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A formula for 7r(x)
applied to a result
of Koninck-Ivic

We are going to give an approximate formula for 7r(x) which is

better than the well known 7r(x) ~ @, or than the more precise

X

formula from [2]: 7r(x) ~ bgﬁ,meaning that 7(x) = Togx—a(®)

7

where JClim a(x) = 1. We will prove
— 00

Theorem 1.
(x) = i
T logx—1— - _ kb k(te()’
& logx  log?x 77 log" x

where k1, ko, ..., ky are given by the recurrence relation

kn+ 1k, 1 +2%y 2+...+(n=1)lkg=n-n!, n=1,23,...

and lim oy (x) = 0.

X—00
Proof. The following asymptotic formula
m(x) = Li(x) + O(xexp(—alog x)%),

where a and « are positive constants and o < % is well known [3].
Integrating by parts and taking into account that
x

n+2 x)’

xexp(—alogx)* = o(1
0g

where n > 1, it follows that

7(x) = x ! + ! + —I—ni! ol —= -
logx  log?x ~ log"tlx log"*2 x

)

We define the constants ky, ky, . . ., k;, by the recurrence

ko + Uk 1 + 2Ky g + oo+ (m = Vlky = (m+1)! —m!,

form=1,2,...,n. Fory > 0 we consider

nol s
fly) = (;F)(y—l —i; ?),

and we have

21—k  31—20—1lk —k
fly)=1+ 2 Ly y31 24

n—m-—1)!—kn—-2)—...—k; 1 1
+ yn - +O(yn+1)

for y — oo. It follows that f(y) =1+ O(ﬁ), ie.
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We denote y = log x, and using the relations of type (1) it follows

that
x

m(x) = - + O( )
_1_ ki log" "2 (x) )
logx —1 igl (Tog )
Consider
m(x) = i
- k k Ky (1er, (%))
logx -1~ loglx - 10g22x B log” x
Combining this formula with (2) yields kya, (x) = O( lolg ~), from
which it follows that xlim an(x) = 0. O
— 00

Remark 2. It can be shown immediately that k; =1, ky =3,
ks =13, kg = 71.
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We give now a formula for k;,; (although not suitable for a direct where xlim k(x) = 3, and it follows that
— 00
computation).
1 _logn 1 1 k)
Theorem 3. The coefficient ky, is given by the relation: n(n)  n n nlogn nlog’n ’
m - m! 1 2! (m—1)! for n > 2. Therefore we get that
(m=1)-(m-1)! 0! 1! (m—2)! . . o .
X X X X X
Ky, — det L . 5 1 zl 5 1 -y k(nz.
2 2| 0 0 1| n =2 7T(7’Z) n=2 n=2 n n=2 nlOg}’l n=2 nlog n
1-1! 0 0 0!

Proof. The recurrence relations giving the coefficients k;, are:

km + k110 + ...
kp—1+...

+ky(m—
—|—k1(m—

1! =m-m!
20 =(m—1)-(m—1)!

ko + k1! =221
kK =1-1!

The determinant of this linear system is 1 and the result follows
by Cramer’s rule. O

As an application of the above results we are going to improve the
following approximation, due to J.-M. de Koninck and A. Ivi¢, [1]:

g 1
502
nzz ) = - log”x + O(log x).

Using Theorem 1 we are going to prove

Theorem 4.

[x]

1
2,7

= %logzx —logx —loglogx + O(1).

Proof. It is enough to take

X

m(x) =

k(x) 7
lOgX7 1- @ o logzx
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Forx >e, f(x) = is decreasing and thus

k+1
log(k+1) < /Jr logxdx< log k
k+1  — x - k7

for k > 3. It follows immediately that

M logn P logt log x
z og :/ Ogdt—i—O(Og ),

—_ n
n=3 n=>3

and so

[*]
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Similar arguments lead us to the relations

logn

—flog x4+ 0(1).

and

> nlog =loglogx + O(1).
n=2

is con-

(o]
As there exists M > 0 with | k(x) [< M, and § —2;
n=p nlog'n

k(n)

nlog n

plete. O

vergent, it follows that Z

= 0O(1), and the proof is com-
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