general situation in mechanics prior to Bernoulli’s entrance and

some features of its development during his lifetime will now be re-

viewed. By the time of his debut in the early 1720s, both mechanics

and the calculus had received much consideration. Unfortunately the

aged Newton had badly soured the atmosphere by initiating in the

1710s a quite unfounded charge against Leibniz of plagiarism over the

invention of the calculus (Newton 1981). As a result, two camps were

in rivalry in the practise of the calculus itself, with John Bernoulli a

prominent campaigner for Leibniz’s version; however, a few members

of each camp had good contacts and made some use of the other’s

theory.

The clash lay more in the calculus itself rather than mechanics;

as (Bertoloni Meli 1993) has shown, had Newton attacked Leibniz on

mechanics then his charge would have been much stronger! In any

case there was some competition between the approaches adopted

by the two giants, both over principles as such and their generality of

use (Grattan-Guinness 1990b). With Newton central attracting forces

were held to obtain between any two objects or particles, and their

motion was controlled by three laws: 1) uniform rest or motion of a

body if left undisturbed; 2) force as the product of mass and acceler-

ation, as it came to be understood (Maltese 1992) although Newton

had formulated it in terms of micro-impulses affecting micro-changes

in momentum; and 3) action balanced by reaction. In Britain all these

components were usually adopted; on the content the notion of central

forces and the three laws were used, though the inverse-square under-

lay was treated much more sceptically (Guicciardini 1999). Indeed,

Newton himself and some followers examined situations in which laws

of attraction other than the inverse-square obtained, partly for their

mathematical interest but also for their suspected utility in other sci-

ences such as electricity and chemistry.

In competition was the energy approach, partly fostered by Leib-

niz’s efforts to refine the vortex theory by positing that bodes moved

from some sphere of aether to neighbouring concentric ones at near-

by levels (lesser or greater) of vis viva (the forerunner of a theory of

kinetic and potential energy). Some overall total content was held to

obtain, although impact mechanics (particularly important in engineer-

ing) posed special difficulties about the nature of the category whither

the lost energy went; much later a general concept of work as the alge-

braic product of force and distance was to fulfil this role, with Lazare

Carnot (1753–1823) playing a major role from the 1780s onwards (Scott

1970, bk. 2).

Overlying both of these traditions was much concern with the vari-

ous forms in which extended bodies and fluid masses came: hard, elas-

tic and inelastic in the first case, (in)compressible and (non-)viscous in

the other. The laws of conservation which may obtain needed careful

consideration: of momentum, or energy or vis viva, or of no category at

all? These preoccupations arose as part of the widening scope of phe-

nomena which fell under the attention of mechanics; from the actions

between the supposed constituent ‘molecules’ of bodies and fluids

through ‘ordinary’ extended bodies to heavenly ones and indeed the

entire planetary system. Figure 1 shows this range, divided into five

departments. The distinction made between celestial and planetary

mechanics rests upon treating a planet as a mass-point in the former

department whereas in the latter it is extended; indeed, the shape of

the Earth itself constituted a major problem.

Figure 2 shows a companion layout for the calculus, as it expanded

in both the Newtonian and the Leibnizian forms until mid century;

after then Britain fell badly behind in all areas of mathematics and

the Continent of Europe took centre stage, with Bernoulli as a major

player. I cannot describe the development of the calculus here, but

mechanics was its greatest single inspiration. A striking feature is that

from early on isoperimetric problems were held in high esteem, and the

methods of their solution expanded especially from the 1730s onwards

into the calculus of variations, which became a major sub-branch of

the calculus with Euler and especially Lagrange (Engelsmann 1984).

A decade later the multi-variate calculus was developed, with partial

differential equations vastly supplementing ordinary ones; and many

Figure 1
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important results concerning series and (special) functions were found,

often from solving these equations. Bernoulli was not a major figure

here, though he made various useful studies of series, and his work in

mechanics led him to consider the roots of equations and pioneer the

study of some special functions.

By mid century another tradition in mechanics was beginning to

emerge, initially with d’Alembert and then especially with Lagrange

and his book of 1788: variational mechanics, run under principles

such as d’Alembert’s and least action, and later that of virtual veloci-

ties. They were chosen to form part of Lagrange’s aim of algebraising

as much mathematics as possible, with the calculus of variations given

a prominent place; this tradition lay great (to its critics, excessive) em-

phasis on equilibrate situations in mechanics. I shall not detail it here,

as Bernoulli used it rarely, although it came up in correspondence es-

pecially with Euler (Pulte 1990): conversely, the extent of its popularity

was to reduce the reception of Bernoulli’s contributions, for its stress

upon algebra ran counter to the geometrical cast of most of Bernoulli’s

mechanics.

Most of the main issues and differences between these two and then

three traditions lay in dynamics, but statics also had to be considered:

indeed, a hope of the variational tradition was to reduce dynamical

situations to statical ones. The basic principles of statics also needed

study, as the young Daniel Bernoulli noticed.

4 Mechanical principles with Bernoulli

In an early paper (Bernoulli 1728a) took up the epistemological status

of the parallelogram law of two forces as deduced by Newton from his

laws; is it empirically or necessarily true, and how derived? Aiming at

necessity, he adopted seemingly general principles such as any force

being replaceable by a parallel one of equal magnitude and sense, and

built up the general parallelogram law from a sequence of special cas-

es. Some further assumptions such as continuity slipped in en route;

but the argument was clever. Strangely, nobody examined the case of

composing two equal forces in parallel and with opposite senses until

the beautiful analysis by the young Louis Poinsot (1777–1859) of the

‘couple’ (his word) (Poinsot 1803).

Bernoulli’s most substantial concern with Newtonian principles lay

in the law of angular momentum; in (1746) he examined cases of mo-

tion of a sphere under various conditions in which angular momentum

was conserved. Was this property true in general? He thought so, but

an ingenious argument failed to establish it, and contemporary efforts

by Euler led to the conclusion that the general law of conservation of an-

gular momentum was in fact independent of Newton’s laws (Truesdell

1968, ch. 5) — a fact which is still too little recognised.

Some years earlier (Bernoulli 1740) had made a foundational con-

tribution of a different kind; in the course of analysing the oscillation

of bodies connected by a thread he proposed a new principle based

upon considering their free motion and then the effect of the con-

straints imposed by the connections. It is similar to the principle which

d’Alembert was to propose soon afterwards and which still carries his

name, in which such motions were taken as the combination of free

and constrained sub-motions (Truesdell 1960, 159–163). In the later

and clearer hand of Lagrange this principle was prominent in varia-

tional mechanics; Bernoulli did not follow that path, although optimal

principles occurred on occasion (an example is given in §6) and he

discussed them in correspondence with Euler.

For Bernoulli the preferred route drew upon vis viva, perhaps in-

fluenced by his father’s advocacy, which itself was partly inspired by

physiology (Maclean 1972). His own interest in this tradition, and also

Figure 2

in physics, is evident in his medical studies, in which his doctorate

of 1721 was awarded for a thesis on respiration (Huber 1958, 29–40).

Another early paper (1728b) dealt with the effect of motion upon the

internal structure of muscles, which again he treated in terms of a

physical theory about the actions of the supposed lateral fibres in the

muscle; he followed his father, whose own doctorate at the universi-

ty had partly been awarded for a thesis of 1694 on this topic (Kardel

1997). Later, in a lecture (1737) given at the university to present two of

his own doctoral students in medicine Daniel discussed the work-rate

of the heart and explicitly mentioned the conservation of vis viva.

In various papers Bernoulli also used this principle within the main

areas of mechanics. He adopted it in an analysis (1729b) of pendu-

la, where he built upon findings by Huygens. Similarly, in an essay

(1747) on the motion of a heavenly body and the three-body problem

he worked out from the first integral of Newton’s second law, which re-

lated the square of its velocity to, in effect, its level of potential under

attraction. In a sequel study (1750) on the generality of the principle he

included the case where the body was acted upon by more than one

centre of force. This was a most unusual way of working within celestial

mechanics; Newton had rarely invoked energy equations or relation-

ships, although he had also found results about external attraction

and equipotential surfaces.

As was indicated in §3, the issue of generality in energy mechanics

importantly involved in the cases of impact between extended bodies,

and Bernoulli thought seriously about the various types involved. Most

of the earlier work on the law of collision, especially that of Huygens,

had treated only spheres, and the (apparent) losses of momentum and

energy after lateral impacts; Bernoulli desimplified the theory in (1744)

by allowing for rotation as well as translation in impact between bodies

of general or of other shapes, such as impact between straight bars and

a bar hitting a sphere. In a fine late successor (1771) he analysed the

motion produced in an elastic bar at rest when struck at its mid-point by

assuming that the shape adopted was given by the least measure of vis
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viva ; this principle became known in this century as the ‘Rayleigh-Ritz

principle’ when developed (independently) in more general contexts

(Szabó 1977, 465–470).

5 Fluid mechanics with Bernoulli

This topic was one of Bernoulli’s main areas of interest, including the

role within it of energy mechanics; his major book dealt with it, and

construed one of his main achievements. This was the Hydrodynamica,

published in Strasbourg as (1738b) though apparently much worked

out earlier during his period at Saint Petersburg; a paper (1729a) of

that time and academy on the motion of water in channels contained

some of the main notions. On this book, and the preposterous priority

dispute which his father and colleague professor later launched against

him, see especially (Truesdell 1954, xxiii–xxxviii), and (Szabó 1977,

157–199).

The name of the book was itself Bernoulli’s innovation; it covered

both the statics and dynamics of fluids, the latter then often called ‘hy-

draulics’. He covered a wide range of phenomena, including oscillation

of fluids within vessels, motion within machines, and the issue of jets

from orifices and their impact upon surfaces. An important sect. 10

was devoted to properties of gases, especially air, analysed in a way

strikingly combining energy with Newtonian force and somewhat an-

ticipating later kinetic theories of gases (Pacey and Fisher 1967). As

normal with him, he also reported on his own experiments. Perhaps

for the special difficulties concerning viscosity, he did not consider

blood flow.

Among principles, the ‘conservation of vis viva’ naturally took prime

place, where the ‘potential ascent’ of a system of fluid particles against

gravity was balanced by the ‘actual descent’ of their centre of gravity

achieved after equilibrium has been achieved. While too few details

were provided to cover the generality of mechanical phenomena, the

emphasis on energy was clearly registered; in particular, Bernoulli pro-

duced an energy-oriented equation which asserted a relationship be-

tween the vis viva and the (in effect) wall pressure for the flow of fluid

within a vessel (sect. 1). Rather more general versions of this equation

are still named after him; his own use of it here was fairly limited, and

he did not have a general conception of hydrostatic pressure. Further,

from it he concluded that the loss of vis viva was measured in terms

of the difference between the squares of the initial and final velocities

in a situation, whereas Carnot and others were to realise later that the

square of the difference of velocities was required.

The notion of ascent and descent recall Leibniz’s concern with the

concentric levels of energy within a system of vortices which a heaven-

ly body traverses (§3). Bernoulli applied it also to a continuity princi-

ple designed specifically for (incompressible) fluids, which had been

known before him but received a newly prominent place here and be-

came known later in the century as ‘the hypothesis of parallel slices’.

It stated that a fluid body was presumed to achieve its ascents and

descents by moving in slices of common velocity without interaction of

other particles in the direction of the motion. (An analogy denied to

Bernoulli is of a wrapped loaf of sliced bread moving en bloc without

interpenetration of the slices.) The Leibnizian calculus played a signif-

icant role, for the slices were infinitesimally thin, and so expressible

in terms of differentials; conversely, the utility of the calculus gave the

hypothesis extra prestige.

While aware of the simplifications embodied in his principle,

Bernoulli deployed it with great dexterity in various cases of motion. It

became a strong favourite, especially among engineers; de Prony used

it as the basis of much of treatment of incompressible fluids while also

being aware of its limitations (see, for example, 1790, esp. pp. 330

(Hydrodynamica cited), 425–426). Later his former student Siméon

Dénis Poisson (1781–1840) analysed it at length in his textbook on

mechanics (1811, 444–460; 1833, 721–746).

Another well recognised achievement by Bernoulli in fluid mechan-

ics concerned the motion of tides, where he and Euler were two of four

victors of a Paris prize problem set in 1738 for 1740. Concentrating upon

surface behaviour, his main insight was again based upon the notion

of level in fluids (and also Newton’s inverse-square law): he deter-

mined the height of the neap tide under the influence of one external

large heavenly body B by balancing columns of elongated sea-water

created by B pulling along the axis of attraction. From this analysis he

corroborated Newton’s value for the height of the solar tide, and also

compared it with that of the lunar tide. In addition, he found the same

ratio 501:500 as Newton for the ratio of the poles of the Earth consid-

ered as a spheroid of revolution, although his poles were elongated

rather than flattened (Greenberg 1995, 400–412).

At various time Bernoulli studied questions in the technological

side of fluid mechanics, some of them inspired by Paris prize prob-

lems. They included the maintenance of reliable water-clocks of ships

at sea; the optimal shape of anchors; and the effects of wind upon

their navigation of ships, especially rolling and pitching. These efforts

gained little interest among naval engineers, a fate also to befall most

of Euler’s contributions. However, a late prize analysis (1769a) of the

effect of winds upon the manoeuvre of ships included a ‘new theory

of the economy of forces and its effects’ which pioneered some no-

tions in ergonomics, and was soon to influence a major figure in that

area, namely Charles Coulomb (1736–1806) on the action of windmills

(Coulomb 1785, art. 16).

6 Elasticity and acoustics with Bernoulli

Partly in connection with friction, Bernoulli also wrote on the design

and maintenance of compasses, which linked to another major inter-

est in mechanics. One of the factors was the friction of the mounting

(Bernoulli 1748, again for a Paris prize problem). Soon afterwards and

especially late in life he tackled in general this exceptionally difficult

area of corporeal mechanics, examining cases of both rolling and slid-

ing friction; some cases in (1769b) were inspired by technology such

as ploughing with minimal effort and pulling ropes and sledges along

the ground. Despite much ingenuity, he found only special results. In

his late years he seems to have contributed heavily to the researches

in elasticity theory of his nephew John III Bernoulli (1744–1807).

Much greater success and indeed some fame had come to Bernoulli

with his study of vibrating elastic strings (Truesdell 1960, pt. 3). Again

thinking in terms of physics more than of mechanics, he carried out

both analyses and experiments on the modes of vibration and oscilla-

tion in many physical situations, such as stretched horizontal strings,

suspended linked bars or masses, bars or needles pinned or clamped

at one or both ends in various ways, and bodies rocking on water (Can-

non and Dostrovsky 1981, esp. chs. 9, 12–13). He concluded that such

systems of bodies exhibited natural and/or forced modes of vibration.

The paper (1738a) opened up this theory, with the consequent analysis

including some properties of the (new) Bessel function (as it was called

later). The successor paper (1740) was the venue for the d’Alembert

principle mentioned in §4, and it was followed by an essay (1751) on

forced oscillations.

None of this work gained the general recognition that it deserved. By

contrast, in one of his most famous papers, (Bernoulli 1755) proposed

that the vertical displacement y of a uniform elastic string vibrating
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in the horizontal plane between two fixed pivots of equal height and

distant a apart be expressed in terms of the distance x from one pivot

by an infinite trigonometric series

(1)y = α sin
πx

a
+ β sin

2πx

a
+ γ sin

3πx

a
+ δ sin

4πx

a
+ &c.

The physical principle was that each sine term represented a basic

vibration of the string (as claimed by Newton’s follower Brook Taylor

(1685–1731) in 1713), and that the full behaviour was to be under-

stood as their superposition. While another important suggestion in

the science of acoustics, the formulation was mathematically rather

inadequate, lacking the cosine and time terms or means of calculat-

ing the constants α, β, γ, δ, . . . Further, at that time it was seen as

inferior to the functional solution to the underlying partial differential

‘wave’ equation which d’Alembert and Euler had debated in the previ-

ous decade:

(2)y = f (x +Kt) + g(x −Kt), K a physical constant

for the functions f and g were explicitly exhibited and determined by

the initial conditions of release of the string. The controversy over the

solutions became a major topic for the rest of the century, especially

from the mathematical point of view, because the wave equation was

the first partial differential equation to be solved in detail; for example,

both Lagrange and Laplace wrote on it early in their careers.

Thus Bernoulli’s proposal (1) became well known. However, (2) was

the favourite candidate until in the 1800s Joseph Fourier (1768–1830)

rehabilitated (1) in full form including time terms (Grattan-Guinness

1990a, ch. 9), by both determining the coefficients and understanding

the periodicity of the trigonometric terms relative to y (Bernoulli had

thought thaty be defined as zero outside the interval of specification).

His own main principal later contribution during that interim was a

study (1767) of the vibrations of a non-uniform string, where he found

some special solutions (Truesdell 1960, 307–309).

Somewhat isolated from this string of papers though still closely

guided by the physics of vibrations was Bernoulli’s long analysis (1764)

of the tones emitted from organ pipes (Truesdell 1955, lv–lix). This time

layers of air were held to move simply harmonically within the pipe, of

which the size, shape and openings determined the overtones and

thus the quality of sound. Some mathematics on the vibrating string

problem could have been brought into play, and in certain respects the

paper is rather passé.

7 Bernoulli and Euler

Of the three traditions which reigned or developed in Bernoulli’s life-

time, energy mechanics was his favourite choice, seemingly for its

kinship to physics and physiology. But some limitations of his math-

ematical insights here are well captured by (1), which only expressed

some of the features of the superimposed simple vibrations of which

he held the string to be capable. Elsewhere, while he often showed

great ingenuity, his theories tended to be developed ad hoc, tied to

the particular needs of the type of problems at hand. Moreover, they

related to an unusually large extent at that time to physics, which then

held a status much lower than that of mechanics (Kuhn 1976).

Bernoulli’s choice of problems suggest a lateral thinker at work, tak-

ing up questions and making connections eschewed or not noticed by

others. (For example, his interest in probability and especially statis-

tics was very unusual at that time.) His training in both mathematics

and medicine was itself a singularity, though profitable for the common

links found in physics. The study of friction, and of water-clocks at sea,

Leonhard Euler

show a researcher not afraid to tackle really hard problems — but then

inevitably not advancing far forward in solution. Again and sadly, his

penchant for careful experimentation was then not common in me-

chanics. Finally, he worked little or not at all in several trendy areas

of mathematics of his time. One was solutions to differential equa-

tions; although he used them in some contexts, he did not use partial

ones such as the wave equation for the vibrating string problem. An-

other popular branch was celestial mechanics, especially perturbation

theory after the 1740s, where he took a non-standard approach using

energy (§4) rather than the normal method of proceeding directly from

Newton’s second law.

A comparison with Euler is clearly useful, and best effected in areas

where they were both important. Bernoulli made significant contribu-

tions to elasticity theory and fluid mechanics, but he did not achieve

the general equations of equilibrium and motion which Euler was to

find in the 1740s and the 1750s. His treatment of tides (§5) was notable,

but it did not match the insight in Euler’s competition essay that the

horizontal component of the force disturbing the motion of the sea is

responsible for many of the subsequent actions (Aiton 1955). Bernoul-

li also did not match other of Euler’s innovations elsewhere, such as

using trigonometric series (not to be confused with (2)) to analyse per-

turbation theory in celestial mechanics (late 1740s), a fundamental

change which obliterated Bernoulli’s deployment of vis viva noted in

§4; applying Newton’s second law in any direction in a problem, and

finding the general equations for a body rotating about a fixed point

(both 1753); clarifying to a noteworthy extent the relationship between

real and complex variables with his equations connecting the trigono-

metric and complex exponential functions (1748); and reformulating

the Leibnizian calculus with the notion of the differential coefficient,
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the forerunner of the derivative (1755). Euler chose his problems more

conservatively than offbeat Bernoulli, but he enriched them to the ex-

tent of making radical innovations and revolutions in the theories in-

volved; the list just given is not exhaustive. Further, nobody matched

him in the sheer quantity of output. Bernoulli also did not produce

any textbooks in mathematics; his situation in Basel forced no such

requirement. In addition but not demonstrated here, in contrast es-

pecially to Euler, his writing style and manner of presentation can be

difficult to follow. For these reasons he has been rather eclipsed by

Euler, and also by his father John and uncle James.

8 A decline and rise of fame?

This is not a new view of Bernoulli’s overall contributions to mechan-

ics; indeed, appraisal of his preferred methods and topics conforms to

that conveyed in the editorial material in volumes of the edition, where

many more details are given. My aim has been to provide a more gen-

eral perspective, and to this end a note of some histories of mechanics

would be useful.

During his lifetime Bernoulli became very well known as a scientist.

The histories of mathematics produced soon after his death gave him

his due: in particular, the last two volumes of the giant account by

Jean-Etienne Montucla (1725–1799), as completed by Jerome Lalande

(1732–1807), covered mechanics pretty comprehensively (Bogolubov

and Djukobskaya 1976), and Bernoulli was quite well covered (Montu-

cla 1802 passim). However, Sylvestre-François Lacroix (1765–1843), an

author with formidable historical knowledge who helped Lalande with

the parts of Montucla covering the calculus, cited Bernoulli only for the

work on the vibrating string problem in his own huge treatise on the

calculus (Lacroix 1800, 546; 1819, 735). By contrast, a fair proportion of

Euler’s contributions already published was gaining a good reception

in the dominating French community of the time, even though several

of the theories (like Bernoulli’s) clashed with the dictats of Lagrange

(Grattan-Guinness 1983).

But most of Bernoulli’s contributions to mechanics seem to have

become overlooked in the later histories dealing with the subject.

To take two good examples, the history of engineering mechanics

made by Moritz Rühlmann (1811–1896) included only a few sections

of the Hydrodynamica and a mention of (1728) on the parallelogram

law (Rühlmann 1881-1885, 159–167, 482). Similarly, the latter paper

was the only Bernoulli item in the nice presentation by Emile Jouguet

(1871–1943) of ‘mechanics taught by its authors’ (Jouguet 1909, 58–

70, including part of the later treatment in (Poisson 1833)). In between

these two books there appeared various editions and translations of

Ernst Mach’s history, much better known though in my view much infe-

rior to them, where Bernoulli fared no better (Mach 1902).4 More recent

historical sources show similar levels of attention, up to (Dugas 1950);

at most the statics paper, bits of the Hydrodynamica, and the studies

of the vibrating string.

However, the efforts of Clifford Truesdell (1919–2000) from the

1950s gave Bernoulli much more exposure. With a typical mixture of in-

sight and exaggeration he characterised Bernoulli as “one of the most

mysterious figures in the history of science, mysterious for no other

reason than that nobody troubles to study through his works, while

historians continue to attribute to him fame or blame for things he did

not do or say” (1968, 278).

Indeed, the historical literature on any aspect of Bernoulli’s life

or work remains modest. But much of this mystery is being replaced

by understanding and recognition, through Truesdell’s own efforts and

consequent work; and also the edition in progress of Bernoulli’s works,

which itself builds upon the bibliography in the excellent encyclopae-

dia survey article (Straub 1970) on Bernoulli. For example, the index of

a general encyclopaedia for the history and philosophy of mathema-

tics which I edited a few years ago contained 22 sub-entries for him,

on all topics (Grattan-Guinness 1994, 1728); for comparison, there are

15 sub-entries for James Bernoulli, 18 for John, 27 for d’Alembert, and

68 for Euler.

While not wishing to overturn the normal appraisal of Bernoulli com-

pared to his elders and to Euler, I would claim that he has been rather

underrated since his death. His choice of unusual problems and/or me-

thods of solution may be one reason; the production of only one overall

book-length statement in any branch of mathematics will have reduced

impact; and the accidental co-existence of Euler must be significant.

But as his publications and manuscripts become more available and

read, a great lateral scientist of the 18th century will be revealed. k
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