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Spreading gossip
efficiently

We consider the situation in which n people each know a secret,

and by means of a series of bilateral conversations (regular tele-

phone conversations, say) want to exchange all secrets. In such a

conversation, the participants share all secrets that they know at

the time.

Claim. At least 2n− 4 conversations are needed before everyone

knows every secret.

Remark. For n ≥ 4, 2n− 4 conversations suffice. For four persons

A, B, C and D, say, take conversations AB, and CD, followed by

AC and BD. For every additional person P, schedule one con-

versation AP, before A, B, C and D interchange their knowledge,

and another conversation AP afterwards. For n = 1, 2, and 3, re-

spectively, 0, 1, and 3 conversations are necessary and sufficient.

Below, we give a proof of the claim based on induction on the

number n of gossipers.

Background

This problem has been solved before by many others, see [1–3,

5–6], each proof having its own characteristics. They are all dif-

ferent, but most of them use a lemma expressing a strong property

of a minimum size gossip network.

The concept of exchanging information over a network has been

widely studied and besides gossiping, where everyone has a piece

of information to be spread among all others, there is the notion

of broadcasting, in which one piece of information, known to a sin-

gle individual, has to be spread. A survey with 135 references is

found in [8].

Additional features worth mentioning here are bounds on the

number of rounds of gossips needed to spread all information.

Here a round is a set of simultaneous telephone calls. In [4] it is

proved that at least ⌈log2 n⌉ rounds are needed for n even, and at

least ⌈log2 n⌉+ 1 for n odd. Sharp results are described by [11].

Other related results are found in [7, 9–10].

Notation and definitions

Here we first introduce some notation and definitions used in the

proof.

Let Gn denote a minimum length sequence of conversations in

which n gossipers exchange their information. Let φ(n) denote

the length of Gn. Each conversation can be labeled ({a, b}, t), de-

noting a conversation between participants a and b at time t. Since

we may assume that all values t are distinct, we may as well refer
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to Gn as a sequence ({a j , b j}) j.

Such a sequence defines a partial order between the conver-

sations, where {a j , b j} ≺ {ak , bk}, if and only if j < k and

{a j , b j} ∩ {ak , bk} 6= ∅. We say that {a j , b j} precedes {ak , bk},
and {ak , bk} succeeds {a j , b j}. If {ak , bk} is the first successor of

{a j , b j} containing a j, it is called its a j-successor. The a j-successor

and the b j-successor of {a j , b j} are called its direct successors. Sim-

ilarly we define the direct predecessors of a conversation. A con-

versation has at most two direct successors, and at most two di-

rect predecessors. If a conversation {a, b} does not have an a-

successor this is a’s final conversation; if {a, b} does not have an

a-predecessor, it is a’s first conversation.

If there exists a sequence of direct successors from {a, b} to {c, d}:
p1 = {a, b}, p2 , . . . , pk = {c, d}, where p j+1 is a direct successor of

p j, for each j, information flows from {a, b} to {c, d}. We say that

{a, b} reaches {c, d}, and denote the existence of such a sequence

by {a, b} {c, d}.
Note that in a sequence of conversations as described above all

secrets are exchanged, if and only if, for each pair of a first con-

versation {a, b} and a final conversation {c, d}, {a, b} {c, d}.
We will often use the observation that if Gn is a sequence of con-

versations in which all secrets are exchanged, then so is the se-

quence obtained from Gn by reversal of time. Let
←−
G n denote this

reversal of Gn.

Proof

Basis of induction. The claim is evidently true for n ≤ 2, since the

number of necessary conversations φ(n) is at least 0 ≥ 2n− 4, for

n ≤ 2. For n > 2 we distinguish between a number of cases, de-

pending on the number of conversations a gossiper participates

in.

Case 1. There is only one conversation with participant a, for some

a. Let {a, X} denote this conversation. After this conversation

at least another n − 2 conversations are necessary to spread a’s

secret to {1, . . . , n} \ {a, X}, since with each additional conversa-

tion the set of participants knowing a’s secret grows by at most

one. Similarly, at least n− 2 conversations precede {a, X} in or-

der to collect all secrets from {1, . . . , n} \ {a, X} at person X. In

total at least 1 + 2(n− 2) = 2n− 3 conversations are needed.

Case 2. There are two or more conversations between participants a and

b. Delete from Gn all conversations between a and b (at least two),

and replace in the remaining conversations a by b. The result is

a sequence of conversations in which all secrets {1, . . . , n} \ {a}
are exchanged. By induction this remaining set consists of at least

φn−1 ≥ 2n − 6 conversations. Hence Gn must contain at least

2 + 2n− 6 = 2n− 4 conversations.

Case 3. There is a conversation {a, X} where X already knows all gos-

sips. Consider the last occasion of this kind. Then it must be

a’s final conversation. Let {a, b} be a’s first conversation. As-

suming that cases 1 and 2 do not apply, we find that b 6= X.

Delete conversations {a, b} and {a, X}, and replace in the remain-

ing conversations a by b. The result is again a sequence of con-

versations in which n − 1 secrets are exchanged. We find that

|Gn| ≥ 2 +φn−1 ≥ 2n− 4.

Note that if none of cases above apply, we are in the situation in

which each participant makes at least two conversations; two par-

ticipants carry at most one conversation with one another; and in

addition, if {a, b} is a’s final conversation, then this must be b’s

final conversation as well. Applying the observation on the re-

versed sequence
←−
G n we also see that, if {a, b} is a’s first conver-

sation, then this must be b’s first conversation as well.

Case 4. There are only two conversations with participant a, for some a.

Assume that none of the first three cases applies. Let the two con-

versations of a be {a, b} ≺ {a, c}. Let {b, d} denote the b-successor

of {a, b}, and let {c, e} denote the c-predecessor of {a, c}. As {a, b}
is also b’s first conversation, and {a, c} is c’s final conversation,

the secret of a can only reach {1, . . . , n} \ {a, b, c} via {b, d}, which

takes at least n− 3 conversations. Similarly, we need at least n− 3

conversations to collect the secrets of {1, . . . , n} \ {a, b, c} in con-

versation {c, e}. If these sets of conversations are disjoint we have

at least 2 + 2(n − 3) = 2n − 4 conversations and we are done.

If they are not disjoint, then {b, d}  {c, e}, in other words, the

secrets of a and b reach c via conversation {c, e}. But then case 3

applies.

Case 5. Each participant is involved in at least four conversations. Then

obviously, the number of conversations is half of the number of

conversation-participant combinations, which is at least half of

4n. Hence, in this case |Gn| ≥ 2n ≥ 2n− 4.

Case 6. Each participant is involved in at least three conversations, par-

ticipant a is involved in exactly three conversations. If the first five

cases do not apply, this last one must apply, for some a.

Let a participate in {a, b} ≺ {a, c} ≺ {a, d}. Let {b, b′} directly

succeed {a, b}; let {c, c′} directly precede {a, c}, and {c, c′′} di-

rectly succeed {a, c}; let {d, d′} directly precede {a, d}. See fig-

ure 1, where B and C′′ denote the sets of conversations reached

from {a, b}, {a, c}, and C′ and D the sets of conversations leading

to {a, c} and {a, d}, respectively, via the partners of a.
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Figure 1 Conversations reached by or reaching a

We first argue that these sets are disjoint (except for C′ ∩ C′′ =

{a, c}). For suppose they are not disjoint. If {b, b′}  {c, c′},
delete conversations {a, b} and {a, d}, and change {a, c} to {c, d}.
We then obtain a sequencing of conversations in which n− 1 se-

crets are exchanged, and conclude that |Gn| ≥ 2 +φn−1 ≥ 2n− 4.

If {c, c′′}  {d, d′}, then the previous argument can be repeated,

by considering the reversed sequence
←−
G n.
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If {b, b′}  {d, d′} and {b, b′} 6 {c, c′}, then we may as-

sume without loss of generality, that {a, c} is timed before {b, b′}.
Delete {a, b} and {a, d}, and replace {a, c} by {b, c}. Again, we

obtain a sequence of conversations in which n− 1 secrets are ex-

changed, and conclude that |Gn| ≥ 2 +φn−1 ≥ 2n− 4.

From now on we may assume that the sets are disjoint. Observe

that |B ∪ C′′| ≥ n − 2, since it takes at least n − 1 conversations

to spread the secret of a, and only conversation {a, d} is not con-

tained in B ∪ C′′.

By considering the reversed sequence
←−
G n, a similar argument

shows that |D ∪ C′| ≥ n − 2. So we are almost done, since we

found by now, that |B ∪ C′ ∪ C′′ ∪D| = |B ∪ C′′|+ |C′ ∪D| − 1 ≥
2n− 5.

We finally claim that |B ∪ C′′| ≥ n− 1 or |D ∪ C′| ≥ n. It follows

from the proof above, that |B ∪ C′′| = n− 2 only in the case that

in each conversation one person learns the secret of a. This hap-

pens in particular in the final conversations in B ∪ C′′. There are

(n− 2)/2 of these, since {a, d} is the only final conversation not

contained in B ∪ C′′.

Consider a final conversation {q, r} ∈ B∪C′′, and let q be the par-

ticipant that learns secret a. Then the q-predecessor {p, q} of {q, r}
must belong to D ∪C′. Since q makes at least three conversations,

{p, q} cannot be a first conversation. Note that the p-successor of

{p, q}must belong to C′ ∪ D.

By the reasoning above we find for each final conversation in

B ∪ C′′, a distinct non-first conversation in D ∪ C′. As a conse-

quence D ∪ C′ contains (n− 2)/2 first conversations and at least

(n − 2)/2 non-first conversations plus two conversations with

participant a, hence in total |D ∪ C′| ≥ n.

We now finally see that |Gn| = |B∪C′′|+ |D∪C′| − 1 ≥ 2n− 2−
1 = 2n− 3. This last case settles the proof of our claim. k
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