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The Smarandache

harmonic series

For every positive integer n let S(n) be the minimal positive in-

teger m such that n | m! This function is known as the Smaran-

dache function. We begin with a couple of considerations con-

cerning the function S. First of all, let us notice that if n is a

squarefree number, say n = q1q2 ...qt, where 2 ≤ q1 < ... < qt

are prime numbers, then S(n) = qt. Secondly, let us notice that

limn→∞ S(n) = ∞. Indeed, this equality follows right-away by

noticing that if k is a positive integer and n is a positive integer

such that S(n) ≤ k, then n ≤ k!

In this note, we analyze convergence questions for some series

of the form
(1)

∞

∑
n =1

1

S(n)δ
,

or close variations of it.

Divergent Series

In this section, we point out that

Theorem 1. For any δ < 1, the series

(2)
∞

∑
n =1

1

S(n)(log n)δ

diverges.

Theorem 1 has the obvious

Corollary 1. Let δ > 0. Then, series (1) diverges. Moreover, the series

(3)
∞

∑
n =1

1

S(n)(log log n)δ

diverges as well.

Proof of theorem 1. For any t ≥ 1 let p1 < p2 < ... < pt be the first

t primes. By the remarks made in the Introduction, we know that

any number of the form n = ptm where m is squarefree whose

prime factors are among the numbers p1 , ..., pt−1 will obviously

satisfy S(n) = pt. Since there are exactly 2t−1 such numbers (that

is, the powerset of {p1 , p2 , ..., pt−1}) and since each one of them

is smaller than pt
t, it follows that series (2) is bounded from below

by the subseries

(4)∑
t ≥1

2t−1

p
(t log(pt))δ

t

= ∑
t≥1

2t−1−(t log(pt))δ log2 pt .

Since by the prime number theorem

(5)lim
t →∞

pt

t log t
= 1,

and δ < 1, it follows immediately that

t − 1 − (t log(pt))
δ log2 pt > 0

for t large enough. In particular, the general term of (4) is un-

bounded, which certainly implies that (4) is divergent. �

One can use Dirichlet’s theorem on the of size of the t-th prime

in an arithmetical progression (see page 247 in [1]) to show that

the series (1)–(3) remain divergent if instead of summing over all

the positive integers one sums only over all the terms of a fixed

arithmetical progression (ak + b)k≥1.

Convergent Series

In this section, we mention some convergent series involving the

function S.

Theorem 2. The series

(6)
∞

∑
n =1

1

S(n)S(n)δ

converges for all δ ≥ 1 and diverges for all δ < 1.



F. Luca The Smarandache Harmonic Series NAW 5/1 nr. 2 juni 2000 151

Theorem 3. For any ǫ > 0 the series

∞

∑
n =1

1

S(n)ǫ log n

converges.

It is unclear to us how Theorem 2 relates to Theorem 3.

Proof of theorem 2. We treat the case δ < 1 first. Here, the argu-

ments employed in the proof of Theorem 1 show that series (6) is

bounded below by

(7)∑
t ≥1

2t−1

p
pδ

t
t

= ∑
t≥1

2t−1−pδ
t log2 pt .

Since δ < 1 it follows, by the limit (5), that t − 1 − pδ
t log2 pt > 0

for t large enough, which rules out the convergence of (7).

We now assume that δ = 1. We show something stronger, namely

that
(8)∑

n ≥1

1

S(n)ǫS(n)

converges for all ǫ > 0. It certainly suffices to assume that ǫ ≤ 1.

Series (8) can be rewritten as

∑
k ≥1

u(k)

kǫk

where u(k) = #{n | S(n) = k}. Since every n such that S(n) = k

is a divisor of k!, it follows that

u(k) ≤ d(k!).

By formula (1) on page 111 of [1], we know that d(l) < Clǫ for any

positive integer l, where C is some constant (depending on ǫ).

Hence, (9)u(k) ≤ d(k!) < C(k!)ǫ < C1(k/2)ǫk

for some constant C1 (the last inequality in (9) follows from Stir-

ling’s formula). From (9), it follows that series (8) is bounded

above by

C1 ∑
k ≥1

1

kǫk
·
( k

2

)ǫk
= C1 ∑

k≥1

1

2ǫk
=

C1

2ǫ − 1
.

�

Proof of theorem 3. We make the argument first in the case ǫ = 1

and then we explain how the argument can be adapted to the gen-

eral case.

We begin by excluding the even numbers. Every even number

is either a power of 2, or it is divisible by an odd number > 1.

Let us first account for the contributions of the powers of 2. When

n = 2β, it follows easily that S(n) ≥ β. Hence, these contributions

are bounded above by

∑
β ≥1

1

ββ log 2

which is obviously convergent. Assume now that n = 2βm for

some m > 1. Since S(n) ≥ S(m), it follows that the contributions

of all the numbers of the form 2βm for some β ≥ 1 are bounded

above by

∑
β≥1

1

S(m)(log m+β log 2)
=

1

S(m)log m ∑
β≥1

1

S(m)β log 2

=
1

S(m)log m

1

S(m)log 2 − 1
≤

C

S(m)log m
,

where C = 1
3log 2−1

. Hence, it suffices to look at the series

(10)∑
m odd

1

S(m)log m
.

It is clear that for any integer m, S(m) is divisible with at least

one of the primes p dividing m. Fix such a prime p and look at

all the possible integers m whose S is a multiple of p. Clearly,

S(m) ≥ p and m = pu for some integer u. Let us count the u’s

now. For every s ≥ 0, there are at most es+1 − es + 1 integers u in

the interval [es , es+1) and each one of them will satisfy log u ≥ s.

Hence, for p fixed, the contributions of all those m’s is at most

∑
s ≥0

es+1 − es + 1

plog p+s
<

1

plog p ∑
s≥0

es+1

ps
=

e

plog p
·

1

1 − e/p
<

C

plog p
,

(11)

where C = e
1−e/3 . Hence, series (10) is bounded above by

C ∑
p prime

1

plog p

which is obviously convergent.

Suppose now that ǫ < 1 is arbitrary. Then one applies the pro-

cedure outlined at the beginning of the argument and eliminates,

one by one, all primes p such that pǫ
< e. Once this has been

achieved, then one can apply the argument explained above in

the case m odd. Indeed, the reason why this argument worked is

because series (11) is geometric with ratio e/p smaller than 1 (no-

tice that (11) wouldn’t have worked out for p = 2 because 2 < e).

At the end, one obtains just the series

∑
p prime

1

pǫ log p

which is obviously convergent. �
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