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This is the written version of a lecture delivered at the Universiteit

Leiden on April 7, 2000, at the celebration of the hundredth birthday

of H.D. Kloosterman.

T.A. Springer during his lecture

At this celebration it is natural that those of us who have known

Kloosterman personally — necessarily persons of a rather ad-

vanced age — consult their memories and try to evoke him in

their minds. I am one of those and I do have some very clear rec-

ollections of my contacts with Kloosterman, but also quite a few

blurred ones.

I am grateful to the organizers for the invitation to speak here

about Kloosterman’s work on representations of finite modular

groups. I shall try to give a sketch of this work, in the context

of the time of publication, but also in a present-day context. In

the course of the talk I shall have occasion to insert some recol-

lections and personal remarks. Although I never worked on the

subject-matter of the work I am going to talk about, this work

did influence my own mathematical interests. Today’s celebra-

tion gives me an opportunity to acknowledge my indebtedness to

Kloosterman.

The work to be discussed is contained in two long papers pub-

lished in 1946 (see [5] and the résumé in [6]). Before going into

the specifics of the papers I want to say a few words about Kloos-

terman’s personal history.

Compared to other Dutch mathematicians of his generation,

Kloosterman travelled widely. In the years between 1922 and

1930 he was abroad most of the time, in Kopenhagen, Oxford,

Göttingen, Hamburg and Münster. He studied with prominent

mathematicians of his time (H. Bohr, G.H. Hardy, E. Landau, E.

Hecke) and he gathered a wide mathematical culture.

Kloosterman’s thesis (1924) belongs in the sphere of Hardy. In

the thesis Kloosterman applies the “Hardy-Littlewood method”

— then a very new tool — to problems of the theory of quadratic

forms. We shall hear more about this in other talks1, and also
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about the “Kloosterman sums”, which he used in a refinement of

the Hardy-Littlewood method. Much of Kloosterman’s later work

is about modular forms. Special modular forms already appear in

the thesis, namely classical theta functions.

Later, during his stay in Hamburg, Kloosterman came into contact

with Hecke, whose work, I think, did impress Kloosterman. In

Hamburg he got interested in general modular forms. This inter-

est must have been stimulated by Hecke, as is shown by the paper

[4] — about an application of Kloosterman’s version of the Hardy-

Littlewood method in the theory of modular forms — which had

its origin in a suggestion of Hecke. Let me remind you in passing

that Hecke’s work is held in very high regard nowadays. For one

thing, his work of the thirties on the connection between Dirich-

let series satisfying a functional equation and modular forms has

led to vast later developments, notably in the work of Langlands.

(Kloosterman knew this work of Hecke well.)

In the papers which are the subject of my talk modular forms

also appear. In these papers Kloosterman is, eventually, aim-

ing at determining the irreducible representations of finite groups

ΓN = SL2(Z/NZ) of 2 × 2-matrices with entries in the finite ring

Z/NZ and determinant 1, N being any integer > 1. The case that

N is a prime power is the crucial one.

When N is a prime p, i.e. when the ring is a finite field with

p elements, the irreducible characters had been determined by

Schur in 1907 (extending slightly anterior work of Frobenius), and

in the 1930’s the case N = p2 had also been studied.

Kloosterman was the first to attack the general case. The

method he uses is analytic. The basic idea goes back to Hecke

and is as follows. Modular forms satisfying suitable natural con-

ditions form a finite dimensional vector space, on which some

group ΓN acts, providing a representation of that group. Hecke

had shown that irreducible representations of Γp occur in this

manner in certain spaces of modular forms.

I should perhaps point out that the problem of constructing ex-

plicitly the irreducible representations or characters of a concrete

finite group is a non-trivial one (as anybody knows who has had

a look at the representation theory of symmetric groups).

The modular forms Kloosterman is dealing with in his papers are

theta functions, of a very general kind. Let V be a real vector space

of even dimension 2k, and let Q be a positive definite quadratic

form on V. For x, y ∈ V we have

Q(x + y) = Q(x) + Q(y) + (x, y),

where ( , ) is a non-degenerate symmetric bilinear form on V.

Assume that L is a lattice in V (a free abelian group generated by

some basis of V) such that Q takes integral values on L. Then the

matrix S of our bilinear form, relative to any basis of L, is positive

definite, with integral entries and even diagonal elements. Let

L∨ = {x ∈ V | (x, L) ⊂ Z}.

This is a lattice containing L and the index of L in L∨ equals

det(S). Let H = {z ∈ C | Im(z) > 0} be the complex upper

half plane. For z ∈ H and u ∈ L∨ define

θQ(z, u) = ∑
x∈L

e2π iQ(u+x)z .

Let Γ = SL2(Z). If f is a holomorphic function on H and γ =
(

a b

c d

)

∈ Γ put

(γ−1 .k f )(z) = (cz + d)−k f ((az + b)(cz + d)−1).

This defines a representation of Γ in the space of holomorphic

functions on H, for any natural number k. If now Q and k are as

above, the functions θQ(z, u) span a finite dimensional subspace

Σ of the space of holomorphic functions which is stable under the

Γ -action. This is a consequence of the “transformation formulas

of theta functions”. In the first paper [5] these formulas are estab-

lished, in a more general situation. I have followed a simplified

version, given in [14], which seems to go back to Eichler. (Kloos-

terman also deals with the case that V has odd dimension, and his

theta functions involve an extra parameter in V. He also admits

positive definite symmetric matrices S with arbitrary diagonal en-

tries.)

Let N = N(Q) be the smallest positive integer such that NS−1

is an integral matrix with even diagonal entries. Then one shows

that if γ ≡ 1 (mod N) we have γ.k f = f for all f ∈ Σ. As a con-

sequence we obtain a representation of the group ΓN in Σ. There

is a great deal of freedom in the construction, as Q is arbitrary, so

far.

Assume that p is an odd prime. In the second paper [5] Kloos-

terman considers the case that Q is a two-dimensional quadratic

form, so k = 1. Following [14], we assume that the matrix S has

the form
S = pλq

(

2 1

1 1
2 (1 + r)

)

,

where q and r are odd integers, with r ≡ 3 (mod 4) and such

that p, q, r are mutually coprime. We then have N(Q) = pλqr. So

we get a representation of Γpλqr in our vector space Σ. One shows

that for any r ∈ L∨ the θ(z, r + p−λ l) (l ∈ L) generate a subspace

Σr of Σ which is stable under Γqr. Hence we get a representation

of Γpλ ≃ Γqr/Γpλqr in Σr. This is, essentially, the representation

studied by Kloosterman (r being chosen suitably). These repre-

sentations are not irreducible. To decompose them, a device used

by Kloosterman is the introduction of an abelian automorphism

group A of Σr centralizing the representation. Decomposing the

space into isotypical subspaces for the characters of A, one obtains

a decomposition into Γpλ -stable subspaces, affording irreducible

representations (in favorable cases). The group A is constructed

using automorphisms modulo pλ of the quadratic form Q. How-

ever, Kloosterman did not obtain all irreducible representations

via this construction. That a slightly more general construction

does produce all irreducibles was established later by Nobs and

Wolfart in [14]. They also use the quadratic form associated with

1 The talks referred to were by D.R. Heath-Brown on Arithmetic applications of Kloosterman sums
and by P. Sarnak on Kloosterman, quadratic forms and modular forms.
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a matrix S of the form

S = pλ−1q

(

2 1

1 1
2 (1 + pr)

)

,

q and r being as before, with pr ≡ 3 (mod 4).

Kloosterman gives formulas for the characters of the irre-

ducible representations which he does construct. It is a nice ob-

servation that these character values are sometimes Kloosterman

sums.

Before continuing with the story of the representation theory of

the groups Γpλ I want to digress a bit.

From 1947 till 1951 I was Kloosterman’s assistant. This was a

job involving some teaching obligations (e.g. an exercise class for

Kloosterman’s course in elementary analysis), but I had a great

deal of freedom. Kloosterman did not impose himself on his assis-

tant. This does not mean that he left me to my own devices. I had

many mathematical conversations with him, from which I learned

a great deal. For example, he made me aware of the importance

of algebraic geometry. Probably, the occasion was a conversation

about Weil’s proof of the Riemann hypothesis for function fields

and the application to the proof of the good estimates for Kloos-

terman sums. (Understanding these difficult things was another

matter. . .)

Kloosterman gave me reprints of his Annals papers, and I tried

to study them. The first paper starts off with the transforma-

tion theory of theta functions, handled by Kloosterman with great

technical skill. Being considerably less skillful, I found the papers

quite hard. But I learned from them that the problem of finding

explicitly the irreducible representations of a concrete finite group

could be a very interesting one. I studied the literature about these

matters, and found out that there was not too much. This led

me to the question whether one could find the representations, or

more modestly, the characters of other concrete groups, looking

less formidable than the groups Γpλ . Obvious candidates were lin-

ear groups over finite fields. After some experimentation I found

the characters of GL3(k) and GL4(k), where k is a finite field. But

it turned out that the same thing had been done in Toronto by a

Ph.D. student of Richard Brauer, named Robert Steinberg (who

later became a good mathematical friend).

A preliminary to the description of characters of a finite group

is a study of its conjugacy classes and centralizers. Thus I was

led to study conjugacy classes in linear groups, and this led to

a thesis on the conjugacy classes in symplectic groups (in 1951)

and to a subsequent interest in conjugacy classes in linear alge-

braic groups. This turned out to be a very fruitful subject indeed,

with many ramifications (see [2]). As to the representation theo-

ry of finite linear groups, this has evolved into the representation

theory of finite groups of Lie type, which is nowadays a vast sub-

ject (dominated by the work of George Lusztig, see [1]). What I

wished to make clear here is that Kloosterman’s Annals papers

had a definite influence on my later interests.

In his talk [6] at the Cambridge Congress of 1950 Kloosterman

states that all irreducible representations of Γpλ (p odd) can be ob-

tained via his constructions, using more general two-dimensional

quadratic forms than those of his paper. He did not publish proofs

of this statement, though. (As was mentioned above this was later

established in [14].) His Ph.D. student J. van der Mark took up this

general case in 1955, but did not completely solve the problem of

determining all irreducible representations. Another of Klooster-

man’s Ph.D. students, A. Menalda, constructed representations of

finite groups of the form SL2(o/pλ), where o is the ring of inte-

gers of a totally real number field, and p is an odd prime ideal in

o, using theta functions over such number fields. (Nowadays one

would view such finite groups as groups of the same form, but

with o the ring of integers of a local field of characteristic zero,

and p its maximal ideal.)

Kloosterman’s work was completed in the 1970s. This later work

was along several lines. First, there was the work of [14], which

was already mentioned. It gives a simplified version of Klooster-

man’s theta function approach.

The second line started in A. Weil’s paper [16]. In that pa-

per he constructs by analytic means a representation — the Weil

representation — of a double cover of a group SL2(A), where A

is either a locally compact field or an adèle ring. Weil suggests

[16](footnote, p. 2) the possibility of viewing the problems stud-

ied by Kloosterman in the context of his work, for the case that A

is finite. (Weil’s paper was published in 1964, a few years before

Kloosterman’s death in 1968. Kloosterman was aware of Weil’s

work. In a second paper, Weil applies his results to the proof of

a general version of a formula of Siegel. I think that Kloosterman

knew about this, too.)

Weil’s suggestion was taken up by several authors. Already in

1966 by S. Tanaka [15], who constructed Weil representations for

the groups Γpλ with p odd. Subsequently. Nobs and Wolfart in [12]

did the same for all p (the case p = 2 is really more complicated),

and described the irreducible representations of all Γpλ .

This work provides a complete solution of the problem of describ-

ing the representation theory of the groups Γpλ . Another — purely

algebraic — solution had already been given some years before by

P. Kutzko in his thesis (see [7]). Subsequently, he also dealt with

the groups SL2(o/pλ) where o is the ring of integers of a local field

(of any characteristic), and p its maximal ideal. But his work was

not published in detail.

Although the problem attacked by Kloosterman in his Annals pa-

pers was solved in the seventies, it had not lost its interest. At

around the same time, probably under the impetus of the work

of Jacquet and Langlands [3], the problem came to be viewed in

another perspective, namely from the point of view of the repre-

sentation theory of p-adic groups. This is a topic of considerable

present-day interest. I want to give a rough sketch of that per-

spective.

Denote Qp the field of p-adic numbers and by Zp the ring of p-

adic integers. More generally, let k be a finite extension of Qp. De-

note by o its ring of integers and by p its maximal ideal. The group

K = SL2(o) is a compact topological group, and Γpλ = SL2(o/pλ)

can be viewed as the quotient of K by an open subgroup. In fact

K is isomorphic to the projective limit of the finite groups Γpλ ,

relative to the obvious homomorhisms Γpµ → Γpλ (µ ≥ λ). It

is easy to see that every finite dimensional continous representa-

tion of K factors through one of the Γpλ . Consequently, the repre-

sentation theory of Γpλ is contained in the representation theory

of K. This obvious observation is in itself of no great interest. But

things become more interesting if one also introduces the group
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G = SL2(k) and its representation theory. This is a noncompact

topological group, and K is a maximal compact subgroup of G.

The representations of G which one considers — the admissible

representations — are not finite dimensional any more. They are

defined to be the representations of G in a complex vector space

V such that:

(a) each v ∈ V is fixed by a compact open subgroup U of G,

(b) for each such U the subspace of V fixed by all elements of U

has finite dimension.

These conditions are local finiteness conditions (the notion of ad-

missible representation was introduced by Jacquet and Langlands

[3]). For an admissible representation one can introduce matrix

coefficients. An admissible representation is said to be supercus-

pidal if it is irreducible — in the usual algebraic sense — and if

its matrix elements have compact support in G. (The definitions

make sense for a much larger category of groups, for example for

the groups G = GLn(k). In general the definition of supercuspi-

dality is slightly different: one has to require compactness modulo

the center of the support of matrix coefficients.)

Given a finite dimensional representation of K one can define

an induced representation of G which is admissible, in the same

way as in the case of finite groups.

In the seventies several people came to the insight (it is a bit

hard to disentangle priorities) that a supercuspidal representa-

tion of G is induced by an irreducible representation of K, which

is unique (up to isomorphism), see e.g. [8]. Not all irreducible

representations of K arise in this fashion, but it is known how to

describe the remaining ones (although the description does not

seem to be in the literature).

It seems that the approach to the representation theory of fi-

nite modular groups via the infinite dimensional representation

theory of the p-adic modular group is at present the best one.

There is a further line of development in the story of the represen-

tation theory of Γpλ . The algebraic group SL2 is a semi-simple lin-

ear algebraic group of minimal possible dimension. What about

other types of semi-simple (or reductive) groups? The first exam-

ples which present themselves are the groups GLn. Here there

is recent work by several people, for example by Bushnell and

Kutzko (see [9]). They proved that a supercuspidal representation

of GLn(k) is induced by a continuous irreducible representation of

an open subgroup which is compact modulo the center, belong-

ing to an explicit family of such subgroups including GLn(o). It

is conjectured that results of this kind will hold in general, i.e. for

all reductive groups.

Thus, some irreducible representations of GLn(o) (but not all

of them) are connected with supercuspidal representations of

GLn(k).

These recent developments contain information about the fol-

lowing problem, which generalizes Kloosterman’s original prob-

lem: describe the representation theory of GLn(o/pλ). A full an-

swer does not seem to be known, even for the first interesting case

n = 3 (for n = 2 one is very close to the original problem). More

generally, one has the analogous problem for the finite groups

G(o/pλ), where G is a smooth, reductive, affine group scheme

over Z. In this generality, very little seems to be known if λ > 1.

(If λ = 1, the finite group in question is a finite group of Lie type.)

The classification of supercuspidal representations of GLn(k)

has much to do with the “local Langlands conjecture" (recently

proved by Harris-Taylor and Henniart), i.e. with non-abelian lo-

cal class field theory (see [13]).

I stop with these recent developments, with which I have no

technical familiarity. But I wanted to mention them briefly, in or-

der to show how the problem of Kloosterman’s Annals papers is

related to questions of actual interest. k
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