G. Helmberg

Institut für Technische Mathematik und Geometrie Universität Innsbruck, Technikerstrasse 13, A-6020 Innsbruck Gilbert.Helmberg@uibk.ac.at

How to recognize functions in $L_p(\mathbf{R}) + L_q(\mathbf{R})$

Consider two function spaces $L_p = L_p(\mathbf{R})$ and $L_q = L_q(\mathbf{R})$ (0 < $p \leq q \leq \infty$). The interest in the space $L_p + L_q = \{f = f_p + f_q :$ $f_p \in L_p$, $f_q \in L_q$ } originates in Fourier analysis [2 (p.18)]: for any function $f = f_1 + f_2 \in L_1 + L_2$ it is possible to define a Fourier transform $\hat{f} = \hat{f}_1 + \hat{f}_2 \in C_0 + L_2$ and \hat{f} is well-defined even if the representation of $f = f_1 + f_2$ is not unique.

This definition extends the Fourier transform to all functions $f \in$ L_s (1 $\leq s \leq$ 2), since it is easy to see that $L_s \subset L_p + L_q$ for p <s < q [1(13.19)]; for any $f \in L_s$ we have

$$\int_{\{|f|>1\}} |f|^{p} dx \leq \int_{\{|f|>1\}} |f|^{s} dx < \infty,$$

$$\int_{\{|f|\leq1\}} |f|^{q} dx \leq \int_{\{|f|\leq1\}} |f|^{s} dx < \infty \quad \text{if } q < \infty,$$

$$f = f \mathbf{1}_{\{|f|>1\}} + f \mathbf{1}_{\{|f|\leq1\}} \in L_{p} + L_{q}.$$
(1)

Not every function in $L_p + L_q$, however, needs to belong to some space L_s , as demonstrated by the functions $f \in L_1 + L_2$ defined by $f(x) = x^{\alpha}$ for $\alpha \in]-1, -\frac{1}{2}[.$

If one wants to apply a Fourier transformation $\hat{f} = \hat{f}_1 + \hat{f}_2$ to a given function f on \mathbf{R} , one has to make sure that f belongs to $L_1 + L_2$ and one has to exhibit the components f_1 and f_2 of some representation of f as in (1). Since in general $|f_p + f_q|$ may be small if $|f_p|$ and $|f_q|$ are both large and either of these may be small if $|f_p + f_q|$ is large it is not obvious that in general the functions f

$$_{>} = f1_{\{|f|>1\}}$$
 and $f_{<} = f1_{\{|f|\leq 1\}}$

serve to determine indices p and q and furnish a decomposition as in (1). Concerning the latter remark we have the following theorem.

Theorem. A complex-valued function f belongs to $L_p + L_q(0$ $q \leq \infty$) if and only if $f_{>} \in L_p$ and $f_{<} \in L_q$.

Proof. Since
$$f = f1_{\{|f|>1\}} + f1_{\{|f|\leq 1\}}$$
 the 'if'-part is clear.

Conversely, if $f = f_p + f_q$ ($f_p \in L_p$, $f_q \in L_q$ without loss of generality we assume 0), then we have

$$\begin{aligned} |f|\mathbf{1}_{\{|f|>1\}} &\leq |f|\mathbf{1}_{\{|f_p|>\frac{1}{2}\}} + |f|\mathbf{1}_{\{|f_q|>\frac{1}{2}\}} \\ &\leq |f_p|\mathbf{1}_{\{|f_p|>\frac{1}{2}\}} + |f_q|\mathbf{1}_{\{|f_p|>\frac{1}{2}\}} + |f_p|\mathbf{1}_{\{|f_q|>\frac{1}{2}\}} + |f_q|\mathbf{1}_{\{|f_q|>\frac{1}{2}\}}. \end{aligned}$$

$$(2)$$

Since the sets $\{|f_p| > \frac{1}{2}\}$ and $\{|f_q| > \frac{1}{2}\}$ have finite measure, all four functions on the right side of (2) and therefore also $f1_{\{|f|>1\}}$ belong to L_p . Furthermore,

$$\begin{aligned} |f|\mathbf{1}_{\{|f|\leq 1\}} &\leq (|f_p|+|f_q|)\mathbf{1}_{\{|f_p|\leq 1,|f_q|\leq 1\}} + \mathbf{1}_{\{|f_p|>1\}} + \mathbf{1}_{\{|f_q|>1\}} \\ &\leq |f_p|\mathbf{1}_{\{|f_p|\leq 1\}} + |f_q|\mathbf{1}_{\{|f_q|\leq 1\}} + \mathbf{1}_{\{|f_p|>1\}} + \mathbf{1}_{\{|f_q|>1\}}. \end{aligned}$$

$$(3)$$

Again all four functions on the right side of (3) belong to L_q , therefore also $f1_{\{|f| < 1\}}$. \square

Since for a given function *f* on **R** the integrals $\int_{\{|f|>1\}} |f|^s dx$ and $\int_{\{|f| \le 1\}} |f|^s dx$ are monotone increasing respectively decreasing functions of s we obtain $L_p + L_q \subset L_{p'} + L_{q'}$ for $0 < p' \leq p \leq$ $q \leq q' \leq \infty$. For a given function *f* on **R** having the property that $f_{>} \in L_p$ and $f_{<} \in L_q$ (0) define

$$\overline{p} = \sup\{p : f_{>} \in L_{p}\}, \quad \overline{q} = \inf\{q > 0 : f_{<} \in L_{q}\}.$$

Then, for finite \overline{p} respectively \overline{q} , the integrals $\int_{\{|f|>1\}} |f|^{\overline{p}} dx$ and $\int_{\{|f| \le 1\}} |f|^{\overline{q}} dx$ may be finite or not [1 (13.28)].

As a consequence of the theorem we obtain the following corollary:

Corollary. If $\overline{p} > \overline{q}$ then $f \in L_s$ for all $s \in]\overline{q}, \overline{p}[$. If $\overline{p} \leq \overline{q}$ then $f \in L_p + L_q$ for all $p < \overline{p}$ and all $q > \overline{q}$. If $\overline{p} < \overline{q}$ then $f \notin L_s$ for all s > 0.

The mentioned statements can be carried over to functions on a σ -finite, infinite non-atomic measure space. *.....*

References

- 1 Hewitt, Edwin/Stromberg, Karl: Real and Abstract Analysis. Springer Verlag Berlin Heidelberg New York, 1965.
- Stein, Elias M./Weiss, Guido: Introduc-2 tion to Fourier analysis on Euclidean spaces. Princeton University Press, 1971.