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Artin reciprocity and

Emil Artin was born on March 3, 1898 in Vienna, as the son of an

art dealer and an opera singer, and he died on December 20, 1962

in Hamburg. He was one of the founding fathers of modern al-

gebra. Van der Waerden acknowledged his debt to Artin and to

Emmy Noether (1882–1935) on the title page of his Moderne Alge-
bra (1930–31), which indeed was originally conceived to be jointly

written with Artin. The single volume that contains Artin’s col-

lected papers, published in 1965 [1], is one of the other classics of

twentieth century mathematics.

Artin’s two greatest accomplishments are to be found in alge-

braic number theory. Here he introduced the Artin L-functions
(1923) [2], which are still the subject of a major open problem, and

he formulated (1923) [2] and proved (1927) [3] Artin’s reciprocity
law, to which the present paper is devoted.

Artin’s reciprocity law is one of the cornerstones of class field
theory. This branch of algebraic number theory was during the

pre-war years just as forbidding to the mathematical public as

modern algebraic geometry was to be in later years. It is still not

the case that the essential simplicity of class field theory is known

to “any arithmetician from the street” [16]. There is indeed no

royal road to class field theory, but, as we shall show, a complete

and rigorous statement of Artin’s reciprocity law is not beyond

the scope of a first introduction to the subject. To illustrate its use-

fulness in elementary number theory, we shall apply it to prove a

recently observed property of Mersenne primes.

The Frobenius map

The identity
(a + b)2 = a2 + 2ab + b2

can be appreciated by anybody who can add and multiply. Thus,

the modern mathematician may be inclined to view it as belong-

ing to the discipline that studies addition and multiplication—

that is, to ring theory. In this paper, we suppose all rings to be

commutative and to have a unit element 1. With this convention,

the identity above is a simple consequence of the ring axioms, if

the factor 2 in 2ab is interpreted as 1 + 1. It takes an especially

simple form if the term 2ab drops out:

(a + b)2 = a2 + b2 if 2 = 0.

Likewise, the general ring-theoretic identity

(a + b)3 = a3 + 3a2b + 3ab2 + b3

(where 3 = 1 + 1 + 1) assumes the simple form

(a + b)3 = a3 + b3 if 3 = 0.

One may now wonder: if n is any positive integer, does one have

(a + b)n = an + bn if n = 0?

This fails already for the very next value of n: in the ring Z/4Z of

integers modulo 4, in which 4 equals 0, one has (1 + 1)4 = 16 = 0

but 14 + 14 = 2 6= 0. One can show that it actually fails for any
n > 1 that is composite. However, if n is prime then the statement

is correct. To prove it, one observes that for any prime number n
and any positive integer i < n the number i!(n − i)!(n

i ) = n! is

divisible by n, while i!(n − i)! is not, so that (n
i ) must be divisible

by n; hence in a ring with n = 0 the only terms in the expansion

(a + b)n = ∑n
i=0 (n

i )aibn−i that remain are those with i = 0 or

i = n.

The result just proved admits an attractive algebraic reformu-

lation. Write p instead of n, in order to emphasize that we restrict

to prime numbers. Let R be a ring in which one has p = 0, and de-

fine the pth power map F : R → R by F(x) = xp. We just proved

the identity
F(a + b) = F(a) + F(b),

that is, F “respects addition”. Since the commutative law implies

(ab)p = apbp, it respects multiplication as well. Finally, it respects

the unit element: F(1) = 1. These three properties constitute
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Mersenne primes

On March 3, 1998, the centenary of Emil Artin was celebrated at the Universiteit van Amsterdam. The present paper is based on the two morning lectures.

The announcement incorporated part of a letter from Artin to Hasse, reproduced from [9, p. 31].
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the definition of a ring homomorphism, which leads to the following

reformulation.

Theorem 1. Let p be a prime number and R a ring in which we have
p = 0. Then the pth power map R → R is a ring homomorphism from
R to itself.

The map in the theorem is called the Frobenius map, after Georg

Ferdinand Frobenius (1849–1917), who realized its importance in

algebraic number theory in 1880 (see [10, 15]).

Many “reciprocity laws”, including Artin’s, help answer-

ing the question: which ring homomorphism R → R is F? That

is, does F have a more direct description than through pth power-

ing? We give two examples in which this can be done. Through-

out, we let p be a prime number.

The simplest non-zero ring with p = 0 is the field Fp = Z/pZ

of integers modulo p. Since any element of Fp can be written as

1 + 1 + . . . + 1, the only ring homomorphism Fp → Fp is the iden-

tity. In particular, the Frobenius map F : Fp → Fp is the identity.

Looking at the definition of F, we see that we proved Fermat’s little
theorem: for any integer a, one has ap ≡ a mod p.

Next we consider quadratic extensions of Fp. Let d be a non-

zero integer, and let p be a prime number not dividing 2d. We

consider the ring Fp[
√

d], the elements of which are by definition

the formal expressions u + v
√

d, with u and v ranging over Fp.

No two of these expressions are considered equal, so the num-

ber of elements of the ring equals p2. The ring operations are the

obvious ones suggested by the notation; that is, one defines

(u + v
√

d) + (u′ + v′
√

d) = (u + u′) + (v + v′)
√

d,

(u + v
√

d) · (u′ + v′
√

d) = (uu′ + vv′d) + (uv′ + vu′)
√

d,

where d in vv′d is interpreted to be the element (d mod p) of Fp.

It is straightforward to show that with these operations Fp[
√

d] is

indeed a ring with p = 0.

Let us now apply the Frobenius map F to a typical element

u + v
√

d. Using, in succession, the definition of F, the fact that

it is a ring homomorphism, Fermat’s little theorem, the defining

relation (
√

d)2 = d, and the fact that p is odd, we find

F(u + v
√

d) = (u + v
√

d)p = up + vp(
√

d)p = u + vd(p−1)/2
√

d.

This leads us to investigate the value of d(p−1)/2 in Fp. Again from

Fermat’s little theorem, we have

0 = dp − d = d · (d(p−1)/2 − 1) · (d(p−1)/2 + 1).

Since Fp is a field, one of the three factors d, d(p−1)/2 − 1,

d(p−1)/2 + 1 must vanish. As p does not divide 2d, it is exactly

one of the last two. The quadratic residue symbol (d
p) distinguishes

between the two cases: for d(p−1)/2 = +1 in Fp we put (d
p) = +1,

and for d(p−1)/2 = −1 we put (d
p) = −1. The conclusion is that

the Frobenius map is one of the two “obvious” automorphisms of

Fp[
√

d]: for (d
p) = +1 it is the identity, and for (d

p) = −1 it is the

map sending u + v
√

d to u − v
√

d.

The assignment u + v
√

d 7→ u − v
√

d is clearly reminiscent of

complex conjugation, and it defines an automorphism in more

general circumstances involving square roots. For example, de-

fine a ring Q[
√

d] by simply replacing Fp with the field Q of ratio-

nal numbers in the above. The ring Q[
√

d] is a field when d is not

a perfect square; but whether or not it is a field, it has an identity

automorphism as well as an automorphism of order 2 that maps

u + v
√

d to u − v
√

d. If we restrict to integral u and v, and reduce

modulo p, then one of these two automorphisms gives rise to the

Frobenius map of Fp[
√

d].

The Artin symbol

We next consider higher degree extensions. Instead of X2 − d, we

take any polynomial f ∈ Z[X] of positive degree n and with lead-

ing coefficient 1. Instead of d 6= 0, we require that f not have re-

peated factors or, equivalently, that its discriminant ∆( f ) be non-

zero. Instead of Fp[
√

d], for a prime number p, we consider the

ring Fp[α] consisting of all pn formal expressions

u0 + u1α + u2α
2 + . . . + un−1α

n−1

with coefficients ui ∈ Fp, the ring operations being the natural

ones with f (α) = 0. Here the coefficients of f , which are integers,

are interpreted in Fp, as before. (Formally, one may define Fp[α]

to be the quotient ring Fp[Y]/ f (Y)Fp[Y].) In the same manner,

replacing Fp with Q, we define the ring Q[α]. It is a field if and

only if f is irreducible, but there is no reason to assume that this

is the case.

Note that we use the same symbol α for elements of different

rings. This is similar to the use of the symbols 0, 1, 2 = 1 + 1 for

elements of different rings, and just as harmless.

We now need to make an important assumption, which is au-

tomatic for n ≤ 2 but not for n ≥ 3. Namely, instead of two

automorphisms, we assume that a finite abelian group G of ring

automorphisms of Q[α] is given such that we have an equality

f = ∏
σ∈G

(

X −σ(α)
)

of polynomials with coefficients in Q[α]; in particular, the order

of G should be n. The existence of G is a strong assumption. For

example, in the important case that f is irreducible it is equiva-

lent to Q[α] being a Galois extension of Q with an abelian Galois

group.

Just as in the quadratic case, the Frobenius map of Fp[α] is for

almost all p induced by a unique element of the group G. The

precise statement is as follows.

Theorem 2. Let the notation and hypotheses be as above, and let p be
a prime number not dividing ∆( f ). Then there is a unique element
ϕp ∈ G such that the Frobenius map of the ring Fp[α] is the “reduction”
of ϕp modulo p, in the following sense: in the ring Q[α], one has

αp = ϕp(α) + p · (q0 + q1α + . . . + qn−1α
n−1)

for certain rational numbers q0, . . ., qn−1 of which the denominators are
not divisible by p.

In all our examples, the condition on the denominators of the qi

is satisfied simply because the qi are integers, in which case αp

and ϕp(α) are visibly “congruent modulo p”. However, there are

cases in which the coefficients of ϕp(α) have a true denominator,

so that the qi will have denominators as well. Requiring the latter

to not be divisible by p prevents us from picking any ϕp ∈ G and

just defining the qi by the equation in the theorem.

The proof of the theorem is a mildly technical exercise in ring

theory, and we suppress it here. It involves no number-theoretic
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subtleties of any kind, and one should not think of the theorem as

a deep one. The assumption that G be abelian cannot be omitted.

The element ϕp of G is referred to as the Artin symbol of p. In

the case n = 2 it is virtually identical to the quadratic symbol

(
∆( f )

p ). Note that for f = X2 − d we have ∆( f ) = 4d, so the

condition that p not divide ∆( f ) is in this case equivalent to p not

dividing 2d.

We can now say that, for the rings Fp[α] occurring in Theo-

rem 2, knowing the Frobenius map is equivalent to knowing the

Artin symbol ϕp in the group G. The Artin reciprocity law impos-

es strong restrictions on how ϕp varies over G as p ranges over all

prime numbers not dividing ∆( f ), and in this way it helps in de-

termining the Frobenius map. Let us consider an example.

Take f = X3 + X2 − 2X − 1, an irreducible polynomial with

discriminant ∆( f ) = 49 = 72. Since the discriminant is a square,

Galois theory predicts that we are able to find a group G as in the

theorem. Indeed, our ring Q[α]—a field, actually—turns out to

have an automorphism σ with

σ(α) = α2 − 2,

and an automorphism τ = σ2 with

τ(α) = σ(σ(α)) = (α2 − 2)2 − 2 = −α2 −α + 1;

here we used the defining relation f (α) = 0, that is, α3 =

−α2 + 2α + 1. One checks that σ and τ constitute, together with

the identity automorphism 1, a group of order 3 that satisfies the

condition f = (X −α)(X −σ(α))(X − τ(α)) stated before Theo-

rem 2.

Let us compute some of the Artin symbolsϕp for primes p 6= 7.

We have
α2 ≡ α2 − 2 = σ(α) mod 2,

so ϕ2 = σ . Likewise,

α3 = −α2 + 2α + 1 ≡ −α2 −α + 1 = τ(α) mod 3,

so ϕ3 = τ . A small computation yields

α5 = −4α2 − 5α + 3 ≡ α2 − 2 = σ(α) mod 5,

so ϕ5 = σ . Continuing in this way, one can list the value of ϕp for

a few small p.

p 2 3 5 11 13 17 19 23

ϕp σ τ σ τ 1 τ σ σ

p 29 31 37 41 43 47 53 59

ϕp 1 τ σ 1 1 σ τ τ

p 61 67 71 73 79 83 89 97

ϕp σ τ 1 τ σ 1 σ 1

This table can easily be made with a computer, but that is not

what we did. Instead, we applied Artin’s reciprocity law. There is

an easy pattern in the table, which the reader may enjoy finding

before reading on.

Artin symbols are worth knowing because they control much

of the arithmetic of Q[α]. They tell us in which way the polyno-

mial f with f (α) = 0 factors modulo the prime numbers coprime

to ∆( f ). This gives strong information about the prime ideals of

the ring Z[α], which for Z[α] are just as important as the prime

numbers themselves are for Z. Here are two illustrative results.

Let the situation again be as in the theorem.

Result 1. The degree of each irreducible factor of the polynomial
( f mod p) in Fp[X] is equal to the order of ϕp in the group G. In
particular, one has ϕp = 1 in G if and only if ( f mod p) splits into n
linear factors in Fp[X].

It is, for n > 2, quite striking that all irreducible factors of

( f mod p) have the same degree. This exemplifies the strength

of our assumptions. In the case n = 2, Result 1 implies that one

has (d
p) = 1 if and only if d is congruent to a square modulo p, a

criterion that is due to Euler (1755).

Result 2. The polynomial f is irreducible in Z[X] if and only if G is
generated by the elements ϕp, as p ranges over all prime numbers not
dividing ∆( f ).

The first result is “local” in the sense that it considers a single

prime number p, but the second one is global: it views the totality

of all p. Result 1 and the ‘if’-part of Result 2 belong to algebra

and are fairly straightforward. The ‘only if’-part of Result 2 is

harder: it is number theory. For example, Result 2 implies that an

integer d is not a square if and only if there exists a prime number

p with (d
p) = −1.

Amusingly, there is also an Artin symbol that “imitates” com-

plex conjugation just as ϕp imitates the Frobenius map. We de-

note it by ϕ−1; it is the unique element of G with the property that

every ring homomorphism λ from Q[α] to the field of complex

numbers maps ϕ−1(α) to the complex conjugate of λ(α). As in

Result 1, the degree of each irreducible factor of f over the field R

of real numbers equals the order of ϕ−1 in G, which is 1 or 2. The

case f = X2 − d again provides a good illustration: just as ϕp is

essentially the same as (d
p), so is ϕ−1 essentially the same as the

sign sign(d) of d.

Quadratic reciprocity

To explain Artin’s reciprocity law, we return to the quadratic

ring Q[
√

d]. In that case knowing ϕp is tantamount to knowing

(d
p), and Artin’s reciprocity law is just a disguised version of the

quadratic reciprocity law. The latter states that for any two distinct

odd prime numbers p and q one has

( q
p

)

=















( p
q

)

if p ≡ 1 mod 4,

(−p
q

)

if p ≡ −1 mod 4.

At first sight, this is hardly believable: (
q
p) is defined by a congru-

ence modulo p, and (
p
q) by a congruence modulo q; what can these

have to do with each other, when p and q are coprime? Never-

theless, the law is a theorem: it is the theorema fundamentale from

Gauss’s Disquisitiones arithmeticae (1801). Gauss also proved the

supplementary laws

(−1

p

)

=

{

1 if p ≡ 1 mod 4,

−1 if p ≡ −1 mod 4,
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( 2

p

)

=

{

1 if p ≡ ±1 mod 8,

−1 if p ≡ ±3 mod 8,

the first of which is in fact immediate from the definition of (d
p).

For our purposes it is convenient to use a different formulation

of the quadratic reciprocity law. It goes back to Euler, who empir-

ically discovered the law in the 1740’s but was unable to prove it;

we refer to the books by Weil [17] and Lemmermeyer [13] for the

historical details.

Euler’s quadratic reciprocity law. Let d be an integer, and let p and q
be prime numbers not dividing 2d. Then we have

p ≡ q mod 4d =⇒
( d

p

)

=
( d

q

)

,

p ≡ −q mod 4d =⇒
( d

p

)

= sign(d) ·
( d

q

)

.

To derive this from Gauss’s results, one first notes that (d
p) is clear-

ly periodic in d with period p, when p is fixed. Thus, if we can

put the symbol “upside down”—as Gauss’s fundamental theo-

rem allows us to do, when d is an odd prime—then one may ex-

pect that (d
p) is also a periodic function of p when d is fixed. In

this way one can deduce Euler’s quadratic reciprocity law from

Gauss’s version, at least when d is an odd prime number. The

cases d = −1 and d = 2 are immediately clear from the supple-

mentary laws, and the case of general d is now obtained from the

rule (d1
p )(d2

p ) = (d1d2
p ).

Conversely, one can use Euler’s formulation to deduce Gauss’s

version, simply by choosing d = (q ± p)/4, the sign being such

that d is an integer (see [8, Chap. III, Sec. 5]); and the supplemen-

tary laws are even easier. Thus, Euler’s and Gauss’s quadratic

reciprocity laws carry substantially the same information.

Not only did Euler observe that the value of the quadratic sym-

bol (d
p) depends only on p mod 4d, he also noticed that (d

p) ex-

hibits multiplicative properties “as a function of p”. For exam-

ple, if p, q, r are primes satisfying p ≡ qr mod 4d, then we have

(d
p) = (d

q)(
d
r). Formulated in modern language, this leads to a spe-

cial case of Artin reciprocity. Denote, for a non-zero integer m, by

(Z/mZ)∗ the multiplicative group of invertible elements of the

ring Z/mZ. Let d again be any non-zero integer.

Artin’s quadratic reciprocity law. There exists a group homomorphism

(Z/4dZ)∗ −→ {±1}
with

(p mod 4d) 7−→
( d

p

)

for any prime p not dividing 4d.

The law implies, for example, that for prime numbers p1, p2, . . .,

pt satisfying p1 p2 · · · pt ≡ 1 mod 4d one has ( d
p1

) · ( d
p2

) · . . . · ( d
pt
) =

1.

To prove this multiplicative property, one first defines (d
n) for

any positive integer n that is coprime to 2d, by starting from the

prime case and using the rule ( d
n1n2

) = ( d
n1

) · ( d
n2

). Next one shows,

again starting from the prime case, that Gauss’s results remain

valid in this generality whenever they make sense, and one con-

cludes that Euler’s version carries over too. The symbol is now by

definition multiplicative in its lower argument, so it is automatic

that one obtains a group homomorphism. It maps (−1 mod 4d)

to sign(d).

Artin reciprocity over Q

If we wish to generalize Artin’s quadratic reciprocity law to the

situation of Theorem 2, it is natural to guess that 4d is to be re-

placed by ∆( f ), and (d
p) by ϕp. This guess is correct. Let the

polynomial f , the ring Q[α], the abelian group G, and the Artin

symbols ϕp for p not dividing ∆( f ) be as in Theorem 2.

Artin reciprocity over Q. There exists a group homomorphism

(Z/∆( f )Z)∗ −→ G

with

(p mod ∆( f )) 7−→ ϕp

for any prime number p not dividing ∆( f ). It is surjective if and only
if f is irreducible.

The map is called the Artin map or the reciprocity map. It sends, ap-

propriately enough, (−1 mod ∆( f )) to ϕ−1. The assertion about

its surjectivity is obtained from Result 2.

Artin’s reciprocity law does not exhibit any symmetry that

would justify the term “reciprocity”. The name derives from the

fact that it extends the quadratic reciprocity law, and that its gen-

eralization to number fields extends similar “higher power” reci-

procity laws. Still, something can be saved: from Result 1 we

know that ϕp determines the splitting behavior of the polyno-

mial f modulo p, so Artin reciprocity yields a relation between

( f mod p) and (p mod ∆( f )) (cf. [18]).

In our cubic example f = X3 + X2 − 2X − 1 we have ∆( f ) =

49, and G is of order 3. Thus, the reciprocity law implies that the

table of Artin symbols that we gave for f is periodic with peri-

od dividing 49. Better still: the period can be no more than 7,

since it is not hard to show that any group homomorphism from

(Z/49Z)∗ to a group of order 3 factors through the natural map

(Z/49Z)∗ → (Z/7Z)∗. This is what the reader may have per-

ceived: one has ϕp = 1, σ , or τ according as p ≡ ±1, ±2, or

±3 mod 7. It is a general phenomenon for higher degree exten-

sions that the number ∆( f ) in our formulation of the reciprocity

law can be replaced by a fairly small divisor.

Cyclotomic extensions

Artin’s reciprocity law over Q generalizes the quadratic reci-

procity law, and it may be thought that its mysteries lie deeper.

Quite the opposite is true: the added generality is the first step on

the way to a natural proof. It depends on the study of cyclotomic
extensions.

Let m be a positive integer, and define the m-th cyclotomic poly-
nomial Φm ∈ Z[X] to be the product of those irreducible factors of

Xm − 1 in Z[X] with leading coefficient 1 that do not divide Xd − 1

for any divisor d < m of m. One readily proves the identity

∏
d

Φd = Xm − 1,

where the product ranges over all divisors d of m. From

this one can derive that the degree of Φm equals ϕ(m) =
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#(Z/mZ)∗. The discriminant ∆(Φm) divides the discriminant of

∆(Xm − 1), which equals ±mm. For example, the discriminant

of Φ8 = (X8 − 1)/(X4 − 1) = X4 + 1, which equals 28, divides

∆(X8 − 1) = −224.

Denoting by ζm a “formal” zero of Φm, we obtain a ring Q[ζm]

that has vector space dimension ϕ(m) over Q. We have ζm
m = 1,

but ζd
m 6= 1 when d < m divides m, so the multiplicative order

of ζm equals m. In the polynomial ring over Q[ζm], the identity

Φm = ∏
a∈(Z/mZ)∗

(X − ζa
m)

is valid. One deduces that for each a ∈ (Z/mZ)∗, the ring Q[ζm]

has an automorphism φa that maps ζm to ζa
m, and that G = {φa :

a ∈ (Z/mZ)∗} is a group isomorphic to (Z/mZ)∗; in particular,

it is abelian. This places us in the situation of Theorem 2, with

f = Φm and α = ζm. Applying the theorem, we find ϕp = φp for

all primes p not dividing m: all qi in the theorem vanish! Artin’s

reciprocity law is now almost a tautology: if we identify G with

(Z/mZ)∗, the Artin map

(Z/∆(Φm)Z)∗ −→ (Z/mZ)∗

is simply the map sending (a mod ∆(Φm)) to (a mod m) when-

ever a is coprime to m. This map is clearly surjective, so we recov-

er the well-known fact that Φm is irreducible in Z[X]. Thus, our

cyclotomic ring is actually a field.

We conclude that for cyclotomic extensions, Artin’s reciprocity

law can be proved by means of a plain verification. One can now

attempt to prove Artin’s reciprocity law in other cases by reduc-

tion to the cyclotomic case. For example, the supplementary law

that gives the value of (2
p) is a consequence of the fact thatζ8 +ζ−1

8
is a square root of 2. Namely, one has

ϕp(
√

2) = ϕp(ζ8 + ζ−1
8 ) ≡ (ζ8 + ζ−1

8 )p ≡ ζ
p
8 + ζ

−p
8 mod p;

for p ≡ ±1 mod 8, this equals

ζ8 + ζ−1
8 =

√
2,

and for p ≡ ±3 mod 8 it is

ζ3
8 + ζ−3

8 = ζ4
8 · (ζ8 + ζ−1

8 ) = −
√

2.

This confirms that in the two respective cases one has (2
p) = 1 and

(2
p) = −1.

The reader may enjoy checking that our example f = X3 +

X2 − 2X − 1 can also be reduced to the cyclotomic case: if ζ7 is a

zero of Φ7 = (X7 − 1)/(X − 1) = ∑6
i=0 Xi, then α = ζ7 +ζ−1

7 is a

zero of f , and one finds

ϕp(α) = ζ
p
7 + ζ

−p
7

=















ζ7 + ζ−1
7 = α for p ≡ ±1 mod 7,

ζ2
7 + ζ−2

7 = α2 − 2 = σ(α) for p ≡ ±2 mod 7,

ζ3
7 + ζ−3

7 = α3 − 3α = τ(α) for p ≡ ±3 mod 7.



50 NAW 5/1 nr.1 maart 2000 Artin reciprocity and Mersenne primes H.W. Lenstra, Jr., P. Stevenhagen

This proves our observation on the pattern underlying the table

of Artin symbols.

The theorem of Kronecker-Weber (1887) implies that the reduc-

tion to cyclotomic extensions will always be successful. This the-

orem, which depends on a fair amount of algebraic number the-

ory, asserts that every Galois extension of Q with an abelian Ga-

lois group can be embedded in a cyclotomic extension (see [14,

Chap. 6]). That takes care of the case in which f is irreducible,

from which the general case follows easily. In particular, to prove

the quadratic reciprocity law it suffices to express square roots of

integers in terms of roots of unity, as we just did with
√

2. Such

expressions form the basis of one of Gauss’s many proofs for his

fundamental theorem.

Algebraic number theory

A number field is an extension field K of Q that is of finite dimen-

sion as a vector space over Q. We saw already many of them in

the preceding sections, but now their role will be different: they

will replace Q as the base field in Artin’s reciprocity law. Formulat-

ing the latter requires the analogue for K of several concepts that

are taken for granted in the case of Q, such as the subring Z of Q

and the notion of a prime number. The facts that we need are easy

enough to state, but their proofs take up most of a first course in

algebraic number theory.

An element of a number field K is called an algebraic integer if

it is a zero of a polynomial in Z[X] with leading coefficient 1. The

set ZK of algebraic integers in K is a subring of K that has K as its

field of fractions. For K = Q it is Z.

The theorem of unique prime factorization is not generally

valid in ZK , and ideals have been invented in order to remedy

this regrettable situation. We recall that a subset of a ring R is

called an ideal if it is the kernel of a ring homomorphism that is

defined on R or, equivalently, if it is an additive subgroup of R
that is closed under multiplication by elements of R. An ideal is

prime if it is the kernel of a ring homomorphism from R to some

field. The product ab of two ideals a, b is the ideal consisting of all

sums µ1ν1 + µ2ν2 + · · · + µtνt with µi ∈ a, νi ∈ b. For example,

the ideals of the ring Z are the subsets of the form mZ, where m
is a non-negative integer; mZ is a prime ideal if and only if m is

a prime number or 0, and multiplying two ideals comes down to

multiplying the corresponding m’s.

In the ring ZK , the theorem of unique prime ideal factorization

is valid: each non-zero ideal a can be written as a product a =

p1p2 · · · pt of non-zero prime ideals pi, and this representation is

unique up to order. Several basic relations between ideals can

be read from their prime ideal factorizations. For example, one

ideal contains another if and only if it “divides” it in an obvious

sense; and two non-zero ideals a and b have no prime ideal in

common in their factorizations if and only if they are “coprime”

in the sense that µ + ν = 1 for some µ ∈ a, ν ∈ b. One recognizes

familiar properties of positive integers.

Instead of “non-zero prime ideal of ZK”, we shall also say

“prime of K”. More correctly, we should say “finite prime of

K”, since a full appreciation of the arithmetic of number fields

requires the consideration of so-called “infinite primes” as well.

For example, K = Q has just one infinite prime, and it gave rise

to the “exotic” Artin symbol ϕ−1. For our purposes we can afford

to disregard infinite primes for general K, at the expense of one

more definition: an element ν ∈ K is called totally positive if each

field embedding K → R maps ν to a positive real number and (in

case there are no such embeddings) ν 6= 0; notation: ν ≫ 0. For

example, in the case K = Q one has ν ≫ 0 if and only if ν > 0;

and if K contains a square root of a negative integer, then one has

−1 ≫ 0.

Primes in a quadratic field

We illustrate the results of the preceding section with the field

K = Q[
√
−7]. The element ω = (1 +

√
−7)/2 of K belongs to

ZK , since it is a zero of the polynomial X2 − X + 2. One has in

fact ZK = Z + Z ·ω. The unique non-trivial automorphism of K
is denoted by an overhead bar; thus, one has ω̄ = 1 −ω.

Finding a ring homomorphism from ZK to another ring is

equivalent to finding a zero of X2 − X + 2 in that ring. For exam-

ple, the element −2 ∈ Z/8Z satisfies (−2)2 − (−2) + 2 = 8 = 0,

so there is a ring homomorphism

ZK −→ Z/8Z,

a + b ·ω 7−→ (a − 2b mod 8).

Since this map is “defined” by putting 8 = 0 and ω = −2, its

kernel a is generated by 8 and ω + 2. The easily verified equality

8 = (ω + 2)(ω̄ + 2) ∈ (ω + 2)ZK shows that a single generator

suffices: a = (ω + 2)ZK .

Standard computational techniques from algebraic number

theory show that in our example every ideal of ZK has the form

µZK , with µ ∈ ZK . One may think that this is an exceptional

property of K; indeed, it implies unique factorization for elements

rather than just for ideals, which is known to fail for infinitely

many (non-isomorphic) number fields. However, recent compu-

tational results and heuristic arguments [6] suggest that this prop-

erty is actually very common, especially among number fields of

“high” dimension over Q. This feeling is not supported by any

known theorem.

For K = Q[
√
−7], it is also true that the generator µ ∈ ZK of

an ideal µZK is unique up to multiplication by ±1. Just as for a =

(ω + 2)Z[ω] above, the ring Z[ω]/µZ[ω] is finite of cardinality

µµ̄ for every µ 6= 0.

Let us now look into the primes of K. Finding these comes

down to finding zeroes of X2 − X + 2 in finite fields. A central

role is played by the finite fields of the form Fp, for p prime. Over

the field F2, one has X2 − X + 2 = X(X − 1), which gives rise to

two ring homomorphisms ZK → F2: one that maps ω to 0 ∈ F2,

and one that maps ω to 1 ∈ F2. Their kernels are two prime ideals

of index 2 of ZK , with respective generators ω and ω̄. Note that

we have ωω̄ = 2. The identity ω + 2 = −ω3 shows that the ideal

a considered above factors as the cube of the prime ωZK .

Similarly, let p be an odd prime number with (−7
p ) = 1; by

the quadratic reciprocity law, the latter condition is equivalent to

(
p
7) = 1, i. e., to p ≡ 1, 2, or 4 mod 7. Then −7 has a square

root in Fp, and since X2 − X + 2 has discriminant −7, it has two

different zeroes in Fp. As before, these give rise to two prime

ideals πZK and π̄ZK of index ππ̄ = p in ZK .

Modulo 7, the polynomial X2 − X + 2 has a double zero at 4,

which leads to the prime ideal
√
−7ZK of index 7. Generally, find-

ing zeroes of X2 − X + 2 in finite fields containing Fp amounts

to factoring X2 − X + 2 in Fp[X], which explains the relevance

of Result 1 for the purpose of finding prime ideals. In fact, the
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present considerations could have been made to depend on the

Artin symbol for the extension K = Q[ω] of Q. Let, for example,

p be one of the remaining prime numbers; so p ≡ 3, 5, or 6 mod 7.

Then the Artin symbol equals −1, the polynomial X2 − X + 2 is

irreducible in Fp[X], and pZK is a prime ideal for which ZK/pZK

is a finite field of cardinality p2. These prime ideals are of lesser

importance for us. They complete the enumeration of primes of K.

Discovering the laws of arithmetic in a specific number field,

as we just did for Q[
√
−7], is not only an agreeable enterprise in

its own right, it also has applications to the solution of equations

in ordinary integers. The following theorem provides a classical

illustration.

Theorem. Let p be an odd prime number congruent to 1, 2, or 4 mod 7.
Then p can be written as

p = x2 + 7y2

for certain integers x and y; moreover, x and y are uniquely determined
up to sign.

To prove this, let p = ππ̄ as above, with π ∈ ZK . Writing π =

a + bω, with a, b ∈ Z, one obtains

p = ππ̄ = (a + bω)(a + bω̄) = a2 + ab + 2b2 .

Clearly, a(a + b) is odd, so a is odd and b is even; writing b = 2y
and a + y = x we obtain the desired representation. Uniqueness

is a consequence of unique prime ideal factorization.

Number theorists of all persuasions have been fascinated by

prime numbers of the form 2l − 1 ever since Euclid (∼300 B. C.)

used them for the construction of perfect numbers. In modern times

they are named after Marin Mersenne (1588–1648). The Mersenne
number Ml = 2l − 1 can be prime only if l is itself prime; Ml is

indeed prime for l = 2, 3, 5, 7, 13, 17, 19, 31, and conjecturally

infinitely many other values of l, whereas it is composite for l =

11, 23, 29, 37, 41, 43, 47, 53, and conjecturally infinitely many

other prime values of l. One readily shows that a Mersenne prime

Ml is 1, 2, or 4 mod 7 if and only if l ≡ 1 mod 3, in which case one

actually has Ml ≡ 1 mod 7. Here are the first few such Mersenne

primes, as well as their representations as x2 + 7y2:

M7 = 127 = 82 + 7 · 32 ,

M13 = 8191 = 482 + 7 · 292 ,

M19 = 524287 = 7202 + 7 · 292 ,

M31 = 2147483647 = 439682 + 7 · 55332 ,

M61 = 2305843009213693951 = 9108105922 + 7 · 4592333792 .

This table was made by Franz Lemmermeyer. He observed that in

each case x is divisible by 8, a phenomenon that persisted when

larger Mersenne primes were tried. A small computation mod-

ulo 8 shows that x is necessarily divisible by 4. Modulo higher

powers of 2 one finds that y is ±3 mod 8, but one learns nothing

new about x. Maybe the divisibility by 8 is just an accident?

Abelian extensions

In order to formulate the analogue of Theorem 2 over an arbitrary

number field K, we need to extend the notion of Frobenius map.

For a prime p of K, we write k(p) = ZK/p; this is a finite field,

and its cardinality is called the norm Np of p. Instead of rings with

“p = 0” for some prime number p, we consider rings R that come

equipped with a ring homomorphism k(p) → R for some prime p

of K. The Frobenius map F (relative to p) of such a ring is the map

R → R defined by F(x) = xNp. It is a ring homomorphism. Galois

proved in 1830 that the Frobenius map of the finite field k(p) itself

is the identity map. This generalizes Fermat’s little theorem.

Next we “lift” Frobenius maps to Artin symbols. To give a

succinct description of the situation in which this can be done, we

borrow a definition from Galois theory for rings. Let L be a ring

that contains K, such that the dimension n of L as a vector space

over K is finite. We assume that we are given an abelian group G
of n automorphisms of L that are the identity on K, such that for

some K-basis ε1, ε2, . . ., εn of L the matrix A =
(

σεi
)

1≤i≤n,σ∈G is

invertible as a matrix over L. In this situation one says that L is

an abelian (ring) extension of K with group G. The abelian ring

extensions of K = Q are exactly the rings Q[α] encountered in

Theorem 2; but the present definition avoids reference to a specific

defining polynomial f .

With L and G as above, one defines the subring ZL of L in the

same way as we did for L = K in the previous section, and one

defines the discriminant ∆(L/K) to be the ZK-ideal generated by

the numbers (det A)2, as A ranges over all matrices as above that

are obtained from elements ε1, . . ., εn of ZL; all these numbers lie

in ZK . In the case K = Q, this discriminant divides the discrim-

inant ∆( f ) considered earlier. We can now state the analogue of

Theorem 2.

Theorem 3. Let K be a number field, and let L be an abelian extension
of K with group G. Then for every prime p of K that does not divide
∆(L/K), there is a unique element ϕp ∈ G with the property that
the automorphism of ZL/pZL induced by ϕp is the Frobenius map of
ZL/pZL relative to p.

Here we write pZL for the ZL-ideal generated by p; the inclusion

map ZK → ZL induces a ring homomorphism k(p) → ZL/pZL,

so that the latter ring has indeed a well-defined Frobenius map

relative to p. The element ϕp ∈ G is again called the Artin symbol
of p. What we said about the proof of Theorem 2 applies here as

well.

To give an example, we return to K = Q[
√
−7] = Q[ω], with

ω2 − ω + 2 = 0, and we take L = K[β], where β is a zero of

X2 −ωX − 1. Since the discriminant ω2 + 4 = ω + 2 of the latter

polynomial is non-zero, and L has dimension 2 over K, it is au-

tomatic that L is abelian over K with a group G of order 2; the

non-identity element ρ of G satisfies ρ(β) = ω −β = −1/β. One

can show that ZL equals ZK + ZK ·β, and that this in turn implies

that ∆(L/K) is the ZK-ideal generated by the polynomial discrim-

inant ω + 2; it is the ideal a = (ωZK)3 from the previous section.

Let us compute ϕp for the prime p =
√
−7ZK of norm 7 in this

example. In the field k(p) = F7 we have 2ω − 1 =
√
−7 = 0, and

therefore ω = 4. The ring ZL/pZL is the quadratic extension F7[β]

of F7 defined by β2 = ωβ + 1 = 4β + 1. An easy computation

shows that in that ring one has βNp = β7 = 4 − β. This is the

same as the image of ρ(β) = ω −β in ZL/pZL, so we have ϕp =

ρ. The computationally oriented reader is invited to check in a

similar way that each of the two primes (8 ± 3
√
−7)ZK of norm

M7 = 127 has Artin symbol 1.
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Artin’s reciprocity law

Artin’s reciprocity law in its general formulation is one of the

main results of class field theory. As we remarked in the introduc-

tion, there is no royal road to this subject, but the most convenient

one surely starts from the observation that the theorems of class

field theory are, in their formulation, the simplest ones that have

a chance of being true; indeed, the simplest ones that are meaning-
ful. Artin’s reciprocity law provides an apt illustration.

Let us place ourselves in the situation of Theorem 3, and ask

what a generalization of Artin’s reciprocity law to K might look

like. Superficially, this seems to be an easy question, since every

ingredient of the law for Q has a meaningful analogue over K. In

particular, the natural replacement for the group (Z/mZ)∗, which

we defined for any non-zero integer m, is the group of invert-

ible elements (ZK/m)∗ of the finite ring ZK/m, for a non-zero

ZK-ideal m. However, closer inspection reveals a difficulty: if p

is a prime of K coprime to ∆(L/K), there is no way to give a

meaningful interpretation to “p mod ∆(L/K)” as an element of

(ZK/∆(L/K))∗.

This is the only problem we need to resolve: defining, for a

non-zero ideal m of ZK , a suitable “multiplicative” group “modu-

lo m” that contains an element “p mod m” for each p coprime to

m, and that generalizes (Z/mZ)∗. The desired group is called the

ray class group modulo m, and we shall denote it by Clm. Anybody

who has assimilated its definition is ready to appreciate class field

theory.

Here is a description of Clm by means of generators and rela-

tions: one generator [p] for each prime p of ZK coprime to m, and

one relation [p1] · [p2] · . . . · [pt] = 1 for every sequence p1, p2, . . .,

pt of prime ideals for which there exists ν ∈ ZK satisfying

p1p2 · · · pt = νZK , ν ≡ 1 mod m, ν ≫ 0.

One can show that this definition has all the desired properties,

and that Clm is a finite abelian group. Using unique prime ideal

factorization, one can reformulate the definition by saying that

Clm is the multiplicative group of equivalence classes of non-zero

ideals a of ZK that are coprime to m, where a1 belongs to the same

class as a2 if and only if there exist ν1, ν2 ∈ ZK with

ν1a1 = ν2a2 , ν1 ≡ ν2 ≡ 1 mod m, ν1 ≫ 0, ν2 ≫ 0.

The reader who wishes to ponder this definition may show that

it does generalize (Z/mZ)∗, which it would not without the to-

tal positivity conditions. More generally, there is a group ho-

momorphism from our “first guess” (ZK/m)∗ to Clm that sends

(υ mod m) to the class of υZK whenever υ ≫ 0; and although in

general it is neither injective nor surjective, it is both for K = Q.

We have reached the high point of the journey. Let the situation

be as in Theorem 3.

Artin’s reciprocity law. There is a group homomorphism

Cl∆(L/K) −→ G

with

[p] 7−→ ϕp

for every prime p of K coprime to ∆(L/K). It is surjective if and only if
L is a field.

We shall again call this map the Artin map. By definition of

Cl∆(L/K), the theorem asserts that we have

ϕp1 ·ϕp2 · . . . ·ϕpt = 1

whenever p1, p2, . . ., pt satisfy p1p2 · · · pt = νZK for some ν ≡
1 mod ∆(L/K) with ν ≫ 0. This is just as unreasonable as the

quadratic reciprocity law: the Artin symbols ϕp are defined local-

ly at the prime ideals p, and appear to be completely independent

for different primes; how is it that they can “see” a global relation-

ship satisfied by these primes?

In the case K = Q the Kronecker-Weber theorem may be felt to

provide an adequate explanation of “why” the reciprocity law is

true. For K 6= Q, the immediate generalization of the Kronecker-

Weber theorem is false. Finding a usable substitute is the content

of Hilbert’s twelfth problem, which is still outstanding.

When Artin formulated his reciprocity law in 1923, he could

do no more than postulate its validity. It was only four years later

that he was able to provide a proof, borrowing the essential idea

from the Russian mathematician Nikolai Grigor′evich Chebotarëv.

He was just in time, since Chebotarëv was in the process of con-

structing a proof himself [15]. Curiously, Chebotarëv’s idea also
reduces the proof to the cyclotomic case, but the reduction is not

nearly as direct as it is over Q.

Mersenne primes

Let us examine what Artin reciprocity comes down to in the ex-

ample
K = Q[

√
−7] = Q[ω],

L = K[β],

ω2 −ω + 2 = 0,

β2 −ωβ − 1 = 0

considered earlier. We know already that ∆(L/K) = a is the ker-

nel of the map ZK → Z/8Z sending ω to −2, and that it is the

cube of the prime ωZK of norm 2.

First we need to compute Cla. The reader who did give some

thought to ray class groups will have no trouble verifying that the

map (Z/8Z)∗ ∼= (ZK/a)∗ → Cla defined in the previous section

is surjective, and that its kernel is {±1}. Hence we may identify

Cla with the group (Z/8Z)∗/{±1} of order 2.

Consider next the Artin map Cla → G = {1, ρ}. It can’t be

the trivial map, since the Artin symbol of the prime
√
−7ZK is ρ;

hence it is an isomorphism, and, by the theorem, L is a field. In

other words, the discriminant ω + 2 = −ω3 of the polynomial

defining L is not a square in K, which can also be seen directly.

We have L = K[
√
−ω].

Unravelling the various maps, we arrive at the following sim-

ple recipe for computing Artin symbols in L:

if p = πZK is a prime of K different from ωZK , then ϕp equals 1 or
ρ according as π maps to ±1 or to ±3 under the map ZK → Z/8Z

that sends ω to −2.

For example,
√
−7 = 2ω − 1 maps to 3, confirming what we

know about its Artin symbol. The numbers 8 ± 3
√
−7 map to

±3 · 3 = ±1, so even the reader who is not computationally ori-

ented can now conclude that both primes of norm 127 have Artin

symbol equal to 1.

More generally, consider any Mersenne prime Ml with l ≡
1 mod 3, and write Ml = x2 + 7y2, with x, y ∈ Z. Then x + y

√
−7

generates a prime of norm Ml of K. Our recipe tells us that its

Artin symbol equals 1 if x + 3y is ±1 mod 8, and ρ otherwise.
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Since we know x ≡ 0 mod 4 and y ≡ ±3 mod 8, the Artin sym-

bol is 1 if and only if x is divisible by 8. In other words, the prop-

erty of Mersenne primes observed by Lemmermeyer is equivalent

to the assertion that any prime of K = Q[
√
−7] of norm Ml has

trivial Artin symbol in the quadratic extension L = K[
√
−ω].

Surprisingly, we can use this reformulation to obtain a proof

of Lemmermeyer’s observation. Waving the magic wand of Ga-

lois theory we shall transform the base field Q[
√
−7] into Q[

√
2].

Moving back and forth via the Artin symbol, we find that the al-

leged property of primes of norm Ml in the first field translates

into a similar property of primes of norm Ml in the second field.

As one may expect, the field Q[
√

2] has a natural affinity for the

numbers 2l − 1, which leads to a rapid conclusion of the argu-

ment.

Theorem. Let Ml = 2l − 1 be a Mersenne prime with l ≡ 1 mod 3,
and write Ml = x2 + 7y2 with x, y ∈ Z. Then x is divisible by 8.

The proof operates in the extension N = K[
√
−ω,

√
−ω̄] of K

that is “composed” of the quadratic extension L = K[
√
−ω] and

its conjugate K[
√
−ω̄]. The dimension of N over K is 4, a basis

consisting of 1,
√
−ω,

√
−ω̄, and

√
−ω

√
−ω̄ =

√
2. It suffices to

prove the congruence

ξMl ≡ ξ mod MlZN for all ξ ∈ ZN ,

since it implies that the Artin symbols of both primes of norm Ml

of K in the subextension L of N are trivial.

If an extension can be written, just like N, as the composition

of a “twofold” quadratic extension of Q with its conjugate, then

there is a second way to write it in that manner. This is a general-

ity from Galois theory; it is due to the dihedral group of order 8

possessing an outer automorphism.

In plain terms, N contains
√

2, and may be viewed as an exten-

sion of dimension 4 of the field E = Q[
√

2]. From the identity

(
√
−ω ±

√
−ω̄)2 = −(ω + ω̄) ± 2

√
−ω

√
−ω̄ = −1 ± 2

√
2

one deduces that N is the composition of two conjugate quadratic

extensions of E, namely those obtained by adjoining square roots

of −1 + 2
√

2 and −1 − 2
√

2. (The product of those square roots is

a square root of −7.) It follows that N is an abelian extension of E.

In the new base field E, we can explicitly factor Ml :

Ml = 2l − 1 =

√
2

l − 1√
2 − 1

·
√

2
l
+ 1√

2 + 1
.

Denote by νl and ν̃l the two factors on the right. They belong

to ZE = Z + Z ·
√

2, and they are conjugate in E. Just as in the

case of K, they generate two primes of E of norm Ml . As νl

and ν̃l are coprime with product Ml , the congruence to be proved
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is equivalent to

ξMl ≡ ξ mod νlZN and

ξMl ≡ ξ mod ν̃lZN for all ξ ∈ ZN .

In other words: it suffices to show that the Artin symbols of νlZE

and ν̃lZE in the abelian extension N of E are both the identity.

We write N = E[γ, δ], where γ and δ are zeroes of the quadrat-

ic polynomials X2 − (1 +
√

2)X + 1 and X2 − (1 −
√

2)X + 1 of

discriminants −1 + 2
√

2 and −1 − 2
√

2, respectively. An auto-

morphism of N is the identity as soon as it is the identity on both

E[γ] and E[δ]. Thus it is enough to show that the Artin sym-

bols of νlZE and ν̃lZE for the extensions E[γ] and E[δ] are trivial.

For this we invoke Artin reciprocity. The discriminant of each of

these extensions divides (−1 + 2
√

2)(−1− 2
√

2)ZE = 7ZE. From

l ≡ 1 mod 6 and
√

2
6

= 8 ≡ 1 mod 7 one sees
√

2
l ≡

√
2 mod 7,

so the generators νl and ν̃l of our primes are both 1 mod 7ZE. Al-

so, they are readily seen to be totally positive. Hence, the Artin

reciprocity law implies that their Artin symbols are trivial, as re-

quired.

The reader who dislikes the explicit manipulations in our argu-

ment will be reassured to learn that class field theory has the-

orems other than Artin’s reciprocity law. Using these, one can

establish the existence of the desired extensions without writing

them down. This allows one, for example, to contemplate the pos-

sibility of formulating and proving a similar theorem that is not

special to any particular number like 7.

In our proof, Artin’s reciprocity law functioned as a bridge be-

tween ray class groups of two different number fields. It is ac-

tually possible to relate these ray class groups in a more elemen-

tary manner, by means of genus theory. There are also applications

of Artin reciprocity to conjectured properties of Mersenne primes

that do not appear to allow for similar simplifications [11]. k
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